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Preface

Give him threepence, since he must make gain out of what he learns.
Euclid of Alexandria

This book is an outgrowth of five years of participating in mathematical olympiads, where
geometry flourishes in great vigor. The ideas, techniques, and proofs come from countless
resources—Ilectures at MOP* resources found online, discussions on the Art of Problem
Solving site, or even just late-night chats with friends. The problems are taken from contests
around the world, many of which I personally solved during the contest, and even a couple
of which are my own creations.

As T have learned from these olympiads, mathematical learning is not passive—the only
way to learn mathematics is by doing. Hence this book is centered heavily around solving
problems, making it especially suitable for students preparing for national or international
olympiads. Each chapter contains both examples and practice problems, ranging from easy
exercises to true challenges.

Indeed, I was inspired to write this book because as a contestant I did not find any
resources | particularly liked. Some books were rich in theory but contained few chal-
lenging problems for me to practice on. Other resources I found consisted of hundreds of
problems, loosely sorted in topics as broad as “collinearity and concurrence”, and lacking
any exposition on how a reader should come up with the solutions in the first place. I have
thus written this book keeping these issues in mind, and I hope that the structure of the
book reflects this.

I am indebted to many people for the materialization of this text. First and foremost, I
thank Paul Zeitz for the careful advice he provided that led me to eventually publish this
book. I am also deeply indebted to Chris Jeuell and Sam Korsky whose careful readings of
the manuscript led to hundreds of revisions and caught errors. Thanks guys!

I also warmly thank the many other individuals who made suggestions and comments
on early drafts. In particular, I would like to thank Ray Li, Qing Huang, and Girish Venkat
for their substantial contributions, as well as Jingyi Zhao, Cindy Zhang, and Tyler Zhu,
among many others. Of course any remaining errors were produced by me and I accept
sole responsibility for them. Another special thanks also to the Art of Problem Solving fora,

* The Mathematical Olympiad Summer Program, which is a training program for the USA team at the
International Mathematical Olympiad.

Xi
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Xii Preface

from which countless problems in this text were discovered and shared. I would also like
to acknowledge Aaron Lin, who I collaborated with on early drafts of the book.

Finally, I of course need to thank everyone who makes the mathematical olympiads
possible—the students, the teachers, the problem writers, the coaches, the parents. Math
contests not only gave me access to the best peer group in the world but also pushed me
to limits that I never could have dreamed were possible. Without them, this book certainly
could not have been written.

Evan Chen
Fremont, CA
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Preliminaries

0.1 The Structure of This Book

Loosely, each of the chapters is divided into the following parts.

* A theoretical portion, describing a set of related theorems and tools,
* One or more examples demonstrating the application of these tools, and
* A set of several practice problems.

The theoretical portion consists of theorems and techniques, as well as particular geo-
metric configurations. The configurations typically reappear later on, either in the proof
of another statement or in the solutions to exercises. Consequently, recognizing a given
configuration is often key to solving a particular problem. We present the configurations
from the same perspective as many of the problems.

The example problems demonstrate how the techniques in the chapter can be used to
solve problems. I have endeavored to not merely provide the solution, but to explain how
it comes from, and how a reader would think of it. Often a long commentary precedes the
actual formal solution, and almost always this commentary is longer than the solution itself.
The hope is to help the reader gain intuition and motivation, which are indispensable for
problem solving.

Finally, I have provided roughly a dozen practice problems at the end of each chapter.
The hints are numbered and appear in random order in Appendix B, and several of the
solutions in Appendix C. I have also tried to include the sources of the problems, so that a
diligent reader can find solutions online (for example on the Art of Problem Solving forums,
www.aops.com). A full listing of contest acronyms appears in Appendix D.

The book is organized so that earlier chapters never require material from later chapters.
However, many of the later chapters approximately commute. In particular, Part ITT does not
rely on Part II. Also, Chapters 6 and 7 can be read in either order. Readers are encouraged
to not be bureaucratic in their learning and move around as they see fit, e.g., skipping
complicated sections and returning to them later, or moving quickly through familiar
material.

xiii
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Xiv Preliminaries

0.2 Centers of a Triangle

Throughout the text we refer to several centers of a triangle. For your reference, we define
them here.

It is not obvious that these centers exist based on these definitions; we prove this in
Chapter 3. For now, you should take their existence for granted.

A A
! i k. %
B C B C
A A
B C B C

Figure 0.2A. Meet the family! Clockwise from top left: the orthocenter H, centroid G, incenter 7,
and circumcenter O.

¢ The orthocenter of AABC, usually denoted by H, is the intersection of the perpendic-
ulars (or altitudes) from A to BC, B to CA, and C to AB. The triangle formed by the
feet of these altitudes is called the orthic triangle.

* The centroid, usually denoted by G, is the intersection the medians, which are the lines
joining each vertex to the midpoint of the opposite side. The triangle formed by the
midpoints is called the medial triangle.

* Next, the incenter, usually denoted by I, is the intersection of the angle bisectors of the
angles of AABC. It is also the center of a circle (the incircle) tangent to all three sides.
The radius of the incircle is called the inradius.

* Finally, the circumcenter, usually denoted by O, is the center of the unique circle (the
circumcircle) passing through the vertices of AABC. The radius of this circumcircle is
called the circumradius.
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0.3. Other Notations and Conventions XV

These four centers are shown in Figure 0.2A; we will encounter these remarkable points
again and again throughout the book.

0.3 Other Notations and Conventions

Consider a triangle ABC. Throughout this text, leta = BC,b = CA, c = AB, and abbre-
viate A = ZBAC, B=ZCBA, C = ZACB (for example, we may write sin%A for
sin 1/BAC). We let

1
s:z(a+b+c)

denote the semiperimeter of AABC.

Next, define [Py P, ... P,] to be the area of the polygon P;P,... P,. In particular,
[ABC] is area of AABC. Finally, given a sequence of points P, P,, ..., P, all lying on
one circle, let (P, P, ... P,) denote this circle.

We use £ to distinguish a directed angle from a standard angle Z. (Directed angles are
defined in Chapter 1.) Angles are measured in degrees.

Finally, we often use the notation ‘AB to denote either the segment A B or the line AB;
the use should be clear from context. In the rare case we need to make a distinction we
explicitly write out “line AB” or “segment AB”. Beginning in Chapter 9, we also use the
shorthand AB N C D for the intersection of the two lines AB and CD.

In long algebraic computations which have some amount of symmetry, we may use
cyclic sum notation as follows: the notation

Z f(a,b,c)

cyc
is shorthand for the cyclic sum

fla,b,c)+ f(b,c,a)+ f(c,a,b).
For example,

Zazb = a’b + b’c + ca.

cyc
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CHAPTER 1

Angle Chasing

This is your last chance. After this, there is no turning back. You take the blue pill—the
story ends, you wake up in your bed and believe whatever you want to believe. You
take the red pill—you stay in Wonderland and I show you how deep the rabbit-hole
goes. Morpheus in The Matrix

Angle chasing is one of the most fundamental skills in olympiad geometry. For that reason,
we dedicate the entire first chapter to fully developing the technique.

1.1 Triangles and Circles
Consider the following example problem, illustrated in Figure 1.1A.

Example 1.1. In quadrilateral W XY Z with perpendicular diagonals (as in Figure 1.1A),
we are given /ZWZX = 30°, ZXWY = 40°, and LWY Z = 50°.

(a) Compute £Z.
(b) Compute £X.

Z

Figure 1.1A. Given these angles, which other angles can you compute?

You probably already know the following fact:

Proposition 1.2 (Triangle Sum). The sum of the angles in a triangle is 180°.
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4 1. Angle Chasing

As it turns out, this is not sufficient to solve the entire problem, only the first half. The
next section develops the tools necessary for the second half. Nevertheless, it is perhaps
surprising what results we can derive from Proposition 1.2 alone. Here is one of the more
surprising theorems.

Theorem 1.3 (Inscribed Angle Theorem). If ZACB is inscribed in a circle, then it
subtends an arc with measure 2/ACB.

Proof. Draw in OC.Seta = ZACO and B = Z/BCO, and let = a + .

C

A B

Figure 1.1B. The inscribed angle theorem.

We need some way to use the condition AO = BO = CO. How do we do so? Using
isosceles triangles, roughly the only way we know how to convert lengths into angles.
Because AO = CO, we know that ZOAC = ZOCA = «. How does this help? Using
Proposition 1.2 gives

ZAOC =180° — (LOAC + LOCA) = 180° — 2.
Now we do exactly the same thing with B. We can derive
ZBOC = 180° — 28.
Therefore,

ZAOB =360° — (LAOC + Z/BOC) = 360° — (360° — 2a — 28) = 20

and we are done. ]

We can also get information about the centers defined in Section 0.2. For example,
recall the incenter is the intersection of the angle bisectors.

Example 1.4. If ] is the incenter of AABC then

1
ZBIC =90° + EA'
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1.1. Triangles and Circles 5

Proof. We have

/BIC = 180° — (LIBC + ZICB)
1
= 180° — 2(B+C)
1
= 180° — 2 (180° — 4)

1
=90° + -A. O
+ 2

B C

Figure 1.1C. The incenter of a triangle.

Problems for this Section

Problem 1.5. Solve the first part of Example 1.1. Hint: 185

Problem 1.6. Let ABC be a triangle inscribed in a circle w. Show that AC L CB if and
only if AB is a diameter of w.

Problem 1.7. Let O and H denote the circumcenter and orthocenter of an acute AABC,
respectively, as in Figure 1.1D. Show that /BAH = ZC AQ. Hints: 540 373

Figure 1.1D. The orthocenter and circumcenter. See Section 0.2 if you are not familiar with these.
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6 1. Angle Chasing

1.2 Cyclic Quadrilaterals

The heart of this section is the following proposition, which follows directly from the
inscribed angle theorem.

Proposition 1.8. Let ABC D be a convex cyclic quadrilateral. Then Z/ABC + ZCDA =
180° and ZABD = ZACD.

Here a cyclic quadrilateral refers to a quadrilateral that can be inscribed in a circle.
See Figure 1.2A. More generally, points are concyclic if they all lie on some circle.

B B

D ¢ p ¢

Figure 1.2A. Cyclic quadrilaterals with angles marked.

At first, this result seems not very impressive in comparison to our original theorem.
However, it turns out that the converse of the above fact is true as well. Here it is more
explicitly.

Theorem 1.9 (Cyclic Quadrilaterals). Let ABC D be a convex quadrilateral. Then the
following are equivalent:

(i) ABCD is cyclic.
(ii) ZABC + ZCDA = 180°.
(iii) ZABD = ZACD.
This turns out to be extremely useful, and several applications appear in the subsequent
sections. For now, however, let us resolve the problem we proposed at the beginning.

W X

50°
400 Y
A

Figure 1.2B. Finishing Example 1.1. We discover W XY Z is cyclic.
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1.3. The Orthic Triangle 7

Solution to Example 1.1, part (b). Let P be the intersection of the diagonals. Then we
have ZPZY =90° — ZPYZ = 40°. Add this to the figure to obtain Figure 1.2B.

Now consider the 40° angles. They satisfy condition (iii) of Theorem 1.9. That means
the quadrilateral W XY Z is cyclic. Then by condition (ii), we know

X =180° - £Z

Yet /Z = 30° 4+ 40° = 70°, s0 ZX = 110°, as desired. O

In some ways, this solution is totally unexpected. Nowhere in the problem did the
problem mention a circle; nowhere in the solution does its center ever appear. And yet,
using the notion of a cyclic quadrilateral reduced it to a mere calculation, whereas the
problem was not tractable beforehand. This is where Theorem 1.9 draws its power.

We stress the importance of Theorem 1.9. It is not an exaggeration to say that more
than 50% of standard olympiad geometry problems use it as an intermediate step. We will
see countless applications of this theorem throughout the text.

Problems for this Section

Problem 1.10. Show that a trapezoid is cyclic if and only if it is isosceles.

Problem 1.11. Quadrilateral ABCD has ZABC = ZADC = 90°. Show that ABCD is
cyclic, and that (A BC D) (that is, the circumcircle of ABC D) has diameter AC.

1.3 The Orthic Triangle

In AABC, let D, E, F denote the feet of the altitudes from A, B, and C. The ADEF is
called the orthic triangle of AABC. This is illustrated in Figure 1.3A.

A

B D c

Figure 1.3A. The orthic triangle.

It also turns out that lines AD, BE, and C F all pass through a common point H, which
is called the orthocenter of H. We will show the orthocenter exists in Chapter 3.
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8 1. Angle Chasing

Although there are no circles drawn in the figure, the diagram actually contains six
cyclic quadrilaterals.

Problem 1.12. In Figure 1.3A, there are six cyclic quadrilaterals with vertices in
{A,B,C, D, E, F, H}. What are they? Hint: 91

To get you started, one of them is AF HE. This is because ZAFH = ZAEH = 90°,
and so we can apply (ii) of Theorem 1.9. Now find the other five!

Once the quadrilaterals are found, we are in a position of power; we can apply any
part of Theorem 1.9 freely to these six quadrilaterals. (In fact, you can say even more—the
right angles also tell you where the diameter of the circle is. See Problem 1.6.) Upon closer
inspection, one stumbles upon the following.

Example 1.13. Prove that H is the incenter of ADEF.

Check that this looks reasonable in Figure 1.3A.
We encourage the reader to try this problem before reading the solution below.

Solution to Example 1.13. Refer to Figure 1.3A. We prove that DH is the bisector of
ZEDF. The other cases are identical, and left as an exercise.

Because /BFH = ZBDH = 90°, we see that BFHD is cyclic by Theorem 1.9.
Applying the last clause of Theorem 1.9 again, we find

/FDH = /FBH.
Similarly, ZHEC = ZHDC = 90°, so CEH D is cyclic. Therefore,
/HDE = /ZHCE.

Because we want to prove that /FDH = ZH DE, we only need to prove that /FBH =
ZHCE; in other words, ZFBE = ZFCE. This is equivalent to showing that FBCE is
cyclic, which follows from Z/BFC = ZBEC = 90°. (One can also simply show that both
are equal to 90° — A by considering right triangles BEA and CFA.)

Hence, DH is indeed the bisector, and therefore we conclude that H is the incenter of
ADEF. O

Combining the results of the above, we obtain our first configuration.

Lemma 1.14 (The Orthic Triangle). Suppose ADEF is the orthic triangle of acute
AABC with orthocenter H. Then

(a) Points A, E, F, H lie on a circle with diameter AH .
(b) Points B, E, F, C lie on a circle with diameter BC.
(c) H is the incenter of ADEF.

Problems for this Section

Problem 1.15. Work out the similar cases in the solution to Example 1.13. That is, explicitly
check that EH and F H are actually bisectors as well.



This document was prepared on 2016-12-29 for the exclusive use of Aniket Akhade. Unauthorized distribution is strictly prohibited.

1.4. The Incenter/Excenter Lemma 9

Problem 1.16. In Figure 1.3A, show that AAEF, ABFD, and ACDE are each similar
to AABC. Hint: 181

Figure 1.3B. Reflecting the orthocenter. See Lemma 1.17.

Lemma 1.17 (Reflecting the Orthocenter). Let H be the orthocenter of AABC, as in
Figure 1.3B. Let X be the reflection of H over BC and Y the reflection over the midpoint
of BC.

(a) Show that X lies on (ABC).
(b) Show that AY is a diameter of (ABC). Hint: 674

1.4 The Incenter/Excenter Lemma

We now turn our attention from the orthocenter to the incenter. Unlike before, the cyclic
quadrilateral is essentially given to us. We can use it to produce some interesting results.

Lemma 1.18 (The Incenter/Excenter Lemma). Ler ABC be a triangle with incenter I .
Ray Al meets (ABC) again at L. Let 14 be the reflection of I over L. Then,

(a) The points I, B, C, and I, lie on a circle with diameter 11, and center L. In particular,
LI =LB=LC=LI,.
(b) Rays Bl and C1, bisect the exterior angles of AABC.

By “exterior angle”, we mean that ray B, bisects the angle formed by the segment
BC and the extension of line A B past B. The point /4 is called the A-excenter” of AABC;
we visit it again in Section 2.6.

Let us see what we can do with cyclic quadrilateral ABLC.

* Usually the A-excenter is defined as the intersection of exterior angle bisectors of ZB and ZC, rather than
as the reflection of / over L. In any case, Lemma 1.18 shows these definitions are equivalent.
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Figure 1.4A. ILemma 1.18, the incenter/excenter lemma.

Proof. Let /A =2a, /B =28, and ZC =2y and notice that LA+ /B + ZC =
180° = o+ B +y = 90°.

Our first goal is to prove that L1 = L B. We prove this by establishing Z//BL = ZLIB
(this lets us convert the conclusion completely into the language of angles). To do this, we
invoke (iii) of Theorem 1.9 to get Z/CBL = ZLAC = ZI AC = «a. Therefore,

ZIBL = ZIBC+ ZCBL = B +a.
All that remains is to compute ZB1 L. But this is simple, as
/BIL =180°— ZAIB = /IBA+ /BAl =a + 8

Therefore triangle L BI is isosceles, with LI = L B, which is what we wanted.

Similar calculations give LI = LC.

Because LB = LI = LC, we see that L is indeed the center of (/ BC). Because L is
given to be the midpoint of T1,, it follows that 71, is a diameter of (L BC) as well.

Let us now approach the second part. We wish to show that £/, BC = %(1800 —28) =
90° — B. Recalling that 71, is a diameter of the circle, we observe that

LIBIy = ZICI4 =90°.

so LInBC = ZIpBI — ZIBC =90° — B.
Similar calculations yield that ZBC 14 = 90° — y, as required. O

This configuration shows up very often in olympiad geometry, so recognize it when it
appears!

Problem for this Section

Problem 1.19. Fill in the two similar calculations in the proof of Lemma 1.18.
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1.5 Directed Angles

Some motivation is in order. Look again at Figure 1.3A. We assumed that AABC was
acute. What happens if that is not true? For example, what if ZA > 90° as in Figure 1.5A?

Figure 1.5A. No one likes configuration issues.

There should be something scary in the above figure. Earlier, we proved that points B,
E, A, D were concyclic using criterion (iii) of Theorem 1.9. Now, the situation is different.
Has anything changed?

Problem 1.20. Recall the six cyclic quadrilaterals from Problem 1.12. Check that they are
still cyclic in Figure 1.5A.

Problem 1.21. Prove that, in fact, A is the orthocenter of AH BC.

In this case, we are okay, but the dangers are clear. For example, when AABC was
acute, we proved that B, H, F, D were concyclic by noticing that the opposite angles
satisfied /BDH + /HFB = 180°. Here, however, we instead have to use the fact that
/BDH = ZBF H; in other words, for the same problem we have to use different parts of
Theorem 1.9. We should not need to worry about solving the same problem twice!

How do we handle this? The solution is to use directed angles mod 180°. Such angles
will be denoted with a £ symbol instead of the standard Z. (This notation is not standard,;
should you use it on a contest, do not neglect to say so in the opening lines of your solution.)

Here is how it works. First, we consider £ ABC to be positive if the vertices A, B, C
appear in clockwise order, and negative otherwise. In particular, {ABC # £ C BA; they
are negatives. See Figure 1.5B.

Then, we are taking the angles modulo 180°. For example,

—150° = 30° = 210°.

Why on earth would we adopt such a strange convention? The key is that our
Theorem 1.9 can now be rewritten as follows.
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50°

C
Figure 1.5B. Here, {ABC = 50° and LKCBA = —50°.

Theorem 1.22 (Cyclic Quadrilaterals with Directed Angles). Points A, B, X, Y lie on
a circle if and only if

£AXB = £AYB.

This seems too good to be true, as we have dropped the convex condition—there is now
only one case of the theorem. In other words, as long as we direct our angles, we no longer
have to worry about configuration issues when applying Theorem 1.9.

Problem 1.23. Verify that parts (ii) and (iii) of Theorem 1.9 match the description in
Theorem 1.22.

We present some more convenient truths in the following proposition.

Proposition 1.24 (Directed Angles). For any distinct points A, B, C, P in the plane, we
have the following rules.

Oblivion. {APA = 0.

Anti-Reflexivity. {ABC = —{CBA.

Replacement. { PBA = A PBC if and only if A, B, C are collinear. (What happens
when P = A?) Equivalently, if C lies on line BA, then the A in £ PBA may be
replaced by C.

Right Angles. [f AP L BP, then {APB = ABPA = 90°.

Directed Angle Addition. {/APB + £{BPC = LAPC.

Triangle Sum. {ABC + £{BCA+ £CAB = 0.

Isosceles Triangles. AB = AC if and only if {/ACB = £CBA.

Inscribed Angle Theorem. If (ABC) has center P, then {APB =24{ACB.
Parallel Lines. If AB || CD, then £ABC + £BCD = 0.

One thing we have to be careful about is that 2{ABC = 2£XY Z does not imply

£LABC = £XYZ, because we are taking angles modulo 180°. Hence it does not make
sense to take half of a directed angle.’

Problem 1.25. Convince yourself that all the claims in Proposition 1.24 are correct.

T Because of this, it is customary to take arc measures modulo 360°. We may then write the inscribed angle
theorem as LABC = %AC. This is okay since £ ABC is taken mod 180° but AC is taken mod 360°.
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Directed angles are quite counterintuitive at first, but with a little practice they become
much more natural. The right way to think about them is to solve the problem for a specific
configuration, but write down all statements in terms of directed angles. The solution for a
specific configuration then automatically applies to all configurations.

Before moving in to a less trivial example, let us finish the issue with the orthic triangle
once and for all.

Example 1.26. Let H be the orthocenter of AABC, acute or not. Using directed angles,
show that AEHF,BFHD,CDHE, BEFC,CFDA, and ADE B are cyclic.

Solution. We know that
90° = LADB = LADC
90° = {BEC = {BEA
90° = LCFA = 4£CFB
because of right angles. Then
LAEH = L{AEB = —4{BEA = —90° = 90°
and
£LAFH = LAFC = —4{CFA = —-90° = 90°
so A, E, F, H are concyclic. Also,
ABFC =—-4CFB =-90°=90° = {BEC
so B, E, F, C are concyclic. The other quadrilaterals have similar stories. O

We conclude with one final example.

Lemma 1.27 (Miquel Point of a Triangle). Points D, E, F lie on lines BC, CA, and
AB of AABC, respectively. Then there exists a point lying on all three circles (AEF),
(BFD), (CDE).

This point is often called the Miquel point of the triangle.

It should be clear by looking at Figure 1.5C that many, many configurations are possible.
Trying to handle this with standard angles would be quite messy. Fortunately, we can get
them all in one go with directed angles.

Let K be the intersection of (B F D) and (C D E) other than D. The goal is to show that
AFEK iscyclic as well. For the case when K is inside AABC, this is an easy angle chase.
All we need to do is use the corresponding statements with directed angles for each step.

We strongly encourage readers to try this themselves before reading the solution that
follows.

First, here is the solution for the first configuration of Figure 1.5C. Define K as above.
Now we just notice that ZFKD = 180° — B and ZEK D = 180° — C. Consequently,
ZFKE =360°—(180° — C) — (180° — B) = B+ C = 180° — A and AFEK is cyclic.
Now we just need to convert this into directed angles.
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A
A
E
E
B c
A
F
B D

Figure 1.5C. The Miquel point, as in Lemma 1.27.

Proof. The first two claims are just
AFKD = AFBD = {ABC and {DKE = {DCE = £{BCA.
We also know that
LFKD+ ADKE + LEKF =0and L{ABC + {BCA + L£CAB = 0.

The first equation represents the fact that the sum of the angles at K is 360°; the second
is the fact that the sum of the angles in a triangle is 180°. From here we derive that
ACAB =AEKF.But {CAB = {EAF;hence {EAF = {EKF as desired. O]

Having hopefully convinced you that directed angles are natural and often useful, let us
provide a warning on when not to use them. Most importantly, you should not use directed
angles when the problem only works for a certain configuration! An example of this is
Problem 1.38; the problem statement becomes false if the quadrilateral is instead ABDC.
You should also avoid using directed angles if you need to invoke trigonometry, or if you
need to take half an angle (as in Problem 1.38 again). These operations do not make sense
modulo 180°.

Problems for this Section

Problem 1.28. We claimed that K FKD + {DKE + {EKF =0 in the above proof.
Verify this using Proposition 1.24.

Problem 1.29. Show that for any distinct points A, B, C, D we have {ABC + £BCD +
ACDA + £DAB = 0. Hints: 114 645
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Lemma 1.30. Points A, B, C lie on a circle with center O. Show that LOAC = 90° —
ACBA. (This is not completely trivial.) Hints: 8 530 109

1.6 Tangents to Circles and Phantom Points

Here we introduce one final configuration and one general technique.

First, we discuss the tangents to a circle. In many ways, one can think of it as
Theorem 1.22 applied to the “quadrilateral” AABC. Indeed, consider a point X on the
circle and the line X A. As we move X closer to A, the line X A approaches the tangent at
A. The limiting case becomes the theorem below.

Proposition 1.31 (Tangent Criterion). Suppose AABC is inscribed in a circle with
center O. Let P be a point in the plane. Then the following are equivalent:

(i) PA is tangent to (ABC).
(i) OA L AP.
(iii) APAB = £ACB.

\Y

B
a

C

Figure 1.6A. PA is atangent to (ABC). See Proposition 1.31.

In the following example we also introduce the technique of adding a phantom point.
(This general theme is sometimes also called reverse reconstruction.)

Example 1.32. Let ABC be an acute triangle with circumcenter O, and let K be a
point such that K A is tangent to (ABC) and ZK C B = 90°. Point D lies on BC such that
KD || AB. Show that line DO passes through A.

This problem is perhaps a bit trickier to solve directly, because we have not developed
any tools to show that three points are collinear. (We will!) But here is a different idea.
We define a phantom point D’ as the intersection of ray AO with BC. If we can show
that K D' || AB, then this will prove D’ = D, because there is only one point on BC with
KD | AB.

Fortunately, this can be done with merely the angle chasing that we know earlier. We
leave it as Problem 1.33. As a hint, you will have to use both parts of Proposition 1.31.

We have actually encountered a similar idea before, in our proof of Lemma 1.27. The
idea was to let (BD F) and (C DE) intersect at a point K, and then show that K was on the
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Figure 1.6B. Example 1.32, and the phantom point.

third circle as well. This theme is common in geometry. A second example where phantom
points are helpful is Lemma 1.45 on page 19.

It is worth noting that solutions using phantom points can often (but not always) be
rearranged to avoid them, although such solutions may be much less natural. For example,
another way to solve Example 1.32 is to show that { KAO = £ K AD. Problem 1.34 is the
most common example of a problem that is not easy to rewrite without phantom points.

Problems for this Section

Problem 1.33. Let ABC be a triangle and let ray AO meet BC at D'. Point K is selected
so that K A is tangent to (ABC) and ZK C = 90°. Prove that KD’ || AB.

Problem 1.34. In scalene triangle ABC, let K be the intersection of the angle bisector of
Z A and the perpendicular bisector of BC. Prove that the points A, B, C, K are concyclic.
Hints: 356 101

1.7 Solving a Problem from the IMO Shortlist

To conclude the chapter, we leave the reader with one last example problem. We hope the
discussion is instructive.

Example 1.35 (Shortlist 2010/G1). Let ABC be an acute triangle with D, E, F the
feet of the altitudes lying on BC, CA, AB respectively. One of the intersection points of
the line E F and the circumcircle is P. The lines B P and D F meet at point Q. Prove that
AP = AQ.

In this problem there are two possible configurations. Directed angles allows us to
handle both, but let us focus on just one—say P, and Q5.

The first thing we notice is the orthic triangle. Because of it we should keep the results
of Lemma 1.14 close at heart. Additionally, we are essentially given that AC B P, is a cyclic
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Q2

Py

Figure 1.7A. IMO Shortlist 2010, Problem G1 (Example 1.35).

quadrilateral. Let us see what we can do with that. The conclusion AP, = AQ; seems
better expressed in terms of angles—we want to show that {AQ, P, = £Q, P, A. Now we
already know £ Q, P> A, because

£02P,A = {BP,A = {BCA

so it is equivalent to compute £ A Q; P;.

There are two ways to realize the next step. The first is wishful thinking—the hope
that a convenient cyclic quadrilateral will give us £A Q, P,. The second way is to have a
scaled diagram at hand. Either way, we stumble upon the following hope: might AQ, P, F
be cyclic? It certainly looks like it in the diagram.

How might we prove that A Q, P, F is cyclic? Trying to use supplementary angles seems
not as hopeful, because this is what we want to use as a final step. However, inscribed arcs
seems more promising. We already know £AP, 0, = L AC B. Might we be able to find
AF Q,? Yes—we know that

LAFQ> = LAFD

and now we are certain this will succeed, because LA F D is entirely within the realm of
AABC and its orthic triangle. In other words, we have eliminated P and Q. In fact,

LAFD = LACD = L{ACB
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since AFDC is cyclic. This solves the problem for P, and Q,. Because we have been
careful to direct all the angles, this automatically solves the case P; and Q; as well—and
this is why directed angles are useful.

It is important to realize that the above is not a well-written proof, but instead a
description of how to arrive at the solution. Below is an example of how to write the proof
in a contest—one direction only (so without working backwards like we did at first), and
without the motivation. Follow along in the following proof with P, and O, checking that
the directed angles work out.

Solution to Example 1.35. First, because APBC and AF DC are cyclic,
£QPA=4ABPA=4ABCA=4DCA=4ADFA=ALQFA.
Therefore, we see AF P Q is cyclic. Then
LAQP = LAFP = {AFE = {AHE = {DHE = {DCE = £BCA.

We deduce that LAQP = {BCA = £Q PA which is enough to imply that AAPQ is
isosceles with AP = AQ. L]

This problem is much easier if Lemma 1.14 is kept in mind. In that case, the only
key observation is that AF P Q is cyclic. As we saw above, one way to make this key
observation is to merely peruse the diagram for quadrilaterals that appear cyclic. That is
why it is often a good idea, on any contest problem, to draw a scaled diagram using ruler and
compass—in fact, preferably more than one diagram. This often gives away intermediate
steps in the problem, prevents you from missing obvious facts, or gives you something
to attempt to prove. It will also prevent you from wasting time trying to prove false
statements.

1.8 Problems

Problem 1.36. Let ABCDE be a convex pentagon such that BCDE is a square with
center O and ZA = 90°. Prove that AO bisects ZBAE. Hints: 18 115 Sol: p.241

Problem 1.37 (BAMO 1999/2). Let O = (0,0), A = (0, a), and B = (0, b), where 0 <
a < b arereals. Let I be a circle with diameter AB and let P be any other point on I'. Line
P A meets the x-axis again at Q. Prove that /ZBQ P = ZBO P. Hints: 635 100

Problem 1.38. In cyclic quadrilateral ABC D, let I; and I, denote the incenters of AABC
and ADBC, respectively. Prove that I, I; BC is cyclic. Hints: 684 569

Problem 1.39 (CGMO 2012/5). Let ABC be a triangle. The incircle of AABC is tangent
to AB and AC at D and E respectively. Let O denote the circumcenter of ABCI.
Prove that ZODB = ZO EC. Hints: 643 89 Sol: p.241

Problem 1.40 (Canada 1991/3). Let P be a point inside circle w. Consider the set of
chords of w that contain P. Prove that their midpoints all lie on a circle. Hints: 455 186 169
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Problem 1.41 (Russian Olympiad 1996). Points E and F are on side BC of convex
quadrilateral ABC D (with E closer than F to B). It is known that /BAE = ZCDF and
ZEAF = Z/FDE. Prove that /ZFAC = ZE DB. Hints: 245 614

Lemma 1.42. Let ABC be an acute triangle inscribed in circle Q. Let X be the midpoint
of the arc BC not containing A and define Y, Z similarly. Show that the orthocenter of
XY Z is the incenter I of ABC. Hints: 432 21 326 195

Figure 1.8A. Lemma 1.42. I is the orthocenter of AXY Z.

Problem 1.43 (JMO 2011/5). Points A, B, C, D, E lie on a circle w and point P lies
outside the circle. The given points are such that (i) lines P B and P D are tangent to w, (ii)
P, A, C are collinear, and (iii) DE || AC.

Prove that BE bisects AC. Hints: 401 575 Sol: p.242

Lemma 1.44 (Three Tangents). Let ABC be an acute triangle. Let BE and CF be
altitudes of AABC, and denote by M the midpoint of BC. Prove that ME, M F, and the
line through A parallel to BC are all tangents to (AE F). Hints: 24 335

A

B M C

Figure 1.8B. Lemma 1.44, involving tangents to (AE F).

Lemma 1.45 (Right Angles on Incircle Chord). The incircle of AABC is tangent to
BC,CA,ABat D, E, F, respectively. Let M and N be the midpoints ofﬁ and AC,
respectively. Ray BI meets line EF at K. Show that BK | CK . Then show K lies on line
M N . Hints: 460 84
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B D M ¢
Figure 1.8C. Diagram for Lemma 1.45.

Problem 1.46 (Canada 1997/4). The point O is situated inside the parallelogram ABC D
such that ZAOB 4+ ZCOD = 180°. Prove that ZOBC = ZO DC. Hints: 386 110 214 Sol:
p.242

Problem 1.47 (IMO 2006/1). Let ABC be triangle with incenter /. A point P in the
interior of the triangle satisfies

/ZPBA+ /PCA=/ZPBC+ ZPCB.
Show that AP > AI and that equality holds if and only if P = I. Hints: 212 453 670

Lemma 1.48 (Simson Line). Let ABC be a triangle and P be any point on (ABC). Let
X, Y, Z be the feet of the perpendiculars from P onto lines BC, CA, and AB. Prove that
points X, Y, Z are collinear. Hints: 278 502 Sol: p.243

Figure 1.8D. Lemma 1.48; the Simson line.

Problem 1.49 (USAMO 2010/1). Let AXYZB be a convex pentagon inscribed in a
semicircle of diameter AB. Denote by P, Q, R, S the feet of the perpendiculars from Y
onto lines AX, BX, AZ, BZ, respectively. Prove that the acute angle formed by lines P Q
and RS is half the size of ZX O Z, where O is the midpoint of segment A B. Hint: 661
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Problem 1.50 (IMO 2013/4). Let ABC be an acute triangle with orthocenter H, and let
W be a point on the side BC, between B and C. The points M and N are the feet of the
altitudes drawn from B and C, respectively. w; is the circumcircle of triangle BW N and
X is a point such that WX is a diameter of ;. Similarly, w, is the circumcircle of triangle
CWM and Y is a point such that WY is a diameter of w,. Show that the points X, Y, and
H are collinear. Hints: 106 157 15 Sol: p.243

Problem 1.51 (IMO 1985/1). A circle has center on the side A B of the cyclic quadrilateral
ABCD. The other three sides are tangent to the circle. Prove that AD + BC = AB. Hints:
36 201
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CHAPTER 2

Circles

Construct a circle of radius zero. . .

Although it is often an intermediate step, angle chasing is usually not enough to solve a
problem completely. In this chapter, we develop some other fundamental tools involving
circles.

2.1 Orientations of Similar Triangles

You probably already know the similarity criterion for triangles. Similar triangles are useful
because they let us convert angle information into lengths. This leads to the power of a
point theorem, arguably the most common sets of similar triangles.

In preparation for the upcoming section, we develop the notion of similar triangles that
are similarly oriented and oppositely oriented.

Here is how it works. Consider triangles ABC and XY Z. We say they are directly
similar, or similar and similarly oriented, if

LABC = £XYZ, {BCA=4AYZX, and LCAB = LZXY.
We say they are oppositely similar, or similar and oppositely oriented, if
£LABC = —4XYZ, {BCA=—4AYZX, and {CAB = —LZXY.

If they are either directly similar or oppositely similar, then they are similar. We write
AABC ~ AXYZ in this case. See Figure 2.1A for an illustration.

Two of the angle equalities imply the third, so this is essentially directed AA. Remember
to pay attention to the order of the points.

Figure 2.1A. T, is directly similar to 7, and oppositely to T5.

23
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The upshot of this is that we may continue to use directed angles when proving triangles
are similar; we just need to be a little more careful. In any case, as you probably already
know, similar triangles also produce ratios of lengths.

Proposition 2.1 (Similar Triangles). The following are equivalent for triangles ABC
and XY Z.

(i) AABC ~ AXYZ.
(ii) (AA) ZA = /X and /B = /Y.

(iii) (SAS) /B = /Y,and AB : XY = BC : YZ.
(iv) (SSS)AB: XY =BC:YZ =CA: ZX.

Thus, lengths (particularly their ratios) can induce similar triangles and vice versa. It is
important to notice that SAS similarity does not have a directed form; see Problem 2.2. In
the context of angle chasing, we are interested in showing that two triangles are similar using
directed AA, and then using the resulting length information to finish the problem. The
power of a point theorem in the next section is perhaps the greatest demonstration. However,
we remind the reader that angle chasing is only a small part of olympiad geometry, and not
to overuse it.

Problem for this Section

Problem 2.2. Find an example of two triangles ABC and XY Z such that AB : XY =
BC:YZ,ABCA =AYZX,but AABC and AXY Z are not similar.

2.2 Power of a Point

Cyclic quadrilaterals have many equal angles, so it should come as no surprise that we
should be able to find some similar triangles. Let us see what length relations we can
deduce.

Consider four points A, B, X, Y lying on a circle. Let line AB and line XY intersect at
P. See Figure 2.2A.

P
7 Y
X B

Figure 2.2A. Configurations in power of a point.

A simple directed angle chase gives that

APAY = ABAY = {BXY = {BXP = —A{PXB
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and
LAYP = LAYX = L{ABX = {PBX = —4XXBP.

As a result, we deduce that AP AY is oppositely similar to AP X B.
Therefore, we derive
PA PX
PY ~ PB
or

PA-PB = PX . PY.

This is the heart of the theorem. Another way to think of this is that the quantity
PA - PB does not depend on the choice of line AB, but instead only on the point P. In
particular, if we choose line AB to pass through the center of the circle, we obtain that
PA-PB =|PO —r||PO + r| where O and r are the center and radius of w, respectively.
In light of this, we define the power of P with respect to the circle w by

Pow,,(P) = OP? — 1.

This quantity may be negative. Actually, the sign allows us to detect whether P lies inside
the circle or not. With this definition we obtain the following properties.

Theorem 2.3 (Power of a Point). Consider a circle w and an arbitrary point P.

(a) The quantity Pow,(P) is positive, zero, or negative according to whether P is outside,
on, or inside w, respectively.
(b) If £ is a line through P intersecting w at two distinct points X and Y, then

PX - PY = |Pow,(P)|.
(c) If P is outside w and P A is a tangent to  at a point A on w, then
PA? = Pow,,(P).

Perhaps even more important is the converse of the power of a point, which allows us
to find cyclic quadrilaterals based on length. Here it is.

Theorem 2.4 (Converse of the Power of a Point). Let A, B, X, Y be four distinct points
in the plane and let lines AB and XY intersect at P. Suppose that either P lies in both of
the segments AB and XY, or in neither segment. If PA- PB = PX - PY, then A, B, X,
Y are concyclic.

Proof. The proof is by phantom points (see Example 1.32, say). Let line X P meet
(ABX)atY'.Then A, B, X, Y’ are concyclic. Therefore, by power of a point, PA - PB =
PX - PY'. Yet we are given PA - PB = PX - PY. This implies PY = PY’.

We are not quite done! We would like that ¥ = Y’, but PY = PY’ is not quite enough.
See Figure 2.2B. It is possible that Y and Y’ are reflections across point P.

Fortunately, the final condition now comes in. Assume for the sake of contradiction that
Y #Y’; then Y and Y’ are reflections across P. The fact that A, B, X, Y’ are concyclic
implies that P lies in both or neither of AB and XY'. Either way, this changes if we consider
AB and XY. This violates the second hypothesis of the theorem, contradiction. U
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Figure 2.2B. It’satrap! PA- PB = PX - PY almost implies concyclic, but not quite.

As you might guess, the above theorem often provides a bridge between angle chasing
and lengths. In fact, it can appear in even more unexpected ways. See the next section.
Problems for this Section
Problem 2.5. Prove Theorem 2.3.

Problem 2.6. Let ABC be a right triangle with ZACB = 90°. Give a proof of the
Pythagorean theorem using Figure 2.2C. (Make sure to avoid a circular proof.)

C b

Figure 2.2C. A proof of the Pythagorean theorem.

2.3 The Radical Axis and Radical Center

‘We start this section with a teaser.

Example 2.7. Three circles intersect as in Figure 2.3A. Prove that the common chords
are concurrent.

This seems totally beyond the reach of angle chasing, and indeed it is. The key to
unlocking this is the radical axis.

Given two circles w; and w, with distinct centers, the radical axis of the circles is the
set of points P such that

Pow,, (P) = Pow,, (P).

At first, this seems completely arbitrary. What could possibly be interesting about having
equal power to two circles? Surprisingly, the situation is almost the opposite.
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Figure 2.3A. The common chords are concurrent.

Theorem 2.8 (Radical Axis). Let w; and w, be circles with distinct centers Oy and O,.
The radical axis of w, and w, is a straight line perpendicular to 01 0;.

In particular, if w; and w, intersect at two points A and B, then the radical axis is line
AB.

An illustration is in Figure 2.3B.

- - ———— >
Qe
S

- -—--"=--—--

Figure 2.3B. Radical axes on display.

Proof. This is one of the nicer applications of Cartesian coordinates—we are motivated
to do so by the squares of lengths appearing, and the perpendicularity of the lines. Suppose
that O; = (a, 0) and O, = (b, 0) in the coordinate plane and the circles have radii r; and
r, respectively. Then for any point P = (x, y) we have

Pow,, (P) = O1P> —r{ = (x —a)* + y* — r{.
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Similarly,
Pow,,(P) = O2P? — 13 = (x —b)* +y* —r3.

Equating the two, we find the radical axis of w; and w, is the set of points P = (x, y)
satisfying

0 = Pow,, (P) — Pow,, (P)
— 0P+ =] = [ bR ]
= (—Za =+ 2b)x + (a2 — bz —+ }"22 —_ r12)

which is a straight line perpendicular to the x-axis (as —2a + 2b # 0). This implies the
result.

The second part is an immediately corollary. The points A and B have equal power
(namely zero) to both circles; therefore, both A and B lie on the radical axis. Consequently,
the radical axis must be the line A B itself. O

As a side remark, you might have realized in the proof that the standard equation of
a circle (x — m)?> + (y — n)> — r? = 0 is actually just the expansion of Pow,((x, y)) = 0.
That is, the expression (x — m)> + (y — n)*> — r? actually yields the power of the point
(x, y) in Cartesian coordinates to the circle centered at (m, n) with radius r.

The power of Theorem 2.8 (no pun intended) is the fact that it is essentially an “if and
only if” statement. That is, a point has equal power to both circles if and only if it lies on
the radical axis, which we know much about.

Let us now return to the problem we saw at the beginning of this section. Some of you
may already be able to guess the ending.

Proof of Example 2.7. The common chords are radical axes. Let £, be the radical axis
of w; and w,, and let £,3 be the radical axis of w, and ws.
Let P be the intersection of these two lines. Then

P et = Pow,, (P) = Pow,,(P)
and
P € {3 = Pow,,(P) = Pow,,(P)

which implies Pow,,, (P) = Pow,,,(P). Hence P € {3, and accordingly we discover that all
three lines pass through P. O

In general, consider three circles with distinct centers Oy, O, Os. In light of the
discussion above, there are two possibilities.

1. Usually, the pairwise radical axes concur at a single point K. In that case, we call K the
radical center of the three circles.

2. Occasionally, the three radical axes will be pairwise parallel (or even the same line).
Because the radical axis of two circles is perpendicular to the line joining its centers,
this (annoying) case can only occur if O, O,, O3 are collinear.
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It is easy to see that these are the only possibilities; whenever two radical axes intersect,
then the third one must pass through their intersection point.

‘We should also recognize that the converse to Example 2.7 is also true. Here is the full
configuration.

Theorem 2.9 (Radical Center of Intersecting Circles). Let w; and w, be two circles
with centers Oy and O,. Select points A and B on w, and points C and D on w,. Then the
following are equivalent:

(a) A, B, C, D lie on a circle with center O3 not on line O 0.
(b) Lines AB and C D intersect on the radical axis of w| and w,.

Figure 2.3C. The converse is also true. See Theorem 2.9.

Proof. We have already shown one direction. Now suppose lines AB and C D intersect
at P, and that P lies on the radical axis. Then

+PA - PB = Pow,, (P) = Pow,,(P) =£PC - PD.

We need one final remark: we see that Pow,, (P) > 0 if and only if P lies strictly between
A and B. Similarly, Pow,,(P) > 0 if and only if P lies strictly between C and D. Because
Pow,,, (P) = Pow,, (P), we have the good case of Theorem 2.4. Hence, because PA - PB =
PC - PD, we conclude that A, B, C, D are concyclic. Because lines AB and C D are not
parallel, it must also be the case that the points O, O,, O3 are not collinear. O

We have been very careful in our examples above to check that the power of a point
holds in the right direction, and to treat the two cases “concurrent” or “all parallel”. In
practice, this is more rarely an issue, because the specific configuration in an olympiad
problem often excludes such pathological configurations. Perhaps one notable exception is
USAMO 2009/1 (Example 2.21).
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To conclude this section, here is one interesting application of the radical axis that is
too surprising to be excluded.

Proposition 2.10. [n a triangle ABC, the circumcenter exists. That is, there is a point O
such that OA = OB = OC.

Proof. Construct a circle of radius zero (!) centered at A, and denote it by w,4. Define
wp and w¢ similarly. Because the centers are not collinear, we can find their radical center
0.

Now we know the powers from O to each of wy, wp, @c¢ are equal. Rephrased, the
(squared) length of the “tangents” to each circle are equal: that is, 0A> = OB? = OC>.
(To see that O A? really is the power, just use Pow,,, (0) = O A? — 0> = 0 A%.) From here
we derive that 0A = OB = OC, as required. O

Of course, the radical axes are actually just the perpendicular bisectors of the sides. But
this presentation was simply too surprising to forgo. This may be the first time you have
seen a circle of radius zero; it will not be the last.

Problems for this Section

Lemma 2.11. Let ABC be a triangle and consider a point P in its interior. Suppose that
BC is tangent to the circumcircles of triangles ABP and AC P. Prove that ray AP bisects
BC.

C
Figure 2.3D. Diagram for Lemma 2.11.

Problem 2.12. Show that the orthocenter of a triangle exists using radical axes. That is, if
AD, BE, and CF are altitudes of a triangle ABC, show that the altitudes are concurrent.
Hint: 367

2.4 Coaxial Circles

If a set of circles have the same radical axes, then we say they are coaxial. A collection
of such circles is called a pencil of coaxial circles. In particular, if circles are coaxal, their
centers are collinear. (The converse is not true.)

Coaxial circles can arise naturally in the following way.
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) ©€

Figure 2.4A. Two pencils of coaxial circles.

Lemma 2.13 (Finding Coaxial Circles). Three distinct circles 21, Q2,, Q23 pass through
a point X. Then their centers are collinear if and only if they share a second common point.

Proof. Both conditions are equivalent to being coaxial. U

2.5 Revisiting Tangents: The Incenter

We consider again an angle bisector. See Figure 2.5A.

For any point P on the angle bisector, the distances from P to the sides are equal.
Consequently, we can draw a circle centered at P tangent to the two sides. Conversely, the
two tangents to any circle always have equal length, and the center of that circle lies on the
corresponding angle bisector.

B C

Figure 2.5A. Two tangents to a circle.

From these remarks we can better understand the incenter.

Proposition 2.14. In any triangle ABC, the angle bisectors concur at a point I, which is
the center of a circle inscribed in the triangle.

Proof. Essentially we are going to complete Figure 2.5A to obtain Figure 2.5B. Let the
angle bisectors of ZB and ZC intersect at a point /. We claim that / is the desired incenter.

Let D, E, F be the projections of I onto BC,CA, and AB, respectively. Because I is
on the angle bisector of /B, we know that / F = I D. Because / is on the angle bisector
of ZC, we know that I D = I E. (If this reminds you of the proof of the radical center, it
should!) Therefore, I E = I F, and we deduce that [ is also on the angle bisector of ZA.
Finally, the circle centered at I with radius /D = I E = I F is evidently tangent to all
sides. 0
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B Yy D % C

Figure 2.5B. Describing the incircle of a triangle.

The triangle D E'F is called the contact triangle of AABC.

We can say even more. In Figure 2.5B we have marked the equal lengths induced by the
tangents as x, y, and z. Considering each of the sides, this gives us a system of equations
of three variables

y+z=a
Z+x=b
X+y=c.

Now we can solve for x, y, and z in terms of a, b, c. This is left as an exercise, but we state
the result here. (Here s = %(a +b+c))

Lemma 2.15 (Tangents to the Incircle). If DEF is the contact triangle of AABC, then
AE = AF =5 —a. Similarly, BF = BD =s —band CD =CE =5 —c.

Problem for this Section
Problem 2.16. Prove Lemma 2.15.

2.6 The Excircles

In Lemma 1.18 we briefly alluded the excenter of a triangle. Let us consider it more
completely here. The A-excircle of a triangle ABC is the circle that is tangent to BC,
the extension of AB past B, and the extension of AC past C. See Figure 2.6A. The
A-excenter, usually denoted /4, is the center of the A-excircle. The B-excircle and C-
excircles are defined similarly and their centers are unsurprisingly called the B-excenter
and the C-excenter.

We have to actually check that the A-excircle exists, as it is not entirely obvious from
the definition. The proof is exactly analogous to that for the incenter, except with the angle
bisector from B replaced with an external angle bisector, and similarly for C. As a simple
corollary, the incenter of ABC lies on A_IA.

Now let us see if we can find similar length relations as in the incircle. Let X be the
tangency point of the A-excircle on BC and B, and C the tangency points to rays A B and
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Figure 2.6A. The incircle and A-excircle.

AC. We know that AB; = AC, and that

AB; +ACy =(AB+ BB))+ (AC+CCy)
— (AB + BX)+ (AC + CX)
=AB+ AC+ BC
= 2s.

We have now obtained the following.

Lemma 2.17 (Tangents to the Excircle). If AB, and AC are the tangents to the A-
excircle, then ABy = AC| = s.

Let us make one last remark: in Figure 2.6A, the triangles Al F and Al4 B are directly
similar. (Why?) This lets us relate the A-exradius, or the radius of the excircle, to the other
lengths in the triangle. This exradius is usually denoted r,,. See Lemma 2.19.

Problems for this Section

Problem 2.18. Let the external angle bisectors of B and C in a triangle ABC intersect at
I4. Show that 14 is the center of a circle tangent to BC, the extension of AB through B,
and the extension of AC through C. Furthermore, show that 74 lies on ray Al.

Lemma 2.19 (Length of Exradius). Prove that the A-exradius has length

Hint: 302

Lemma 2.20. Let ABC be a triangle. Suppose its incircle and A-excircle are tangent to
BC at X and D, respectively. Show that BX = CD and BD = CX.
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2.7 Example Problems

We finish this chapter with several problems, which we feel are either instructive, classical,
or too surprising to not be shared.

Example 2.21 (USAMO 2009/1). Given circles w; and w, intersecting at points X and
Y, let £; be a line through the center of w, intersecting w», at points P and Q and let £, be a
line through the center of w, intersecting w; at points R and S. Prove that if P, Q, R, and
S lie on a circle then the center of this circle lies on line XY.

Figure 2.7A. The first problem of the 2009 USAMO.

This was actually a very nasty USAMO problem, in the sense that it was easy to lose
partial credit. We will see why.

Let O3 and ws be the circumcenter and circumcircle, respectively, of the cyclic quadri-
lateral PQRS. After drawing the diagram, we are immediately reminded of our radical
axes. In fact, we already know that that lines P Q, RS, and XY concur at a point X, by
Theorem 2.9. Call this point H.

Now, what else do we know? Well, glancing at the diagram™ it appears that O; O3 L RS.
And of course this we know is true, because RS is the radical axis of w; an ws. Similarly,
we notice that P Q is perpendicular to O Os.

Focus on AO; 0,03. We see that H is its orthocenter. Therefore the altitude from Oj
to O; 0, must pass through H. But line XY is precisely that altitude: it passes through H
and is perpendicular to m Hence, Os lies on line XY, and we are done.

Or are we?

Look at Theorem 2.9 again. In order to apply it, we need to know that O, O,, O3 are
not collinear. Unfortunately, this is not always true—see Figure 2.7B.

Fortunately, noticing this case is much harder than actually doing it. We use phantom
points. Let O be the midpoint of XY (We pick this point because we know this is where O3

* And you are drawing large scaled diagrams, right?
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Figure 2.7B. An unnoticed special case.

must be for the problem to hold.) Now we just need to show that OP = OQ = OR = OS,
from which it will follow that O = Os.

This looks much easier. It should seem like we should be able to compute everything
using just repeated applications of the Pythagorean theorem (and the definition of a circle).
Trying this,

OP*>= 00} + 0,P?
= 00} +(0,P* - 0,03)
= 0012 +1’22 - 01022

Now the point P is gone from the expression, but the r, needs to go if we hope to get a

symmetric expression. We can get rid of it by using 0,X =r, =,/ X0%2+ O 022.

OP>= 00} +(0,X*+ 0X?*) — 0,03
=0X*+ 00} +00; - 0,03

1 2
= <§xy> + 007+ 00; — 0,0;.

This is symmetric; the exact same calculations with Q, R, and S yield the same results. We
conclude OP? = 0Q* = OR* = 0S? = (%XY)2 + 007 + 003 — 0,03 as desired.

Having presented the perhaps more natural solution above, here is a solution with a
more analytic flavor. It carefully avoids the configuration issues in the first solution.

Solution to Example 2.21. Let ry, rp, r3 denote the circumradii of w;, w;, and w3,
respectively.
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We wish to show that O3 lies on the radical axis of w; and w,. Let us encode the
conditions using power of a point. Because O is on the radical axis of w, and w3,

Pow,,,(01) = Pow,,,(O1)

= 0,05 —r; = 0,05 —r3.
Similarly, because O, is on the radical axis of w; and w3, we have

Pow,, (02) = Pow,,(0>)

= 0,0; —r{ = 0,03 — 3.
Subtracting the two gives

(0102 —12) = (0,03 —r}) = (0,0} — r}) — (0,0} — D)
= ri—rl =00} - 0,03
= 0,0; —r; = 0,05 —r}
= Pow,,(03) = Pow,, (03)
as desired. O

The main idea of this solution is to encode everything in terms of lengths using the
radical axis. Effectively, we write down the givens as equations. We also write the desired
conclusion as an equation, namely Pow,,,(03;) = Pow,,, (03), then forget about geometry
and do algebra. It is an unfortunate irony of olympiad geometry that analytic solutions are
often immune to configuration issues that would otherwise plague traditional solutions.

The next example is a classical result of Euler.

Lemma 2.22 (Euler’s Theorem). Let ABC be a triangle. Let R and r denote its circum-
radius and inradius, respectively. Let O and I denote its circumcenter and incenter. Then
OI* = R(R —2r).In particular, R > 2r.

The first thing we notice is that the relation is equivalent to proving R> — OI* = 2Rr.
This is power of a point, clear as day. So, we let ray Al hit the circumcircle again at L.
Evidently we just need to show

Al - IL = 2Rr.

This looks much nicer to work with—noticing the power expressions gave us a way to
clean up the problem statement, and gives us some structure to work on.
We work backwards for a little bit. The final condition appears like similar triangles.

So perhaps we may rewrite it as

Al 2R

o IL
There are not too many ways the left-hand side can show up like that. We drop the altitude
from I to AB as F. Then AAIF has the ratios that we want. (You can also drop the foot to
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L

Figure 2.7C. Proving Euler’s theorem.

AC, but this is the same thing.) All that remains is to construct a similar triangle with the
lengths 2R and I L. Unfortunately, I L does not play well in this diagram.

But we hope that by now you recognize 7L from Lemma 1.18! Write BL = I L. Then
let K be the point such that K L is a diameter of the circle. Then AK BL has the dimensions
we want. Could the triangles in question be similar? Yes: ZK BL and LA F I are both right
angles, and /BAL = ZBK L by cyclic quadrilaterals. Hence this produces Al - IL = 2Rr
and we are done.

As usual, this is not how a solution should be written up in a contest. Solutions should
be only written forwards, and without explaining where the steps come from.

Solution to Lemma 2.22. Let ray Al meet the circumcircle again at L and let K be
the point diametrically opposite L. Let F be the foot from I to AB. Notice that Z/FAI =
/ZBAL = /ZBKL and ZAFI = ZKBL = 90°, so

Al Al KL 2R

r IF LB LI
and hence Al - IL = 2Rr. Because [ lies inside AABC, we deduce the power of I with
respect to (ABC) is 2Rr = R* — O1I?. Consequently, 01> = R(R — 2r). O

The construction of the diameter appears again in Chapter 3, when we derive the
extended law of sines, Theorem 3.1.

Our last example is from the All-Russian Mathematical Olympiad, whose solution is
totally unexpected. Please ponder it before reading the solution.

Example 2.23 (Russian Olympiad 2010). Triangle ABC has perimeter 4. Points X
and Y lie on rays AB and AC, respectively, such that AX = AY = 1. Segments BC and
XY intersect at point M. Prove that the perimeter of either AABM or AACM is 2.
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B c
X

Figure 2.7D. A problem from the All-Russian MO 2010.

What strange conditions have been given. We are told the lengths AX = AY =1 and
the perimeter of AABC is 4, and effectively nothing else. The conclusion, which is an
either-or statement, is equally puzzling.

Let us reflect the point A over both X and Y to two points U and V sothat AU = AV =
2. This seems slightly better, because AU = AV = 2 now, and the “two” in the perimeter
is now present. But what do we do? Recalling that s = 2 in the triangle, we find that U and
V are the tangency points of the excircle, call it I',. Set I, the excenter, tangent to BC at
T. See Figure 2.7E.

Figure 2.7E. Adding an excircle to handle the conditions.

Looking back, we have now encoded the AX = AY = 1 condition as follows: X and
Y are the midpoints of the tangents to the A-excircle. We need to show that one of AABM
or AAC M has perimeter equal to the length of the tangent.

Now the question is: how do we use this?

Let us look carefully again at the diagram. It would seem to suggest that in this case,
AABM is the one with perimeter two (and not AAC M). What would have to be true in
order to obtain the relation AB + BM + M A = AU? Trying to bring the lengths closer
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to the triangle in question, we write AU = AB 4+ BU = AB + BT. So we would need
BM +MA =BT,or MA=MT.

So it would appear that the points X, M, Y have the property that their distance to A
equals the length of their tangents to the A-excircle. This motivates a last addition to our
diagram: construct a circle of radius zero at A, say wg. Then X and Y lie on the radical axis
of wy and I'y; hence so does M! Now we have M A = MT, as required.

Now how does the either-or condition come in? Now it is clear: it reflects whether T
lies on BM or CM. (It must lie in at least one, because we are told that M lies inside the
segment BC, and the tangency points of the A-excircle to BC always lie in this segment
as well.) This completes the solution, which we present concisely below.

Solution to Example 2.23. Let 14 be the center of the A-excircle, tangent to BCatT,
and to the extensions of AB and AC at U and V. We see that AU = AV = s = 2. Then XY
is the radical axis of the A-excircle and the circle of radius zero at A. Therefore AM = MT.

Assume without loss of generality that T lies on MC, as opposed to M B. Then AB +
BM + MA =AB+ BM + MT = AB+ BT = AB+ BU = AU =2 asdesired. [

While we have tried our best to present the solution in a natural way, it is no secret that
this is a hard problem by any standard. It is fortunate that such pernicious problems are
rare.

2.8 Problems

Lemma 2.24. Let ABC be a triangle with 14, Ig, and I¢ as excenters. Prove that triangle
I41gIc has orthocenter I and that triangle ABC is its orthic triangle. Hints: 564 103

Theorem 2.25 (The Pitot Theorem). Let ABC D be a quadrilateral. If a circle can be
inscribed' in it, prove that AB + CD = BC + DA. Hint: 467

A

D C

Figure 2.8A. The Pitot theorem: AB + CD = BC + DA.

T The converse of the Pitot theorem is in fact also true: if AB + CD = BC + DA, then a circle can be inscribed
inside ABC D. Thus, if you ever need to prove AB + CD = BC + DA, you may safely replace this with the
“inscribed” condition.
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Problem 2.26 (USAMO 1990/5). An acute-angled triangle A BC is given in the plane. The
circle with diameter A B intersects altitude CC’ and its extension at points M and N, and
the circle with diameter AC intersects altitude BB’ and its extensions at P and Q. Prove
that the points M, N, P, Q lie on a common circle. Hints: 260 73 409 Sol: p.244

Problem 2.27 (BAMO 2012/4). Given a segment AB in the plane, choose on it a point
M different from A and B. Two equilateral triangles AMC and BM D in the plane are
constructed on the same side of segment A B. The circumcircles of the two triangles intersect
in point M and another point N.

(a) Prove that AD and BC pass through point N. Hints: 57 77
(b) Prove that no matter where one chooses the point M along segment A B, all lines M N
will pass through some fixed point K in the plane. Hints: 230 654

Problem 2.28 (JMO 2012/1). Given a triangle ABC, let P and Q be points on segments
AB and AC, respectively, such that AP = AQ. Let S and R be distinct points on segment
‘BC such that S lies between B and R, /BPS = /PRS, and ZCQR = ZQSR. Prove
that P, Q, R, S are concyclic. Hints: 435 601 537 122

Problem 2.29 (IMO 2008/1). Let H be the orthocenter of an acute-angled triangle ABC.
The circle I'4 centered at the midpoint of BC and passing through H intersects the sideline
BC at points A; and A,. Similarly, define the points Bj, B,, C;, and C;. Prove that six
points Ay, Az, By, By, C1, and C; are concyclic. Hints: 82 597 Sol: p.244

Problem 2.30 (USAMO 1997/2). Let ABC be a triangle. Take points D, E, F on the
perpendicular bisectors of BC, CA, AB respectively. Show that the lines through A, B, C
perpendicular to EF, FD, DE respectively are concurrent. Hints: 56 2 611

Problem 2.31 (IMO 1995/1). Let A, B, C, D be four distinct points on a line, in that order.
The circles with diameters AC and BD intersect at X and Y. The line XY meets BC at
Z. Let P be a point on the line XY other than Z. The line C P intersects the circle with
diameter AC at C and M, and the line B P intersects the circle with diameter BD at B and
N. Prove that the lines AM, DN, XY are concurrent. Hints: 49 159 134

Problem 2.32 (USAMO 1998/2). Let C; and C, be concentric circles, with C in the interior
of C;. From a point A on C; one draws the tangent AB to C; (B € (). Let C be the second
point of intersection of ray AB and C,, and let D be the midpoint of AB. A line passing
through A intersects C; at £ and F' in such a way that the perpendicular bisectors of DE
and CF intersect at a point M on AB. Find, with proof, the ratio AM /M C. Hints: 659 355
482

Problem 2.33 (IMO 2000/1). Two circles G| and G, intersect at two points M and N. Let
AB be the line tangent to these circles at A and B, respectively, so that M lies closer to AB
than N. Let C D be the line parallel to A B and passing through the point M, with C on G,
and D on G,. Lines AC and BD meet at E; lines AN and CD meet at P; lines BN and
CD meet at Q. Show that EP = E Q. Hints: 17 174
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Problem 2.34 (Canada 1990/3). Let ABCD be a cyclic quadrilateral whose diagonals
meet at P. Let W, X, Y, Z be the feet of P onto AB, BC, CD, DA, respectively. Show
that WX 4+ YZ = XY + WZ. Hints: | 414 440 Sol: p.245

Problem 2.35 (IMO 2009/2). Let ABC be a triangle with circumcenter O. The points P
and Q are interior points of the sides CA and AB, respectively. Let K, L, and M be the
midpoints of the segments BP, CQ, and P Q, respectively, and let I be the circle passing
through K, L, and M. Suppose that the line P Q is tangent to the circle I'. Prove that
OP = O Q. Hints: 78 544 346

Problem 2.36. Let AD, BE, CF be the altitudes of a scalene triangle A BC with circum-
center O. Prove that (AO D), (BOE), and (C O F) intersect at point X other than O. Hints:
55379 Sol: p.245

Problem 2.37 (Canada 2007/5). Let the incircle of triangle ABC touch sides BC, CA,
and AB at D, E, and F, respectively. Let w, w1, w;, and w3 denote the circumcircles of
triangles ABC, AEF, BDF, and C DE respectively. Let w and w,; intersect at A and P, w
and w, intersect at B and Q, w and w3 intersect at C and R.

(a) Prove that w;, w,, and w3 intersect in a common point.
(b) Show that lines P D, QF, and RF are concurrent. Hints: 376 548 660

Problem 2.38 (Iran TST 2011/1). In acute triangle ABC, £B is greater than ZC. Let
M be the midpoint of BC and let E and F be the feet of the altitudes from B and C,
respectively. Let K and L be the midpoints of M E and M F, respectively, and let T be on
line KL such that TA || BC. Prove that TA = T M. Hints: 297 495 154 Sol: p.246
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CHAPTER 3

Lengths and Ratios

As one, who versed in geometric lore, would fain
Measure the circle Dante, The Divine Comedy

3.1 The Extended Law of Sines

Aside from angles and similar triangles, one way to relate angles to lengths is through the
law of sines. A more thorough introduction to the true power of trigonometry occurs in
Section 5.3, but we see that it already proves useful here in our study of lengths.

Theorem 3.1 (The Extended Law of Sines). [In a triangle ABC with circumradius R,
we have

a b c
- = - = — =2R.
sin A sin B sinC

This so-called “extended form” contains the final clause of 2R at the end. It has the

advantage that it makes the symmetry more clear (if o = 2R is true, then the other parts

follow rather immediately). The extended form also gives us a hint of a direct proof:

A
A
X
0] B C
X
B\—/ C
Figure 3.1A. Proving the law of sines.
Proof. As discussed above we only need to prove s+ = 2R. Let ‘BX be a diameter

of the circumcircle, as in Figure 3.1A. Evidently £ BXC = £ BAC. Now consider triangle

43
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BXC. Itis aright triangle with BC = a, BX = 2R, and either /BXC = A or ZBXC =
180° — A (depending on whether ZA is acute). Either way,

sinA =sin/ZBXC = 4
2R

and the proof ends here. O

The law of sines will be used later to provide a different form of the upcoming Ceva’s
theorem, namely Theorem 3.4.

Problem for this Section

Theorem 3.2 (Angle Bisector Theorem). Let ABC be a triangle and D a point on BC
so that AD is the internal angle bisector of ZBAC. Show that

AB DB

AC ~ DC’
Hint: 417

3.2 Ceva’s Theorem

In a triangle, a cevian is a line joining a vertex of the triangle to a point on the interior*
of the opposite side. A natural question is when three cevians of a triangle are concurrent.
This is answered by Ceva’s theorem.

A A

A

C B X' X C

Figure 3.2A. Three cevians are concurrent as in Ceva’s theorem.

Theorem 3.3 (Ceva’s Theorem). Let AX, BY, CZ be cevians of a triangle ABC. They
concur if and only if

BX CY AZ _

The proof is by areas: we use the fact that if two triangles share an altitude, the ratio of
the areas is the ratio of their bases. This trick is very useful in general.

* Some authors permit cevians to land on points on the extensions of the opposite side as well. For this chapter
we assume cevians lie in the interior of the triangle unless otherwise specified.
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Proof. Let us first assume the cevians concur at P, and try to show the ratios multiply
to 1. Since ABAX and AXAC share an altitude, as do ABPX and AX PC, we derive

BX _[BAX] _ [BPX]
XC = [XAC] [XPC]

Now we are going to use a little algebraic trick: if § = <, then § = % = atx
y

y o obtye
since % gi{g 1 . Applying this to the area ratios yields

BX _ [BAX]—[BPX] _[BAP]
XC = [XAC]-[XPC] [ACP]

For example,

1 5, both are equal to

But now the conclusion is imminent, since

CY _[CBP]  AZ _[ACP]
YA~ [BAP] " ZB T [CBP]

whence multiplying gives the desired ﬂ CEY AL g

Now how do we handle the other dlrectlon? Dead simple with phantom points. Assume
AX, BY, CZ are cevians with

BX CY AZ
XC YA ZB

Let BY and CZ intersect at P’, and let ray AP’ meet BC at X’ (right half of Figure 3.2A).
By our work already done, we know that

BX' CY AZ
XC YA ZB
Thus % = xc , which is enough to imply X = X'. O

The proof above illustrated two useful ideas—the use of area ratios, and the use of
phantom points.

As you might guess, Ceva’s theorem is extremely useful for showing that three lines
are concurrent. It can also be written in a trigonometric form.

Theorem 3.4 (Trigonometric Form of Ceva’s Theorem). Let AX, BY, CZ be cevians
of a triangle ABC. They concur if and only if

sin /BAX sin /CBY sinZ/ACZ _
sin/XACsin/YBAsin/ZCB
The proof is a simple exercise—just use the law of sines.
With this, the existence of the orthocenter, the incenter, and the centroid are all totally
straightforward. For the orthocenter’, we compute
sin(90° — B)sin(90° — C)sin(90° — A)
sin(90° — C)sin(90° — A)sin(90° — B)

i Actually we need to handle the case where AABC is obtuse separately, since in that case two of the altitudes
fall outside the triangle. We develop the necessary generalization in the next section, when we discuss directed
lengths in Menelaus’s theorem.
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For the incenter, we compute

SN AR (I |
smEAsmEBsmEC_

L a lpo 1o
sin EA sin EB sin EC
We could also have used the angle bisector theorem in the standard form of Ceva’s theorem,
giving

cab
———=1.
bca
Finally, for the centroid we have
111
———=1
111

and we no longer have to take the existence of our centers for granted!

Problems for this Section

Problem 3.5. Show the trigonometric form of Ceva holds.

Problem 3.6. Let AM, BE, and CF be concurrent cevians of a triangle ABC. Show that
EF || BC if and only if BM = MC.

3.3 Directed Lengths and Menelaus’s Theorem

The analogous form of Ceva’s theorem is called Menelaus’s theorem, which specifies when
three points on the sides of a triangle (or their extensions) are collinear.

Theorem 3.7 (Menelaus’s Theorem). Let X, Y, Z be points on lines BC, CA, ABina
triangle ABC, distinct from its vertices. Then X, Y, Z are collinear if and only if

BX CY AZ _

XC YA ZB

where the lengths are directed.

Here we have introduced ratios of directed lengths. Given collinear points A, Z, B, we
say that the ratio é—g is positive if Z lies between A and B, and negative otherwise. (This is
much the same idea as the signs we used in defining the power of a point.) We always say
explicitly when lengths are taken to be directed.

Notice the similarity to Ceva’s theorem. The use of —1 instead of 1 is important—for
if X, Y, Z each lie in the interiors of the sides, it is impossible for the three to be collinear!

Essentially the directed lengths are simply encoding two cases of Menelaus’s theorem:
when either one or three of {X, Y, Z} lie outside the corresponding side. It is easy to check
that the sign of the directed ratio is negative precisely in these cases.

There are many proofs of Menelaus’s theorem that we leave to other sources. The proof
we give shows one direction; if the ratios multiply to —1, then the points are collinear. (The
other direction then follows using phantom points.) It is inspired by a proof to Monge’s
theorem (Theorem 3.22), and it is so surprising that we could not resist including it.
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Z

Figure 3.3A. The two cases of Menelaus’s theorem.

Proof. First, suppose that the points X, Y, Z lie on the sides of the triangle in such a
way that

BX CY AZ

Then it is possible to find nonzero real numbers p, ¢, » for which

q BX r cY p AZ

’

r XC p YA' ¢ "~ ZB’

Now we go into three dimensions! Let P be the plane of triangle ABC (this page) and
construct point A; such that AlA L Pand AA, = p; we take A; to be above the page if
p > 0 and below the page otherwise. Now define B; and C; analogously, so that BB} = g
and CC, =r.

Y

By
Figure 3.3B. The 3D proof of Menelaus’s theorem.

One can easily check (say, by similar triangles) that the points Bj, Ci, and X are
collinear. Indeed, just consider the right triangles C{C X and B; BX, and note the ratios of
the legs. Similarly, line A By passes through Z and A C, passes through Y.

But now consider the plane Q of the triangle A; B; C. The intersection of planes P and
@ is a line. However, this line contains the points X, Y, Z, so we are done. O

It also turns out that Ceva’s theorem (as well as its trigonometric form) can be gener-
alized using directed lengths. We can write this in the following manner. This should be
taken as the full form of Ceva’s theorem.
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Theorem 3.8 (Ceva’s Theorem with Directed Lengths). Let ABC be a triangle and X,
Y, Z be points on lines BC, CA, AB distinct from its vertices. Then lines AX, BY, CZ
are concurrent if and only if

AZ BX CY _

ZB XC YA
where the ratios are directed.

The condition is equivalent to

sin/BAX sin /CBY sin ZACZ _
sin/XACsin/YBAsin/ZCB ~—

where either exactly one or exactly three of X, Y, Z lie strictly inside sides BC,CA, AB.
Because exactly two altitudes land outside the sides in an obtuse triangle, this generalization
lets us complete the proof that the orthocenter exists for obtuse triangles. (What about for
right triangles?)

3.4 The Centroid and the Medial Triangle

Figure 3.4A. Area ratios on the centroid of a triangle.

We can say even more about the centroid than just its existence by again considering
area ratios. Consider Figure 3.4A, where we have added the midpoints of each of the sides
(the triangle they determine is called the medial triangle). Notice that

_BM [GMB]
- MC  [CMG]
as discussed before in our proof of Ceva’s theorem. Consequently [GM B] = [CM G] and
so we mark their areas with an x in Figure 3.4A. We can similarly define y and z.
But now, by the exact same reasoning,
_BM [AMB] x+2z
T MC  [CMA]  x+2y
Hence y = z. Analogous work gives x = y and x = z. So that means the six areas of the
triangles are all equal.
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In that vein, we deduce
AG  [GAB] 2z _5
GM ~[MGB] x

This yields an important fact concerning the centroid of the triangle.

Lemma 3.9 (Centroid Division). The centroid of a triangle divides the median into a
2 : 1 ratio.

Just how powerful can area ratios become? Answer: you can build a whole coordinate
system around them. See Chapter 7.

3.5 Homothety and the Nine-Point Circle

First of all, what is a homothety? A homothety or dilation is a special type of similarity,
in which a figure is dilated from a center. See Figure 3.5A.

h(C)

Figure 3.5A. A homothety & with center O acting on ABC.

More formally, a homothety 4 is a transformation defined by a center O and a real
number k. It sends a point P to another point 4(P), multiplying the distance from O by k.
The number £ is the scale factor. It is important to note that k can be negative, in which
case we have a negative homothety. See Figure 3.5B.

C

Figure 3.5B. A negative homothety with center O.

In other words, all this is a fancy special case of similar triangles.

Homothety preserves many things, including but not limited to tangency, angles (both
vanilla and directed), circles, and so on. They do not preserve length, but they work well
enough: the lengths are simply all multiplied by k.

Furthermore, given noncongruent parallel segments AB and XY (what happens if
AB = XY?), we can consider the intersection point O of lines AX and BY. This is the
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center of a homothety sending one segment to the other. (As is the intersection of lines
AY and BX—one of these is negative.) As a result, parallel lines are often indicators of
homotheties.

A consequence of this is the following useful lemma.

Lemma 3.10 (Homothetic Triangles). Let ABC and XY Z be non-congruent triangles
such that AB | XY, BC || YZ, and CA || ZX. Then lines AX, BY, CZ concur at some
point O, and O is a center of a homothety mapping AABC to AXY Z.

Convince yourself that this is true. The proof is to take a homothety & with X = h(A)
and Y = h(B) and then check that we must have Z = h(C).

One famous application of homothety is the so-called nine-point circle. Recall
Lemma 1.17, which states that the reflection of the orthocenter over BC, as well as the
reflection over the midpoint of BC, lies on (ABC). In Figure 3.5C, we have added in the
reflections over the other sides as well.

A

Figure 3.5C. The nine-point circle.

We now have nine points on (ABC) with center O, the three reflections of H over
the sides, the three reflections of H over the midpoints, and the vertices of the triangle
themselves.

Let us now take a homothety 4 at H (meaning with center H) and with scale factor %
This brings all the reflections back onto the sides of A BC, while also giving us as an added
bonus the midpoints of AH, BH, C H. In addition, O gets mapped to the midpoint of O H,
say Npo.
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On the other hand homothety preserves circles, so astonishingly enough, these nine
points remain concyclic. We even know the center of the circle—it is the image #(O) = No,
called the nine-point center. We even know the radius! It is just half of the circumradius
(ABC). This circles is called the nine-point circle.

Lemma 3.11 (Nine-Point Circle). Let ABC be a triangle with circumcenter O and
orthocenter H , and denote by Ny the midpoint of O H. Then the midpoints of AB, BC, CA,
AH,BH,CH, as well as the feet of the altitudes of AABC, lie on a circle centered at N.
Moreover, the radius of this circle is half the radius of (ABC).

We will see several more applications of homothety in Chapter 4, but this is one of the
most memorable. A second application is the Euler line—the circumcenter, orthocenter, and
centroid are collinear as well! We leave this famous result as Lemma 3.13; see Figure 3.5D.

Problems for this Section

Problem 3.12. Give an alternative proof of Lemma 3.9 by taking a negative homothety.
Hints: 360 165 348

B C

Figure 3.5D. The Euler line of a triangle.

Lemma 3.13 (Euler Line). In triangle ABC, prove that O, G, H (with their usual
meanings) are collinear and that G divides OH in a2 : 1 ratio. Hints: 426 47 314

3.6 Example Problems

Our first example is from the very first European Girl’s Math Olympiad. It is a good
example of how recognizing one of our configurations (in this case, the reflections of the
orthocenters) can lead to an elegant solution.

Example 3.14 (EGMO 2012/7). Let ABC be an acute-angled triangle with circumcircle
I" and orthocenter H. Let K be a point of I on the other side of BC from A. Let L be the
reflection of K across A B, and let M be the reflection of K across BC. Let E be the second
point of intersection of I" with the circumcircle of triangle BL M. Show that the lines K H,
EM, and BC are concurrent.
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Figure 3.6A. From the first European Girl’s Olympiad.

Upon first reading the problem, there are two observations we can make about it.

1. There are a lot of reflections.
2. The orthocenter does not do anything until the last sentence, when it magically appears
as the endpoint of one of the concurrent lines.

This is a pretty tell-tale sign. What does the orthocenter have to do with reflections and
the circumcircle? We need to tie in the orthocenter somehow, otherwise it is just floating in
the middle of nowhere. How do we do this?

These questions motivate us to reflect H over BC and AB to points Hy and Hc,
corresponding to the reflections of K across these segments. This move incorporates both
the observations above. At this point we realize that M H, and HK concur on BC for
obvious reasons. So the problem is actually asking to show that H,, M, and E are collinear.
This is certainly progress.

He £

|
[
T
[
[
5
K

Figure 3.6B. Adding in some reflections.
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At this point we can instead let E be the intersection of H4 M with " and try to show
that BLE’M is concyclic. We are motivated to use phantom points to handle collinearity
(since “concyclic” is easier to show), and we choose E because H4 and M are simpler—
they are just reflections of given points. (Of course, it is probably possible to rewrite the
proof without phantom points.) In any case, it suffices to prove {LE'M = £ LBM.

However, we can compute £ L BM easily. It is just

ALBK + {KBM =2({ABK + {KBC) =24{ABC.

So now we have reduced this to showing that {LE'M = 2£ABC.

Examining the scaled diagram closely suggests that L, H¢, and E’ might be collinear.
Is this true? It would sure seem so. To see how useful our conjecture might be, we quickly
conjure

AHcE'Hy = {HcBH, = 24 ABC.

Thus the desired conclusion is actually equivalent to showing these three points are collinear.
Now we certainly want to establish this.

How do we go about proving this? Angle chasing seems the most straightforward. It
would suffice to prove that L L Hc B = £ E'Hc B; the latter is equal to £ E’ H4 B, which by
symmetry happens to equal L BHK. So we need £ L Hc B = £BH K—which is clear by
symmetry.

Solution to Example 3.14. Let H, and H¢ be the reflections of H across BC and BA,
which lie on T'. Let E’ be the second intersection of line H4M with ". By construction,
lines E'M and H K concur on BC. First, we claim that L, H¢, and E’ are collinear. By
reflections,

ALHcB=—4KHB =AMHsB
and
AMHAB = {E'HsB = {E'HcB
as desired. Now,
ALE'M = {HcE'Hy = AHcBHy = 24ABC
and
ALBM = ALBK + AKBM =2£{ABK +2{KBC =2£{ABC

so B, L, E’, M are concyclic. Hence E = E’ and we are done. O

The second example is similar in spirit.

Example 3.15 (Shortlist 2000/G3). Let O be the circumcenter and H the orthocenter
of an acute triangle A BC. Show that there exist points D, E, and F on sides BC, CA, and
AB respectively such that

OD+DH=0E+EH=0F+FH

and the lines AD, BE, and C F are concurrent.
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The weird part of this problem is the sum condition. Why OD + DH = OE + EH =
OF + F H? The good news is that at least we can (try to) pick the points D, E, F. So we
focus on using this to get rid of the strange condition. Are there any choices of D, E, F
that readily satisfy the condition, and which induce concurrent cevians?

Having a ruler and compass is important here. After you make a guess for the points D,
E, F, you better make sure that the three lines look concurrent. It is helpful to have more
than one diagram for this.

One guess might be to use orthocenter reflections again. If we let Hy, Hg, H¢ denote the
reflections, then OD + DHy = OE + EHg = OF + F Hc. Hence we can just pick let
D be the intersection of O_HA and BC, and define E and F similarly. Then OD + DH, =
OFE + EHg = OF + FH¢ = R, where R is the circumradius of AABC.

A

Hy

Figure 3.6C. Reflecting the orthocenter again for Example 3.15.

Now the moment of truth—are we lucky enough that the cevians concur? The computer-
generated Figure 3.6C probably gives it away, but draw a diagram or two and convince
yourself. This is how you check if you are going in the right direction on a contest.

Once convinced of that, we are in good shape. We just need to show that the cevians
concur. Naturally, we fall back to Ceva’s theorem for that. Unfortunately, we do not know
much in the way of lengths (other than the carefully contrived OD + DH = R). Nor do
we know much about the angles ZBAD and ZCAD. So how else can we compute g—g?
This is all we need, since once g—g is found, we simply find the other two ratios in the
same manner and multiply all three together. This product must be one, at which point we
win.

The main idea now is to use the law of sines. Let us focus on triangles BDH4 and
CDHy. Because Hy was the reflection of an orthocenter, we know a lot about its angles.

Specifically,

AHABD = {H\BC = —{HBC =90° — C



This document was prepared on 2016-12-29 for the exclusive use of Aniket Akhade. Unauthorized distribution is strictly prohibited.

3.6. Example Problems 55

and
ADHsB = AOH4B =90° — {BAH, =90° — {BAH = B

where L BHy O = 90° — £ BAH 4 follows from Lemma 1.30. (Although I am mainly using
directed angles here from force of habit; ABC is acute so this could likely be avoided.)

This is good, because the law of sines now lets us compute useful ratios. Noting that our
angles were directed positively (that is, £ H4 B D and £ D H4 B both are counterclockwise),
we can apply the law of sines to obtain

BD sin/DH4B . sin B

DH, sin/HsBD ~ cosC’

The similar equation for ACD Hy, is
CD sinC

DH,  cosB

and upon dividing we obtain

BD sin B cos B

CD  sinCcosC’
Thus
CE sinCcosC
EA ~ sinAcosA
and
AF  sinAcos A
FB ~ sinBcos B
and Ceva’s theorem completes the solution.
A second alternative approach for obtaining the ratio g—g involves the law of sines on
triangle BOC. We present it below.

Solution to Example 3.15. Let Ha, Hg, Hc denote the reflections of H over BC, CA,
AB, respectively. Let D denote the intersection of O H4 and BC. Evidently OD + DH =
OD + DHj, is the radius of (ABC). Hence if we select E and F analogously, we obtain
OD+DH=0E+EH=0F+ FH.

We now show that AD, BE, CF are concurrent. Let R denote the circumradius of
ABC. By the law of sines on AO B D, we find that

BD _ sinZBOD _ sin2/BAH4 _ sin2B
R sinZBDO  sinZBDO  sinZBDO’

Similarly,
CD sin2C

"R~ sinZCDO
whence dividing gives
BD  sin2B
CD  sin2C’
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It follows that

BD CE BF _
CD EA FA
and hence we are done by Ceva’s theorem. O

What is the moral of the story here? First of all, good diagrams are really important for
making sure what you are trying to prove is true. Secondly, flipping the orthocenter over the
sides is a useful trick (though not the only one) for floating orthocenters that do not seem
connected to anything else in the diagram. Thirdly, you should think of Ceva’s theorem
whenever you are going after a symmetric concurrency (as in this problem), since this lets
you focus on just one third of the diagram and use symmetry on the other two-thirds. And
finally, when you need ratios but only have angles, you can often make the connection via
the law of sines.

3.7 Problems

Problem 3.16. Let ABC be a triangle with contact triangle DE F. Prove that AD, BE,
CF concur. The point of concurrency is the Gergonne point’ of triangle ABC. Hint: 683

Lemma 3.17. In cyclic quadrilateral ABC D, points X and Y are the orthocenters of
AABC and ABCD. Show that AXY D is a parallelogram. Hints: 410 238 592 Sol: p.246

Problem 3.18. Let AD, BE, CF be concurrent cevians in a triangle, meeting at P. Prove
that
PD n PE N PF ]
AD  BE CF
Hints: 339 16 46
Problem 3.19 (Shortlist 2006/G3). Let ABC DE be a convex pentagon such that
/BAC = Z/CAD = /DAE and /ZABC =/ACD = ZADE.
Diagonals BD and CE meet at P. Prove that ray AP bisects C D. Hints: 31 61 478 Sol: p.247

Problem 3.20 (BAMO 2013/3). Let H be the orthocenter of an acute triangle ABC.
Consider the circumcenters of triangles ABH, BCH, and CAH. Prove that they are the
vertices of a triangle that is congruent to A BC. Hints: 119 200 350

Problem 3.21 (USAMO 2003/4). Let ABC be a triangle. A circle passing through A
and B intersects segments AC and BC at D and E, respectively. Lines AB and DE
intersect at F', while lines BD and CF intersect at M. Prove that M F = M C if and only
if MB - MD = MC?. Hints: 662 480 446

Theorem 3.22 (Monge’s Theorem). Consider disjoint circles w;, w,, ws in the plane, no
two congruent. For each pair of circles, we construct the intersection of their common
external tangents. Prove that these three intersections are collinear. Hints: 102 48 Sol: p.247

¥ Take note: the Gergonne point is not the incenter!
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Figure 3.7A. Monge’s theorem. The three points are collinear.

Theorem 3.23 (Cevian Nest). Let AX, BY, CZ be concurrent cevians of ABC. Let XD,
YE, ZF be concurrent cevians in triangle XY Z. Prove that rays AD, BE, CF concur.
Hints: 284 613 591 225 Sol: p.248

B X c

Figure 3.7B. Cevian nest

Problem 3.24. Let ABC be an acute triangle and suppose X is a point on (ABC) with
AX || BC and X # A. Denote by G the centroid of triangle ABC, and by K the foot of
the altitude from A to BC. Prove that K, G, X are collinear. Hints: 671 248 244

Problem 3.25 (USAMO 1993/2). Let ABC D be a quadrilateral whose diagonals AC and
BD are perpendicular and intersect at E. Prove that the reflections of E across AB, BC,
CD, DA are concyclic. Hints: 272 491 265

Problem 3.26 (EGMO 2013/1). The side BC of the triangle ABC is extended beyond C
to D sothat CD = BC. The side C A is extended beyond A to E so that AE = 2C A. Prove
that if AD = BE then the triangle ABC is right-angled. Hints: 475 74 307 207 290 Sol: p.248

Problem 3.27 (APMO 2004/2). Let O be the circumcenter and H the orthocenter of an
acute triangle A BC. Prove that the area of one of the triangles AOH, BOH,and COH is
equal to the sum of the areas of the other two. Hints: 599 152 598 545
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Problem 3.28 (Shortlist 2001/G1). Let A; be the center of the square inscribed in acute
triangle A BC with two vertices of the square on side BC. Thus one of the two remaining
vertices of the square is on side AB and the other is on AC. Points B; and C; are defined
in a similar way for inscribed squares with two vertices on sides AC and A B, respectively.
Prove that lines AA;, BB;, CC; are concurrent. Hints: 618 665 383

Problem 3.29 (USA TSTST 2011/4). Acute triangle ABC is inscribed in circle w. Let H
and O denote its orthocenter and circumcenter, respectively. Let M and N be the midpoints
of sides AB and AC, respectively. Rays M H and N H meet w at P and Q, respectively.
Lines MN and P Q meet at R. Prove that OA L RA. Hints: 459 570 148 Sol: p.249

Problem 3.30 (USAMO 2015/2). Quadrilateral APBQ is inscribed in circle @ with
/P =/0=90°and AP = AQ < BP. Let X be a variable point on segment P Q. Line
AX meets » again at S (other than A). Point T lies on arc AQB of w such that XT is
perpendicular to AX. Let M denote the midpoint of chord ST. As X varies on segment
P Q, show that M moves along a circle. Hints: 533 501 116 639 418
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CHAPTER 4

Assorted Configurations

There is light at the end of the tunnel, but it is moving away at speed c.

There are two ways to think about the configurations in this chapter. One is as a list of
configurations to be memorized and recognized on contests. Another is as just a set of
problems that frequently appear as subproblems (or superproblems) of olympiad problems.
We prefer the second view, and have arranged this chapter accordingly.

4.1 Simson Lines Revisited

Let ABC be a triangle and P be any point, and denote by X, Y, Z the feet of the
perpendiculars from P onto lines BC, CA, and AB. From Lemma 1.48 the points X, Y, Z
are collinear if and only if P lies on (ABC). When P does lie on (ABC), this is called the
Simson line of P with respect to ABC. We can say much more about this.

Denote by H the orthocenter of triangle ABC and let line P X meet (ABC) again at a
point K, and let line AH intersect the Simson line at the point L. The completed figure is
shown in Figure 4.1A.

We make a few synthetic observations.

Proposition 4.1. Prove that the Simson line is parallel to AK in the notation of
Figure 4.1A. Hints: 390 151

Of course XK || AL, and hence we discover LAK X is a parallelogram.

Problem 4.2. Let K’ be the reflection of K across BC. Show that K’ is the orthocenter of
AP BC. Hint: 521

We can now apply Lemma 3.17 to deduce that AH P K’ is a parallelogram. Using this,
one can solve the next problem.

Problem 4.3. Show that L H X P is a parallelogram. Hint: 97

From the above we can immediately deduce Lemma 4.4.

Lemma 4.4 (Simson Line Bisection). Let ABC be a triangle with orthocenter H. If P
is a point on (ABC) then its Simson line bisects PH .

59
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L
"z
Al p
i Y K’
B D X C
K

Figure 4.1A. Simson lines revisited.

Do not miss Simson lines when they appear. Contest problems that involve the Simson
line usually only drop two of the altitudes and thus clandestinely construct the Simson line.
Do not be fooled!

4.2 Incircles and Excircles

In Figure 4.2A we have drawn all three excenters of triangle ABC. Angle chasing gives an
easy observation.

Ip

Ic

Iy

Figure 4.2A. The excenters of a triangle.

Problem 4.5. Check Z1Alg =90° and LI Alc = 90°.

As a corollary, A lies on IgI-. We also know (say, from Section 2.6) that the points
A, I, and I, are collinear. Actually A4 L Iplc. Our observations can be summarized as
follows.
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Lemma 4.6 (Duality of Orthocenters and Excenters). If 14, Ig, Ic are the excenters of
AABC, then triangle ABC is the orthic triangle of Al slglc, and the orthocenter is I.

This duality is important to remember. The orthic triangle and excenters are “dual”
concepts—they correspond exactly to each other. Problem writers sometimes phrase a
problem stated more naturally in one framework with the other in an effort to make the
problem artificially harder. Watch for this when it happens.

Problem 4.7. How are Lemma 1.18, Lemma 3.11, and Lemma 4.6 related? Hint: 458

Let us now concentrate further on a smaller part of the diagram. In Figure 4.2B we
focus on just the A-excircle, tangent to BC at point X. We have drawn a line parallel to BC
tangent again to the incircle at a point E. Suppose it intersects AB and AC at B’ and C’.
Evidently AAB’C" and A A BC are homothetic. But the incircle of AABC is the A-excircle
of AAB'C'.

Ia

Figure 4.2B. The homothety between the incircle and A-excircle.

Problem 4.8. Prove that A, E, and X are collinear and that DE is a diameter of the incircle.
Hint: 508

We also know that BD = C X, so we can actually phrase this statement without referring
to the excircle.

Lemma 4.9 (The Diameter of the Incircle). Let ABC be a triangle whose incircle is
tangent to BC at D. If DE is a diameter of the incircle and ray AE meets BC at X, then
BD = CX and X is the tangency point of the A-excircle to BC.

Incircles and excircles often have dual properties. For example, check that the following
is true as well.
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Lemma 4.10 (Diameter of the Excircle). In the notation of Lemma 4.9, suppose XY is
a diameter of the A-excircle. Show that D lies on AY .

Problem for this Section

Problem 4.11. If M is the midpoint of BC, prove that AE || I M.

4.3 Midpoints of Altitudes

The results from the previous configuration extend to our next one. In Figure 4.3A we have
removed the points B’ and C’ from Figure 4.2B and added an altitude AK with midpoint
M. By Lemma 4.9 and Lemma 4.10, we already know that A, E, and X are collinear, as
are A, D,and Y.

A

Figure 4.3A. Midpoints of altitudes.

Problem 4.12. Prove that points X, I, M are collinear. Hints: 138 175

Problem 4.13. Show that D, 14, M are collinear. Hint: 336
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We can restate these results as the following lemma.

Lemma 4.14 (Midpoint of Altitudes). Let ABC be a triangle with incenter I and A-
excenter 14, and let D and X be the associated tangency points on BC. Then lines DI,
and X I concur at the midpoint of the altitude from A.

4.4 Even More Incircle and Incenter Configurations

Let DEF be the contact triangle of a triangle ABC, and consider the point X on E F such
that XD L BC. The situation is shown in Figure 4.4A. The claim is that ray AX bisects
BC.

A

‘ : »
B D M c
Figure 4.4A. The median intersects a side of the contact triangle.
Suppose we were trying to prove this. The key insight is that point M is kind of a
distraction. We can eliminate it, along with BC, by taking the line through X parallel to

BC and considering a homothety. Let the line meet AB and AC again at B’ and C’. Now
it suffices to prove that X is the midpoint of B'C".

Problem 4.15. Show that / must lie on (AB’C’). Hint: 64
Problem 4.16. Prove that X B’ = X C’. Hint: 470
Once we have these results, our next configuration is immediate.

Lemma 4.17 (An Incircle Concurrency). Let ABC be a triangle with incenter I and
contact triangle DEF . If M is the midpoint of BC, then EF, AM and ray DI concur.

4.5 Isogonal and Isotomic Conjugates
This particular configuration is fairly straightforward.

Lemma 4.18 (Isogonal Conjugates). Let ABC be a triangle and P any point not
collinear with any of the sides. There exists a unique point P* satisfying the relations

ABAP = LP*AC, ACBP =4AP*BA, AACP = AP*CB.
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[~

B C

Figure 4.5A. P and P* are isogonal conjugates.

The point P* is called the isogonal conjugate of the point P. We also say line AP*
is isogonal to (or “is the isogonal of”’) line A P with respect to triangle A BC; however we
often omit the phrase “with respect to triangle A BC” if the context is clear. In other words,
two lines through A are isogonal if they are reflections over the angle bisector of ZA.

A better way to phrase the lemma is the “buy two get one free” perspective, as in the
exercise below.

Problem 4.19. Show that if two of the angle relations in Lemma 4.18 hold, then so does
the third. Hint: 9

The isotomic conjugate is defined similarly. For a point P and triangle ABC, let X, Y,
Z be the feet of the cevians through P. Let X’ be the reflection of X about the midpoint of
‘BC and define Y’ and Z’ similarly. Then the cevians AX’, BY’, and CZ’ concur at a point
P?, the isotomic conjugate of P.

Problem 4.20. Prove that the cevians AX’, BY’, and CZ’ concur as described above.

Problems for this Section

Problem 4.21. Check that if Q is the isogonal conjugate of P, then P is the isogonal
conjugate of Q.

Theorem 4.22 (Isogonal Ratios). Let D and E be points on BC so that AD and AE are

isogonal. Then
BD BE (AB 2
DC EC \AC

Hint: 184

Problem 4.23. What is the isogonal conjugate of a triangle’s circumcenter?

4.6 Symmedians

The isogonal of a median in a triangle is called a symmedian. The concurrency point of the
three symmedians is the isogonal conjugate of the centroid, called the symmedian point.
Symmedians have tons of nice properties. We first show how they arise naturally.
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Lemma 4.24 (Constructing the Symmedian). Let X be the intersection of the tangents
to (ABC) at B and C. Then line AX is a symmedian.

The proof is a direct computation with the law of sines. Let M be the intersection of
the isogonal of AX on BC; we wish to prove that M is the midpoint of BC.

Problem 4.25. Show that
BM  sin/Bsin/ZBAX
MC ~ sinZCsinZCAX
Now let us describe several additional properties of symmedians.

Lemma 4.26 (Properties of the Symmedian). Let ABC be a triangle, and let the
tangents to its circumcircle at B and C meet at point X. Let AX meet (ABC) again at K
and BC at D. Then AD is the A-symmedian and

(a) KA is a K-symmedian of AK BC.
(b) AABK and AAMC are directly similar.

(c) We have
BD (AB)2
DC AC
(d) We have
AB  AC
BK ~ CK’

(e) (BCX) passes through the midpoint of AK .
(f) BC is the B-symmedian of ABAK , and the C-symmedian of AC AK .
(g) BC is the interior angle bisector of ZAMK , and M X is the exterior angle bisector.

N

X

Figure 4.6A. The A-symmedian of a triangle

Here property (a) is obvious from the tangent construction, while (c) is a special case of
Theorem 4.22. Properties (b) and (e) follow from straightforward angle chasing. The rest
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of the properties are described in the exercises. Extracting some of these properties yields
the following.

Lemma 4.27 (Symmedians in Cyclic Quadrilaterals). Let ABC D be a cyclic quadri-
lateral. The following are equivalent.

(a) AB-CD = BC - DA.

(b) AC is an A-symmedian of ADAB.
(c) AC is a C-symmedian of ABCD.
(d) BD is a B-symmedian of AABC.
(e) BD is a D-symmedian of ACDA.

In Chapter 9, we learn that such a quadrilateral is called a harmonic quadrilateral,
and possesses even more interesting properties.

Problems for this Section
Problem 4.28. Verify (d) of Lemma 4.26. Hint: 194

Problem 4.29. Show that (f) of Lemma 4.26 follows (with some effort) from (d). Hints: 190
628 584

Problem 4.30. Prove (g) of Lemma 4.26. Hints: 65 474

4.7 Circles Inscribed in Segments

Figure 4.7A. A circle is inscribed in a segment.

Our next configuration involves a tangent circle. Let 2 be a circle with center O and
a chord AB, and consider a circle  tangent internally to  at 7 and to AB at K. Let
M denote the midpoint of the arc AB not containing 7. For no good reason, the region
bounded by AB and the other arc AB containing 7T is called a segment, hence the title of
this section.

As the centers of w and Q are collinear with 7 (by tangency), it follows there is a
homothety at 7 mapping w to 2.
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Problem 4.31. Show that this homothety takes K to M, and in particular that 7', K, and
M are collinear.

Problem 4.32. Show that ATMB ~ ABMK.
The last implication gives that MK - MT = M B>. So, we deduce the following.

Lemma 4.33 (Circles Inscribed in Segments). Let AB be a chord of a circle Q. Let @
be a circle tangent to chord AB at K and internally tangent to w at T . Then ray T K passes
through the midpoint M of the arc AB not containing T .

Moreover, M A> = M B? is the power of M with respect to w.

This configuration is even more straightforward with inversion, discussed in Chapter 8.
A reader comfortable with inversion is encouraged to reconstruct the proof using a suitable
inversion at M.

The above configuration extends naturally to the next one, shown in Figure 4.7B. Let
C be another point on arc AB containing 7', and let D be a point on AB such that CD is
tangent to w at L.

The circle  is called a curvilinear incircle of ABC. (As D varies along AB, we
obtain many curvilinear incircles, hence we refer to “a” curvilinear incircle. The next
section discusses the special case A = D.) We claim that if I is the intersection of CM and
KL, then [ is the incenter of AABC.

Figure 4.7B. More unusual tangent circles.

Problem 4.34. Prove that the points C, L, I, T are concyclic. Hints: 69 273 140

Problem 4.35. Show that AMKI ~ AMIT, and that the triangles are oppositely oriented.
Hints: 472 236

Finally, how do we derive that I is the incenter? The similarity above gives that
MI> = MK - MT, but yet

MK - MT = MA> = MB?
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by Lemma 4.33. Hence MI = M A = M B, and Lemma 1.18 establishes the configuration
below.

Lemma 4.36 (Curvilinear Incircle Chords). Let ABC be a triangle and D be a point
on AB. Suppose a circle w is tangent to CD at L, AB at K, and also to (ABC). Then the
incenter of ABC lies on line LK.

4.8 Mixtilinear Incircles

The A-mixtilinear incircle of a triangle ABC is the circle internally tangent to (ABC), as
well as to sides AB and AC.

A

Figure 4.8A. An A-mixtilinear incircle.

Throughout this section, we let w, refer to this A-mixtilinear circle. Let T denote the
tangency point of the w, with (ABC), and K and L the tangency points on AB and AC.
Taking D = A in Lemma 4.36, we know that the incenter / of AABC lies on KL.

Problem 4.37. Using the fact that / lies on K L, check that [ is in fact the midpoint of K L.

In Chapter 9 we give a nice alternative proof that / is the midpoint of K L using Pascal’s
theorem.

Let us see if we can learn anything interesting about the point 7 now. Let M and Mg
be the midpoints of arcs AB and AC. We of course already know (from Lemma 4.33) that
T is the intersection of lines K M and L M z. Now, extend line T I to meet the circumcircle
of AABC again at point S. The completed figure is show in Figure 4.8A.

Problem 4.38. Prove that /AT K = ZLT 1. Hint: 469

Problem 4.39. Prove that S is the midpoint of the arc BC containing A. Hint: 342
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Hence, we deduce that line 7'/ passes through the midpoint of arc BC not containing
T. A second way to prove this is through angle chasing: one can show™ that quadrilaterals
BKIT and CLIT are cyclic since

LIKT = {LKT = AMyMcT = {MyBT = £IBT.

In any case this gives us A McTS = LKTI = L{KBI = £ABI for free, allowing us to
establish the same conclusion as before.

In Chapter 8, we also prove (as part of Problem 8.31) that if E is the contact point of the
A-excircle with W, then AT and AE are isogonal. Moreover, as Problem 4.49 we ask the
reader to prove that the isogonal of 7' A with respect to AT BC passes through the contact
point of the incircle at BC. These additional results are exhibited in Figure 4.8B.

Figure 4.8B. Segments AT and AE are isogonal in AABC, while segments TD and T A are
isogonal in AT BC.

Combining the results in Figure 4.8A and Figure 4.8B into one big lemma:

Lemma 4.40 (Mixtilinear Incircles). Let ABC be a triangle and let its A-mixtilinear
circle be tangent to AB, AC, and (ABC) at K, L, and T, respectively. Denote by D and
E the contact points of the incircle and A-excircle on BC, respectively.

(a) The midpoint I of KL is the incenter of AABC.

(b) Lines T K and T L pass through the midpoints of arcs AB and AC not containing T .
(c) Line TI passes through the midpoint of arc BC containing A.

(d) The angles / BAT and /CAE are equal.

(e) The angles /BT A and ZCT D are equal.

(f) Quadrilaterals BKIT and CLIT are concyclic.

For even more, see Lemma 7.42.

* Actually, we already proved this during our proof of Lemma 4.36.
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4.9 Problems

These are not in any order—I cannot spoil the fun here!

Problem 4.41 (Hong Kong 1998). Let P Q RS be a cyclic quadrilateral with /PSR = 90°
and let H and K be the feet of the altitudes from Q to lines PR and PS. Prove that HK
bisects OS. Hints: 267 420

Problem 4.42 (USAMO 1988/4). Suppose AABC is a triangle with incenter I. Show
that the circumcenters of AIAB, AIBC, and AICA lie on a circle whose center is the
circumcenter of AABC. Hint: 249 Sol: p.249

Problem 4.43 (USAMO 1995/3). Given a nonisosceles, nonright triangle ABC, let O
denote its circumcenter, and let A;, B;, and C; be the midpoints of sides BC,CA, and AB,
respectively. Point A, is located on the ray O A; so that AOAA; is similar to AOA,A.
Points B, and C;, onrays O By and O C, respectively, are defined similarly. Prove that lines
AA,, BB,, and CC, are concurrent. Hints: 691 550 128

Problem 4.44 (USA TST 2014). Let ABC be an acute triangle and let X be a variable
interior point on the minor arc BC.Let P and Q be the feet of the perpendiculars from X to
lines C A and C B, respectively. Let R be the intersection of line P Q and the perpendicular
from B to AC. Let £ be the line through P parallel to X R. Prove that as X varies along
minor arc BC, the line ¢ always passes through a fixed point. Hints: 45 424 Sol: p.249

Problem 4.45 (USA TST 2011/1). In an acute scalene triangle ABC, points D, E, F lie on
sides BC, CA, AB, respectively, such that AD | BC,BE L CA,CF L AB. Altitudes
AD, BE,CF meet at orthocenter H. Points P and QO lie on segment EF such that
AP L EF and HQ L EF. Lines DP and QH intersect at point R. Compute H Q/HR.
Hints: 124 317 26 Sol: p.250

Problem 4.46 (ELMO Shortlist 2012). Circles 2 and w are internally tangent at point C.
Chord AB of 2 is tangent to w at E, where E is the midpoint of ‘AB. Another circle, w;
is tangent to 2, , and AB at D, Z, and F respectively. Rays CD and AB meet at P. If
M # C is the midpoint of major arc A B, show that

PE
tan/ZEP = —
cCM

Hints: 370 40 672 211

Problem 4.47 (USAMO 2011/5). Let P be a point inside convex quadrilateral ABC D.
Points Q; and Q, are located within A BC D such that

/0\BC = ZABP, /Q,CB=/DCP,
Z0,AD = /BAP, /Q,DA = /CDP.
Prove that O, Q, || AB if and only if Q;Q, || CD. Hints: 4 528

Problem 4.48 (Japanese Olympiad 2009). Triangle ABC is inscribed in circle I'. A circle
with center O is drawn, tangent to side BC at a point P, and internally tangent to the arc BC
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of I" not containing A at a point Q. Show thatif /BAO = ZCAO then ZPAO = ZLQAO.
Hints: 220 676 19

Problem 4.49. Let ABC be a triangle and let its incircle touch BC at D. Let T be the
tangency point of the A-mixtilinear incircle with (ABC). Prove that /BT A = ZCT D.
Hints: 646 529 192 425

Problem 4.50 (Vietnam TST 2003/2). Let ABC be a scalene triangle with circumcenter
O and incenter /. Let H, K, L be the feet of the altitudes of triangle A BC from the vertices
A, B, C, respectively. Denote by Ay, By, Cy the midpoints of these altitudes AH,BK,CL,
respectively. The incircle of triangle ABC touches the sides BC, CA, AB at the points D,
E, F,respectively. Prove that the four lines AgD, BoE, CoF, and OI are concurrent. Hints:
44211514 Sol: p.250

Problem 4.51 (Sharygin 2013). The incircle of AABC touches BC, CA, AB at points
A’, B" and C’ respectively. The perpendicular from the incenter I to the C-median meets
the line A’B’ in point K. Prove that CK || AB. Hints: 274 551 258

Problem 4.52 (APMO 2012/4). Let ABC be an acute triangle. Denote by D the foot of

the perpendicular line drawn from the point A to the side BC, by M the midpoint of BC,

and by H the orthocenter of ABC. Let E be the point of intersection of the circumcircle I

of the triangle ABC and the ray M H, and F be the point of intersection (other than E) of
AB

the line £ D and the circle I'. Prove that % = ¢ must hold. Hints: 593 454 28 228 Sol: p.251

Problem 4.53 (Shortlist 2002/G7). The incircle Q2 of the acute triangle ABC is tangent
to BC at a point K. Let AD be an altitude of triangle ABC, and let M be the midpoint of
the segment AD. If N is the common point of the circle Q and the line K M (distinct from
K), then prove that the incircle 2 and the circumcircle of triangle BC N are tangent to each
other at the point N Hints: 205 634 450 177 276

For a real challenge, check out Problem 11.19.
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CHAPTER 5

Computational Geometry

Since you are now studying geometry and trigonometry, I will give you a problem.
A ship sails the ocean. It left Boston with a cargo of wool. It grosses 200 tons. It is
bound for Le Havre. The mainmast is broken, the cabin boy is on deck, there are 12
passengers aboard, the wind is blowing east-north-east, the clock points to a quarter
past three in the afternoon. It is the month of May. How old is the captain?

Gustave Flaubert

Suppose you are given a triangle with side lengths 13, 14, 15. Can you compute its
circumradius? How about its inradius?

Up until now we have used tools from classical Euclidean geometry to develop elegant
results. The following three chapters focus much more on computation: using messier
methods to achieve results directly.

This chapter lays the foundation for future chapters by presenting fundamental rela-
tions between the quantities of a triangle. We also introduce Cartesian coordinates and
trigonometric computation, which are capable of solving problems in their own right.

5.1 Cartesian Coordinates

The xy-plane provides a framework in which we can intersect lines, drop perpendiculars,
and so on.

Unfortunately, as Cartesian coordinates are well-known to most competitors, olympiads
tend to avoid problems that can be easily solved by coordinates. Because of this, we will
not go into a deep exploration of their use. However, we mention one or two tricks that are
less frequently seen, in the hopes that they may be helpful in a solution using Cartesian
coordinates.

First is the so-called shoelace formula. It involves a determinant; if you are unfamiliar
with determinants, consult Appendix A.1.

75
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Theorem 5.1 (Shoelace Formula). Consider three points A = (x1, y1), B = (x2, y2), and
C = (x3, ¥3). The signed area of triangle ABC is given by the determinant

x1 oy 1
X y 1
x3 y3 1

In the shoelace formula, we have used the convention of a signed areas. That means
the area of a triangle ABC is considered positive if A, B, C appear in counterclockwise
order, and negative otherwise.

A X
B

e, Y

Figure 5.1A. On the left, ABC has positive signed area because its vertices are labelled counter-
clockwise. On the right, XY Z has negative signed area since its vertices are labelled clockwise.

The most useful special case of the shoelace formula is the following: three points
are collinear if and only if the area of the “triangle” they determine is zero. Hence the
shoelace formula can be used to establish collinearity. Because we are using determinants,
the formula is now symmetric. The more well-known routine to establish collinearity is to
verify that

3=y1 _ 2=\

X3 — X X2 — X1 ’
which unnecessarily loses symmetry.
A second occasionally useful trick, which we state without proof:

Proposition 5.2 (Point-Line Distance Formula). Let € be the line determined by the
equation Ax + By + C = 0. The distance from a point P = (x1, y;) to £ is
|Ax; + By, + C|
VAT E
This allows us to compute distances from points to lines without explicitly finding the
coordinates of the perpendicular foot.

Cartesian coordinates have some shortcomings, since they rely heavily on a central
right angle, and there is no natural symmetric way to select the coordinates of an arbitrary
triangle. Problems that can be solved by Cartesian coordinates can often also be solved
more easily by complex numbers or barycentric coordinates (discussed in the next two
chapters).

Put in a more positive way, problems for which coordinates are effective tend to have
some defining characteristics. For example,

¢ The problem features a prominent right angle which can be situated at the origin, or
* The problem involves intersections or perpendiculars.
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5.2 Areas

Let us now answer the question posed at the very beginning of this chapter. It turns out that
one can link many important quantities of a triangle through its area.

Theorem 5.3 (Area Formulas). The area of a triangle ABC is equal to each of the
following.

1 1 1
[ABC] = —absinC = —bcsinA = —casin B
2 2 2

a?sin Bsin C
2sin A

abc

4R

=sr

= /s(s —a)(s — b)(s — ).

Here s = %(a + b + ¢) is the semiperimeter of the triangle, and R and r are the circum-
radius and inradius of AABC, respectively. The formula /s(s — a)(s — b)(s — c) is often
called Heron’s formula. It has the nice property that given a, b, c, one can use it to extract
r and R.

Proof. First, we establish the formula [ABC] = %ab sin C (the other formulas follow
analogously). Seeing the sine, we decide to drop altitudes. Let X be the foot of the altitude
from A onto BC as in Figure 5.2A, sothat [ABC] = %AX -BC = %a - AX. Now observe
that AX = ACsin C = bsin C (regardless of whether ZC is acute) and hence we obtain
[ABC] = labsinC.

B X C
Figure 5.2A. We obtain [ABC] = 1AX - BC = labsinC. This is configuration independent.

The next two lines follow from applying the extended law of sines to eliminate b or
sin C, respectively. Explicitly,

1 . 1 asin B\ . a%sin BsinC
—absinC = —a - smC = ————
2 2 sin A 2sin A
and
1 bsin C 1 b( c ) abc
—absinC = = — ) = —.
2¢ 297\2r) T 4R

The proof that [ABC] = sr is a cute exercise, which we leave to the reader as Problem 5.5.
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Now for the least obvious step, the proof of Heron’s formula. We present a proof using
the following trigonometric fact.

If x, y, z satisfy x + y+z=180° and 0° < x, y,z < 90°, then tanx +tany +
tanz = tanx tan y tan z.

We prove this in greater generality as Proposition 6.39. Construct the contact triangle®
DEF of ABC, as in Figure 5.2B.

Figure 5.2B. Using the contact triangle to obtain Heron’s formula.

Applying Lemma 2.15 we may deduce

s —

1
tan (90O — EA) =tan(LAIE) =

r

Similarly,

1 —
tan <90O - —B) = b
2 r

1 —
tan (90° - —C) =1=c
2 r
The aforementioned trigonometric identity applies (since 270° — %(A + B + C) = 180°)
and yields

s—a s—b s—c §s-— s — —c
. . = + +
r r r r r
_3s—(a+b+c)
o r
s
o
This gives (s7)> = s(s — a)(s — b)(s — ¢) as desired. O]

We can now answer the question posed at the beginning of the chapter.

* Recall that the contact triangle of A BC was defined in Chapter 2 as the triangle whose vertices are the contact
points of the incircle with the sides of ABC.



This document was prepared on 2016-12-29 for the exclusive use of Aniket Akhade. Unauthorized distribution is strictly prohibited.

5.3. Trigonometry 79
Example 5.4. Find the circumradius and inradius of a triangle ABC with side lengths
AB =13,BC =14,CA = 15.

Solution. First, we use Heron’s formula to compute the area. Letting a = 14, b = 15,
¢ =13, we have s = %(a + b + ¢) = 21 and Heron’s formula yields

Vs(s —a)s —b)(s —c)=+/21-7-6-8 = 84.

Hence

abc abc 13-14-15 65
[ABC]= — = R = = = —.
4R 4[ABC] 4.84 8

Furthermore,
_[ABC] 84
T
Of course, one would never see this type of computation on an olympiad, but this is just to
illustrate a point. When doing computation, it is useful to be able to relate the quantities of
a triangle to each other quickly. Areas provide a means to do this.

4. [

Problems for this Section
Problem 5.5. Show that [ABC] = sr. Hint: 462

Problem 5.6. In AABC we have AB = 13, BC = 14, CA = 15. Find the length of the
altitude from A onto BC.

9.3 Trigonometry
We have already met the extended law of sines (Theorem 3.1), which states that

a b c
- = = = - =2R.
sinA sinB sinC
This is the first main trigonometric relation in a triangle. The second is the law of cosines,
which we state below.

Theorem 5.7 (Law of Cosines). Given a triangle ABC, we have
a’> =b* + ¢* —2bccos A.
Equivalently,

b2 2_ 2
COS A = u.
2bc

Together the law of sines and the law of cosines form the backbone of trigonometric
force. As we are about to see, these two in combination can single-handedly eradicate entire
problems.

The way to do this is by thinking about degrees of freedom. Essentially, a statement
in olympiad geometry has some number of parameters that can be selected, after which
the rest of the diagram is uniquely determined, up to translation and rotation. For example,
a triangle is determined by three parameters—for example, three sides, two sides and an
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included angle, or a side and two angles. Hence, we say that a generic triangle has three
degrees of freedom.
For a subtler example, look at Problem 1.43 again.

Points A, B, C, D, E lie on a circle w and point P lies outside the circle. The given
points are such that (i) lines P B and P D are tangent to w, (ii) P, A, C are collinear,
and (iii) DE || AC. Prove that BE bisects AC.

How many degrees of freedom does this problem have? Suppose we drop the center
O of the circle in the plane somewhere. We have one degree of freedom in picking its
radius, and another degree of freedom in picking the distance O P. (Selecting the point
P only gives one degree of freedom because we can rotate P about O arbitrarily without
changing the figure.) At this point we can construct the tangents P B and P D. We get one
more degree of freedom in picking the point A on the circle, but then both C and E are
determined. So in total, this problem has three degrees of freedom.

Why do we care? The point of trigonometry is to start with however many degrees of
freedom are given, assign variables for each, and then blatantly pin down the remaining
lengths and angles in terms of these variables. This is exactly what the law of cosines and
the law of sines do.

Unfortunately, we also often obtain lots of ugly products of trigonometric expressions.
This is where trigonometric identities come into play. Of course a reader is likely already
familiar with the identities

1 = sin?6 + cos2 0
sin(—0) = —sin 6
cos(—60) = cos b
sin (¢ 4+ B) = sina cos 8 + sin B cos &

cos (¢ 4+ B) = cosa cos B — sin« sin B.

The trickier identities are the so-called product-to-sum identities, which are indispens-
able for trigonometric calculation.

Proposition 5.8 (Product-Sum Identities). For arbitrary o and B we have

2cosa cos B = cos(a — B) + cos (o + B)
2sina sin 8 = cos (@ — B) — cos (@ + B)
2sina cos B = sin (@ — B) + sin(a + B).

It is not necessary to memorize these because they are easy to rederive: just remember that
the expansion of

cos(x —y)xcos(x + y)

has some cancellations. Changing the cosines to sines gives the other identities.
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The product-sum identities let us repeatedly decompose messes obtained from a trigono-
metric siege into single sums. An example is the proof of Ptolemy’s theorem, which follows
this section.

9.4 Ptolemy’s Theorem

There are some other non-trigonometric ways to relate side lengths when we have more
than just a triangle. One often useful with cyclic quadrilaterals is Ptolemy’s theorem'.

Theorem 5.9 (Ptolemy’s Theorem). Let ABCD be a cyclic quadrilateral. Then
AB-CD+ BC-DA = AC - BD.

We are about to give a proof using trigonometry, but a more elegant proof appears in
Chapter 8.

Before beginning our trigonometric attack, we should think about what to set as our
variables. One might be tempted to set the lengths as variables, but this does little good.
A second idea is to look at angles. Angles are nice because of the extended law of sines,
which we can tie in to the circumradius. In fact, if we set R = % as the radius of (ABC D)
(meaning we assume without loss of generality that we have diameter 1), we immediately
get

AB =sinZAXB

for any point X on the circumcircle. So it makes sense to use angles as variables.

D

T

]

Figure 5.4A. A proof of Ptolemy’s theorem.

A reasonable choice of our parameters is ZADB, /BAC, ZCBD, ZDCA. Most
importantly, these four angles uniquely determine the diagram. This is really important,
since otherwise we have no way of knowing if we have handled all the conditions. Note
that there is actually a relation between these four angles; namely that they sum to 180°. We

T Ptolemy’s theorem is actually an inequality: if A, B, C, D are four arbitrary points then AB - CD + BC -
DA > AC - BD, and equality holds if A, B, C, D lie on a circle or line in that order.
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can use four variables anyways to preserve symmetry, but we need to keep this condition
in mind as we proceed. Fortunately this particular condition is not so bad. If worst comes
to worst, we can dump a4 by replacing it with 180° — (« + oz + «3).
These are important remarks to make in general. Whenever you begin a calculation you
need to think about degrees of freedom, and pick your variables to encompass all of them.
The other good part of this choice, of course, is that we get all the lengths we want from
these angles immediately.

Proof. Let us denote oy, oy, a3, and oy as the angles ZADB, /BAC, ZCBD and
ZDCA, and for convenience let us assume that the circumcircle of ABC D has unit
diameter. Then by the extended law of sines, we obtain

AB =sina;, BC =sina,, CD =sinaz, DA =sinay.
Furthermore,
AC = sin ZABC = sin (a3 + a4)
and
BD =sin ZDAB = sin (o, + «3) .

Note that we could have just as easily chosen BD = sin ZBCD = sin(«; + o4). The
quantities are equal, so the choice is irrelevant.
Now we just want to show that

sin ¢y sin a3 + sinay sin oy = sin (a3 + ay) sin (o + @3)

for oy + ap + a3 + ay = 180°.
All the geometry is gone, so we appeal to Proposition 5.8 in order to deal with the
products. We have that

1
sino sinaz = 3 (cos (a; — a3) — cos (o) + a3))
. . 1
sin o, sinay = 3 (cos (ap — aty) — cos (ap + ary))

1
sin (a0 + a3) sin (a3 + a4) = 3 (cos (o — atg) — cos (o + 203 + ay)) .

We appear to be in pretty good shape here, because using our condition we find the
cancellation

cos(ay +a3z)+cos(ay +ag) =0

on the left-hand side. We use the sum condition again to clean up the weird o + 203 + a4;
we have

cos (o + 203 + atg) = cos (180° — o + a3) = —cos (] — a3).
and now everything is clear. O

It is important to notice the power of trigonometry here. Once all the geometry was
gone, we knew we had something that had to be true; hence the problem reduced to making
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ends (expressions?) meet. Notice how the product-sum identities were used to deal with
these resulting expressions.

It is deeply reassuring to know with full confidence that eventually the trigonometry
will work out. The only downside is that sometimes the computations are too unwieldy to
do by hand.

Actually, we can even refine Ptolemy’s theorem as follows.
Theorem 5.10 (Strong Form of Ptolemy’s Theorem). [n a cyclic quadrilateral ABC D
with AB =a, BC =b,CD =c¢, DA = d we have

2 _ (ac + bd)(ad + bc) and BD? — (ac + bd)(ab + cd).

AC
ab + cd ad + bc

It is not hard to see that Ptolemy’s theorem follows immediately from Theorem 5.10.
Let us briefly sketch two proofs. The first is to simply set

AC?> =a> +b*> —2abcos ZABC = ¢* + d* — 2¢d cos ZADC

and then note that ZADC + ZABC = 180°. With enough calculation this gives the result.
A second proof involves using the original Ptolemy’s theorem on three cyclic quadrilat-
erals, where

(i) The first quadrilateral is ABC D, so its sides measure a, b, ¢, d in that order.
(i1) The second has sides measuring a, b, d, c in that order.
(iii) The third has sides measuring a, c, b, d in that order.

These all have the same circumradius, and one finds that there are only three distinct
diagonal lengths. Applying the usual Ptolemy’s theorem and doing some algebra then
yields the conclusion. The details are left as an exercise.

A consequence of Ptolemy’s theorem is the so-called Stewart’s theorem, which we
present here as a bit of trivia.

Theorem 5.11 (Stewart’s Theorem). Let ABC be a triangle. Let D be a point on BC
andletm = DB,n = DC,d = AD. Then

a(d* + mn) = b*m + *n.
Often this is written in the form
man + dad = bmb + cnc

as a mnemonic—*‘a man and his dad put a bomb in the sink”.

Proof. Letray AD meet (ABC) again at P. By similar triangles we obtain

BP b CcP c
—=—and — = —.
m d n d

Furthermore, by power of a point we know that

mn
DP = —.
d
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Figure 5.4B. Statement and proof of Stewart’s theorem.

Now apply Ptolemy’s theorem to obtain
BC-AP=AC-BP+AB-CP

whence

a-(d—}—%)zb-lﬁ—i-c-ﬂ

which yields Stewart’s theorem. O

Stewart’s theorem can also be proved by using the law of cosines. One can check that

2 d2 2 2 d2 _ b2
m—i——c =cos ZADB = —cos ZADC = —L
2md 2nd

and rearranging gives m(n”> 4+ d*> — b?) 4+ n(m? + d* — ¢*) = 0, or a(mn + d?) = b*>m +
c*n.

Unlike Ptolemy’s theorem, Stewart’s theorem seldom sees use on olympiads. However,
it features prominently on short-answer contests by providing a means to compute the

length of a cevian.

Problem for this Section

Problem 5.12. Complete the synthetic proof above of Theorem 5.10, the stronger version
of Ptolemy’s theorem. Hint: 67

5.5 Example Problems

First we provide an example that illustrates the combination of Cartesian coordinates with
length calculations. This problem was selected from the Harvard-MIT Math Tournament’s
Team Round in 2014.
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Example 5.13 (Harvard-MIT Math Tournament 2014). Let ABC be an acute triangle
with circumcenter O suchthat AB =4, AC = 5, BC = 6. Let D be the foot of the altitude
from A to BC and E be the intersection of lines AO and BC. Suppose that X is on BC
between D and E such that there is a point ¥ on AD satisfying XY || AO and YO L AX.
Determine the length of BX.

Figure 5.5A. Tossing on the coordinate plane with origin D.

This is a nice and difficult problem that could appear readily on the olympiad. Before we
utterly spoil it, here is a quick sketch of the synthetic solution. Let ray AX meet (ABC)
at P. First, show that the tangent to the circumcircle at A is concurrent with lines OY
and BC. (This can be done with angle chasing.) Now use this to show that the tangent at
P also passes through the concurrency point. This implies by Lemma 4.26 that AX is a

symmedian; hence we obtain that
BX (AB\’
cx \AcC

at which point we can easily compute BX.

Now let us exploit the fact that this problem is phrased computationally to provide
a brute-force solution. Let us look at what conditions we have to decide how we might
proceed.

* The point D is the foot of an altitude onto BC.
e The point E is the intersection of a line through the circumcenter O and the side BC.
* The points X and Y have a parallel condition and a perpendicularity condition.

Seeing right angles inspires us to use Cartesian coordinates. If so, where should we
place the origin? The point D looks like a good candidate, as this lets us handle nicely the
altitude, and makes the points A, B, C related to side lengths. In addition, the condition
XY || AO is nicely encoded. (Actually one might notice that the point E does little in the
problem. But it will be useful anyways for our computations.)
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Solution to Example 5.13. First we need to compute AD. We can do this by using the
area of ABC (obtained from Heron’s formula); compute

2[ABC] 2 15 7 5 3 1 15 5
AD= ———— — — . [ — .- .- .= =_-.2/7=2./7.
BC 6 2 22 2 3 4f 4f

This makes BD = /42 — % ST = % and subsequently CD = 6 — % = %. So we set

D = (0,0)
B =(—9,0)
C = (15,0)
A = (0,5v7).

Here we are scaling the coordinate system up by a factor of four to ease computation (by
eliminating fractions).
Next, we ought to compute 0. We can compute the circumradius using

abc 15
4R 4

8
7= R=—.
V7

So the distance from O to BC is

[ L L _VT
7 N

Also, noticing that O is directly overhead the midpoint of BC, we can compute
4
0 = (3, 5\/7 )

in our coordinate system. (The extra factor of four again comes from our scaling.)

Next we need to compute £. We can do so using Theorem 4.22 (as AD and AE are
isogonal), or by simply finding the x-intercept of the line AO. We do the latter. The slope
of line AO is

SVT-3V1 31

= 7
0-3 21\/_

and hence the coordinate of E is

S5V/7 105
- (30.0) - (20).
V7
Now for a trick—we can encode the parallel condition by letting » denote the ratio
between the lengths of XY and AE. Therefore

X:(%r,O) andY:(O,Sﬁ-r).
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(Similar triangles forever!) Now the condition AX L Y O is just a slope condition. We have
—1 = (slope of AX) - (slope of Y O)
CSVT—0 3VT-5V7-r

0—%}’. 3-0
-31 4 — 35r
- () (557)
21r 4 —35r
T3 3
= 63r = 124 — 1085r
31
=>r=ﬁ.

We are home free—note that

105 31 1
X=|— —,0)= —5,0 .
31 287 41

Hence, subtracting and scaling back gives

1 (15 96
BX:— —+9 = —_—
4\ 41 41

and we are done. O

This is a typical coordinate solution. It is remarkable how little geometric insight was
required after the first few lines—the rest was simply algebraic manipulations. In the context
of olympiad problems, we generally have variables instead of the constants a =4, b =5,
¢ = 6 that we did here.

Next, we provide an example of a trigonometric solution. This was problem four at the
IMO 2009.

Example 5.14 (IMO 2009/4). Let ABC be atriangle with AB = AC. The angle bisec-
tors of ZCAB and ZABC meet the sides BC and CA at D and E, respectively. Let K
be the incenter of triangle ADC. Suppose that ZBEK = 45°. Find all possible values of
/CAB.

What makes this problem so ripe for calculation? Well, if we scale down the diagram
(dropping a degree of freedom), then all points are determined by one angle. .. and then
we have a constraint ZBEK = 45°. So up to scaling, this problem has zero degrees of
freedom. This makes it pretty tempting to approach with computation.

First, we label all the angles in the figure. We choose to set ZDAC = 2x, so that

LACI = ZICD = 45° — x.

Here I is the incenter of ABC. In that case LAIE = ZDIC (why?), but ZDIC =
%ABIC = x +45°, hence ZAIE = x + 45°. Some more angle chasing gives /K EC =
3x.
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B D c

Figure 5.5B. Example 5.14.

A
2x
E
45° 3x
I
K 5o
~
<
45° _ 2
D C

Figure 5.5C. Setup for a trigonometric computation.

Having chased all the angles we want, we need a relationship. We can find it by
considering the side ratio % Using the angle bisector theorem, we can express this in
terms of triangle I DC’; however we can also express it in terms of triangle / EC. This gives
us an algebraic equation to solve.

Solution to Example 5.14. Let I be the incenter, and set ZDAC = 2x (so that 0° <
x < 45°). From ZAIE = ZDIC, itis easy to compute

ZKIE =90° —2x, LECI =45° —x, ZIEK =45°, Z/ZKEC = 3x.
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Hence by the law of sines, we can obtain

1K sind5° - ofifss sind5° sin (45° — x)

KC ~ sin(3x)- = sin(3x)sin (90° — 2x)”

Also, by the angle bisector theorem on Al DC, we have
ﬂ _ B _ sin (45° — x)
KC DC  sin(45° + x)
Equating these and cancelling sin (45° — x) # 0 gives
sin45° sin (45° 4+ x) = sin 3x sin (90° — 2x).

Applying the product-sum formula (again, we are just trying to break down things as
much as possible), this just becomes

cos (x) — cos (90° + x) = cos (5x — 90°) — cos (90° + x)

or cos x = cos (5x — 90°).

At this point we are basically done; the rest is making sure we do not miss any solutions
and write up the completion nicely. One nice way to do this is by using product-sum in
reverse as

0 = cos(5x —90°) — cosx = 2sin(3x — 45°)sin 2x — 45°).
This way we merely consider the two cases
sin(3x — 45°) = 0 and sin (2x — 45°) = 0.

Notice that sinf = 0 if and only 6 is an integer multiple of 180°. Using the bound 0° <

Xx < 45°, it is easy to see that that the permissible values of x are x = 15° and x = %O. As

/A = 4x, this corresponds to ZA = 60° and LA = 90°, the final answer. O

Our last quick example is a problem from the 2004 Chinese Girl’s Math Olympiad.

Example 5.15 (CGMO 2004/6). Let ABC be an acute triangle with O as its circum-
center. Line A O intersects BC at D. Points E and F are on AB and AC respectively such
that A, E, D, F are concyclic. Prove that the length of the projection of line segment E F'
on side BC does not depend on the positions of E and F.

In our figure we have denoted the projections of E and F by X and Y, respectively.
How might we approach this problem computationally? Our goal is to get everything

in terms of the quantities in a triangle, and we have one degree of freedom in our problem.
We are interested in the length XY, so it seems natural to write

XY = BC — (BX +CY)

because the lengths BX and CY seem easy to calculate—they are the legs of a right triangle.
Actually, we may even just write

BX =BEcosB and CY =CFcosC.
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B X D Y c
Figure 5.5D. Show that the length of XY depends only on ABC.

‘We do not have to worry about cos B anymore, and so we can go for B E. Naturally, we
reach to power of a point, as we have

BE -BA =BT -BD

where we have defined T as the second intersection of our cyclic quadrilateral with side
BC (this is a sort of proxy point). Similarly, CF - CA = CD - CT. Now we have a natural
choice for encoding our degree of freedom: defineu = BT, v = CT withu + v = a. Then
we can compute the lengths BD and C D by whatever means we choose, directly evaluate
BX + CY, and hope we get something constant.

Solution to Example 5.15. Recall that /BAD = /BAO =90° — C and ZCAD =
ZCAO = 90° — B. First, we can compute using the law of sines that

BD _ sin/BAD - mﬁ% _ ccosC

CD ~ sin/CAD - ﬁ " bcosB’

Now let X and Y denote the feet of E and F onto BC and T the second intersection of
(AEF) with BC. Letu = BT, v = CT where u + v = a; we have

BX+CY =BEcosB+ CFcosC

u-BD

= cos B + v cos C
c
BD CD
=cos BcosC u -+ v
ccosC bcos B
Because
BD CD
ccosC ~ bcos B
and

u+v=a

we see that BX + CY does not depend on the choice of u and v, completing the solution. [
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5.6 Problems

Another good source of practice problems are any problems in the previous sections that
you failed to solve synthetically, since you should have some insight into the problem’s
structure. See how you can use computation to make up for missed synthetic observations.
(This advice applies to the next two chapters as well.)

Problem 5.16 (Star Theorem). Let AjAA3A4As be a convex pentagon. Suppose rays
AyAj and AsA4 meet at the point X ;. Define X,, X3, X4, X5 similarly. Prove that

5 5
l_[ XA = l—[ XiAig3
i=1 i=1

where the indices are taken modulo 5. (See Figure 5.6A.) Hints: 407 448 Sol: p.251

Figure 5.6A. Star theorem—the product of the dashed segments is the product of the dotted ones.

Problem 5.17. Let ABC be a triangle with inradius r. If the exradii Yof ABC are ry, rg,
rc, show that the triangle has area \/r - r4 - rp - rc. Hint: 38

Problem 5.18 (APMO 2013/1). Let ABC be an acute triangle with altitudes AD, BE and
CF, and let O be the center of its circumcircle. Show that the segments OA, OF, OB,
OD, OC, OE dissect the triangle ABC into three pairs of triangles that have equal areas.
Hints: 162 678

Problem 5.19 (EGMO 2013/1). The side BC of the triangle ABC is extended beyond
C to D so that CD = BC. The side CA is extended beyond A to E so that AE = 2CA.
Prove that if AD = BE then triangle ABC is right-angled. Hints: 202 275

Problem 5.20 (Harvard-MIT Math Tournament 2013). Let triangle ABC satisfy
2BC = AB + AC and have incenter I and circumcircle w. Let D be the intersection
of Al and w (with A, D distinct). Prove that [ is the midpoint of ‘AD. Hints: 372 477

Problem 5.21 (USAMO 2010/4). Let ABC be a triangle with ZA = 90°. Points D and E
lie on sides AC and A B, respectively, such that /ABD = Z/DBC and ZACE = ZECB.

 Recall from Chapter 2 that the A-exradius of AABC is the radius of the excircle opposite A. The B and C
exradii are defined similarly.
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Segments BD and C E meet at /. Determine whether or not it is possible for segments A B,
AC, BI,ID, Cl, IE to all have integer lengths. Hints: 437 603 565 Sol: p.252

Problem 5.22 (Iran Olympiad 1999). Let I be the incenter of triangle ABC and let ray
AT meet the circumcircle of ABC at D. Denote the feet of the perpendiculars from I to
lines BD and CD by E and F, respectively. If IE + [ F = %AD, calculate ZBAC. Hints:
359 610 365 479 Sol: p.252

Problem 5.23 (CGMO 2002/4). Circles I'y and I'; interest at two points B and C, and BC
is the diameter of I';. Construct a tangent line to circle I'y at C intersecting I"; at another
point A. Line AB meets I'} again at E and line CE meets I'; again at F. Let H be an
arbitrary point on segment AF. Line H E meets I'; again at G, and BG meets AC at D.
Prove that

AH AC

HF — CD’
Hints: 452 62 344 219
Problem 5.24 (IMO 2007/4). In triangle ABC the bisector of angle BC A intersects the
circumcircle again at R, the perpendicular bisector of BC at P, and the perpendicular
bisector of AC at Q. The midpoint of BC is K and the midpoint of AC is L. Prove that
the triangles R P K and R QL have the same area. Hints: 457 291 139 161

Problem 5.25 (JMO 2013/5). Quadrilateral XABY is inscribed in the semicircle @ with
diameter XY. Segments AY and BX meet at P. Point Z is the foot of the perpendicular
from P to line XY. Point C lies on w such that line X C is perpendicular to line AZ. Let Q
be the intersection of segments AY and XC. Prove that

BY N CYy AY
XP X0 AX’
Hints: 622 476 299 656

Problem 5.26 (CGMO 2007/5). Point D lies inside triangle ABC such that /DAC =
/DCA =30°and ZDBA = 60°. Point E is the midpoint of segment BC. Point F lies on
segment AC with AF = 2FC. Prove that DE L E F. Hints: 483 690 180 542 693

Problem 5.27 (ISL 2011/G1). Let ABC be an acute triangle. Let @ be a circle whose
center L lies on the side BC. Suppose that  is tangent to AB at B’ and AC at C’. Suppose
also that the circumcenter O of triangle ABC lies on the shorter arc B'C’ of w. Prove that
the circumcircle of ABC and @ meet at two points. Hints: 13 87 93 500 60 Sol: p.253

Problem 5.28 (IMO 2001/1). Consider an acute-angled triangle ABC. Let P be the foot
of the altitude of triangle A BC issuing from the vertex A, and let O be the circumcenter of
triangle ABC. Assume that ZC > ZB + 30°. Prove that ZA + ZC O P < 90°. Hints: 619
246 522

Problem 5.29 (IMO 2001/5). Let ABC be a triangle. Let AP bisect ZBAC and let BQ
bisect ZABC, with P on BC and Qon AC.If AB + BP = AQ + QB and ZBAC = 60°,
what are the angles of the triangle? Hints: 43 71 441 226 Sol: p.254
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Problem 5.30 (IMO 2001/6). Leta > b > ¢ > d be positive integers and suppose that
ac+bd=0b+d+a—-c)b+d—a+c).

Prove that ab + cd is not prime.® Hints: 166 555 523 429 515 Sol: p.255

§ IMO 2001 was a strange year.

93
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CHAPTER 6

Complex Numbers

As long as algebra and geometry have been separated, their progress have been slow
and their uses limited; but when these two sciences have been united, they have lent
each mutual forces, and have marched together towards perfection.

Joseph Louis Lagrange

In this chapter, we demonstrate the use of complex numbers to solve problems in geom-
etry. We develop some background in the first three sections. The real geometry starts in
Section 6.4, when the unit circle appears.

6.1 What is a Complex Number?

Recall some facts from high school algebra. A complex number is a number of the form
z=a-+bi

where a and b are real numbers and i> = —1. The real number a is called the real part,
denoted Re(z). The set of all complex numbers is denoted C.
We also know that every complex number can be expressed in polar form as

z=r(cosf +isinf) = re'’
where r is a nonnegative real number and @ is a real number. (The formula ¢ = cos6 +
i sin@ is a famous result known as Euler’s formula.) A diagram may make this clearer;
much like in the xy-plane, every complex number can be plotted in the complex plane at
a point (a, b). See Figure 6.1A.

The magnitude of 7 = a + bi = re'?, denoted |z, is equal to r, or equivalently,

|z| = Va?+ b2.

The number 0 is called the argument of z, denoted arg z. It is the angle measured counter-
clockwise from the real axis, as shown in Figure 6.1A. Except in the special case z = 0, the
fact that r is a positive real implies 0 is unique up to shifting by 360°. (As a specific example,
c0s 50° 4 i sin 50° = cos 410° + i sin410°.) Therefore, for the rest of this chapter we take
these arguments modulo 360°.

95
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z=34+ 4

z=3—-4

Figure 6.1A. The numbers z = 3 + 4i and —1 — 2i are plotted in the complex plane; 7 = 3 — 4i is
the conjugate of z.

Finally, the complex conjugate of z (or just conjugate) is the number
Z=a—bi=re "’
Pictorially, it represents the reflection of z over the real axis.
The conjugate has many nice properties: it behaves well with respect to basically every
operation. For example, whenever w and z are complex numbers, we have

wHz=w+z, w—z=w-—-27, W-Z=w-2, wW/zZz=w/Z,

and so on. (Verify these.) This lets us write, for instance,

z—a\ z—a
b—a) b-a

and similarly reduce other arbitrarily complicated expressions. Another important relation
is that for any complex number z,

Iz|? = zz.

This is easy to prove and, as we see later, extremely useful.

Throughout this chapter, we let A denote the point in the complex plane that corresponds
to a complex number a, and adopt similar conventions for the other letters, with lowercase
letters denoting complex numbers, and uppercase letters denoting points.

6.2 Adding and Multiplying Complex Numbers

Complex numbers can be viewed a lot like vectors (u, v). We simply think about them in
the component form u + vi and note that adding them corresponds to vector addition.



This document was prepared on 2016-12-29 for the exclusive use of Aniket Akhade. Unauthorized distribution is strictly prohibited.

6.2. Adding and Multiplying Complex Numbers 97

This means that all the additive structure of vectors (see Appendix A.3) carries over.
For example,

1. The midpoint M of ABism = %(a + b).

2. Three points A, B, C are collinear if (and only if) ¢ = Aa + (1 — A)b for some real
number A.

3. The centroid G of a triangle ABC is g = %(a + b+ ¢).

4. A quadrilateral ABC D is a parallelogram if and only ifa +c = b 4 d.

And so on. In particular, adding a complex number corresponds to translation, just as in
vectors.

However, complex numbers have some additional structure—they can be multiplied.
The multiplication is particularly powerful. The key is that if z; = e/ and z, = e,
then 7,2, = rir2e'@ %% which implies

|z1z2] = |z1] |z2| and argziz, = arg z; + arg z, for all z;, z» € C.

We remind the reader that here (and throughout this chapter) we are taking arg z modulo
360°. So the above equality really means arg 7,z = argz; + arg zo (mod 360°).

Im 2 =34+ 4i Im
iz=4-3i

i(z —w)

Figure 6.2A. Rotating by 90° is just multiplying by i.

Example 6.1. Multiplying by i is equivalent to rotating by 90° counterclockwise around
the origin.

Proof. Just notice that |i| = 1 and argi = %n =90°. 0
This is fine and well, but how do we rotate around arbitrary points? Suppose we want to
rotate z = —1 — 2i by 90° counterclockwise about the point w = —2 — 4i. The answer is

simple; we translate the entire diagram so that w +— 0 (by subtracting w). We then multiply
by i, and then translate back. In equations, this looks like

z> i(z —w)+ w.

Pictorially, this is much more intuitive. See Figure 6.2A.
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We can generalize further to any complex number other than i. For any complex number
w and nonzero «, the map
> alz —w)+w

is a spiral similarity. That means it is a map that rotates by arg « and dilates by |«|; it is a
composition of a rotation and a homothety. Spiral similarity is discussed in more detail in
Section 10.1.

Im

2i(z —w) +w

Figure 6.2B. A spiral similarity z > 2i(z — w) + w. It rotates by 90° and dilates by a factor of 2.

We can do even more, as the following lemma shows.

Lemma 6.2 (Complex Reflection). Let W be the reflection of Z over a given AB. Then

(a — b)z +ab — ab
w= — .
a—b

Figure 6.2C. Reflecting about AB.

Proof. We remarked earlier that the map z +— Z was a reflection across the real axis.
We would like to do something similar with a and b.

Figure 6.2C essentially gives away the proof. We first shift the entire diagram by
subtracting a. Then, we apply a spiral similarity through dividing by the shifted b — a,
so that the line we are trying to reflect across becomes the real axis. Under these two
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transformations

Z—a w—a
and w — .
—a b—a

=

But these two are now conjugate! That is,
z—a w—a
b—a \b—a)

w—a (z—a\ z—a
b—a \b—-a) b-a

Solving for w and doing some computation we obtain

This is better expressed as

we ab—a)+ (b —a)Z—a) (a—bZ+ab—ab
B b—a B a-b

as desired. O

Problem for this Section
Lemma 6.3. Show that the foot of the altitude from Z to AB is given by

(@—b)z+(a—bz+ab—ab
2(@ —b) '

6.3 Collinearity and Perpendicularity
Let us first state two obvious facts about the complex conjugate.
Proposition 6.4 (Properties of Complex Conjugates). Let z be a complex number.

(a) z = 7 if and only if 7 is a real number.
(b) z+7 = 0ifand only if 7 is pure imaginary; that is, z = ri for some real number r.

Im Im

Figure 6.3A. AB L CD if =< is pure imaginary.



This document was prepared on 2016-12-29 for the exclusive use of Aniket Akhade. Unauthorized distribution is strictly prohibited.

100 6. Complex Numbers

First, let us develop a criterion for when AB L CD. Consider four complex numbers
a, b, ¢, d and look at the corresponding vectors b —a and d — c.

Since arg z/w = arg z — arg w, we observe that the d — ¢ and b — a are perpendicular
precisely when their arguments differ by £90°; that is, when ZT_Z is pure imaginary. In
terms of conjugates, we deduce the following.

Lemma 6.5 (Perpendicularity Criterion). The complex numbers a, b, c, d have the
property AB L CD if and only if

d—c+ d—c —0
b—a b—a)

By effectively the same means, we can arrive at a collinearity criterion.

Lemma 6.6. Complex numbers z, a, b are collinear if and only if

Z_a_ zZ—da
z—b \z-b)

The proof is essentially the same as that of Lemma 6.5; we consider the displacements
z —a and z — b, and hope that their quotient is a real number. The details are left as an
exercise.

However, you might notice that that Lemma 6.6 is not symmetric, which seems disap-
pointing. Actually, we ran into the exact same issue in Section 5.1, when we were trying to
find a nice criterion for collinear points. Surprisingly, the same method works here as well.

Theorem 6.7 (Complex Shoelace Formula). [f a, b, ¢ are complex numbers, then the
signed area of triangle ABC is given by

1
L.
1

i
4

(SRS N
ol S |

In particular, the points a, b, ¢ are collinear if and only if the determinant is zero.

Here the signed area is the convention described in Section 5.1. This formula actually
follows from the standard shoelace formula; write a = a, + ayi, b = by + byi, and ¢ =
¢x + ¢y, and apply the shoelace formula to a, b, c. The details, which consist entirely of
linear algebra, are left as an exercise.

Problem for this Section

Problem 6.8. Prove Lemma 6.6.

6.4 The Unit Circle

Up until now we have had conjugates in many of our expressions. We now show how to
handle them, closing the gap between olympiad geometry and complex numbers.

In the complex plane, the unit circle is the set of complex numbers z with |z| = 1; that
is, it is a circle centered at O with radius 1. We have the following.
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Proposition 6.9. For any z on the unit circle, 7 = %
This follows from zZ = |z|?, where we take advantage of the fact that |z| = 1. That
means we can now compute conjugates in terms of the original complex numbers. Here are

two examples of straightforward applications.

Example 6.10. Ifa, b, c, and x lie on the unit circle, then ax + be = 0 if and only if
AX L BC.

X
Figure 6.4A. AX | BC implies ax + bc = 0.

Proof. By Lemma 6.3 we know that AX L BC is equivalent to

O_x—a+ X—a _x—a+)?—5
T b—c b—c) b—c b-c

Applying @ = 1, this is equal to

xX—a
— b
b—c 5

_x—a<1+xa)
T bh—c bc/’

Since a, b, ¢, x are distinct, the first quantity is nonzero; hence we obtain e = -1,

equivalent to ax + bc = 0. 0

We now present arefinement of Lemma 6.3. It is used extremely frequently, so remember
it!

Lemma 6.11 (Complex Foot). If a and b, a # b, are on the unit circle and z is an
arbitrary complex number, then the foot from Z to AB is given by

1
§(a+b—|—z—ab2).

and b = 1 in Lemma 6.3 we get

Proof. Puttinga = 5

1
1 (a—bz+L2-1¢ 1 _
e+ —FF—)=sG+a+b—ab2). O
2 iy 2

a
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In the limiting case a = b, we obtain the foot from z to the tangent at a.

We are now in a position to derive some useful results, independent of any geometry
we know. The following beautiful result is critical, and really shows how powerful complex
numbers are.

Lemma 6.12 (Complex Euler Line). Let ABC be a triangle, and assume a, b, c lie on
the unit circle. Then

(a) The circumcenter is o = 0.
(b) The centroid is g = %(a + b+ ¢).
(¢) The orthocenterish = a + b + c.

In particular, the points O, G, H are collinear in a 1 : 2 ratio.

Proof. The fact that o = 0 is obvious, since we set the circumcircle of ABC as the
unit circle. The fact that g = %(a + b + c¢) follows by interpreting the complex numbers as
vectors.

Let h be the orthocenter. There are many ways to prove that 1 = a + b + ¢, and we
present the solution which uses no geometry. Because AH | BC we know by Lemma 6.5
that

O_h—a+ﬁ—5
b—c b-¢
h—a+f_l—$
REETAEE
h—a h—1
= — bc 4
b—c b—c

Therefore,

— 1
bc<h——>=h—a
a

= abch — bc = ah — d*
= abch — ah = bc — a*.

We can derive similar equations from BH L CA and CH L AB. Hence, we wish to solve
the system of equations

abch — ah = be — a®
abch — bh = ca — b*
abch — ch = ab — ¢*.
Just subtract the first two equations to get
(b—a)h =b*—a*>+bc—ca=(b—a)a+b+c).

Since b # a, we obtain h = a + b 4 c. It is not too hard to verify that this is indeed a
solution to all three equations, and so we have established that the orthocenter exists and
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has coordinates 7 = a + b + c. Finally, since & = 3g it follows that O, G, H are collinear
with O H = 30G:; this establishes the Euler line. O

Example 6.13 (Nine-Point Circle). If a, b, c lie on the unit circle, and H is the
orthocenter of AABC, the point ng = %(a + b + c¢) is a distance of % from the midpoint of
BC, the midpoint of ‘AH, and the foot from A to BC.

Proof. First, we check the distance to the midpoint of BC. It is

b+c

ng —

_‘a‘_lH_l
T2 Ty

Then we check the distance to the midpoint of AH. It is

a

. 1

1
ny— 5@+ (@+b+c) 2\=2

Finally, we check the distance to the foot of the altitude is also % By Lemma 6.11, this is
the point 1 (a + b+ ¢ — %). So

1 b4 bc 1bc
ng— —\a c — — = |- —
T2 a 2a

C1ipllel 1

2 lal 2

That was easy. O

We hope this convinces you that setting (A BC) as the unit circle is an extremely potent
technique. After all, it just trivialized a large portion of Chapter 3.

Problem for this Section

Problem 6.14. (Lemma 1.17) Let H be the orthocenter of AABC. Let X be the reflection
of H over BC and Y the reflection over the midpoint of BC. Prove that X and Y lie on
(ABC), and AY is a diameter.

6.5 Useful Formulas

Here are some other useful formulas. First we provide a criterion for when four points are
concyclic.

Theorem 6.15 (Concyclic Complex Numbers). Let a, b, ¢, d be distinct complex num-
bers, not all collinear. Then A, B, C, D are concyclic if and only if

b—a b-d

c—a  c—d

is a real number.

The proof is left as an exercise. (Actually, we see in Chapter 9 that if A, B, C, D are
indeed cyclic, then this is the cross ratio of the four points ABCD.)

In the same spirit as the complex shoelace formula (Theorem 6.7) is the following
similarity criterion. To show AABC and AXYZ are similar with the same orientation,
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c

most people attempt to prove ;=4 =
version of this formula*® exists.

=X
y—x

or some similar variant. Actually, a symmetric

Theorem 6.16 (Complex Similarity). Two triangles ABC and XY Z are directly similar
if and only if

0=

[STEAN N
N =
—_

Proof. The triangles are similar if and only if

c—a —X

b—a y-—x
One can check this is equivalent to the determinant being equal to zero. O
Now, here is the complete form for the intersection of two lines.

Theorem 6.17 (Complex Intersection). If lines AB and C D are not parallel then their
intersection is given by

(@b — ab)(c — d) — (a — b)(cd — cd)
@—bc—d)—(@—b@Ec—d)
In particular, if |a| = |b| = |c| = |d| = 1 then this simplifies to
ab(c + d) — cd(a + b)
ab —cd

Proof. Solve the system of equations

z z 1 z z 1
O=|a a 1l|=|c ¢ 1
b b 1 d d 1

This is not much fun, but you get the result with enough patience. If a = % and its analogous
forms are substituted, then we get the second expression. O

It is worth noting that the conjugate of the second expression in Theorem 6.17 is %.

This theorem exemplifies why the choice of unit circle is extremely important—the
formula becomes far simpler when a, b, ¢, d are on the unit circle. In general, the more
points that lie on the unit circle, the better, because the conjugates become simple reciprocals
rather than complicated expressions.

Nonetheless, the fully general intersection formula is sometimes useful as well. In par-
ticular, if d = 0 the expression is actually somewhat tamer. It is also often possible to apply
translations before applying the theorem to simplify the computation; see Example 6.26 for
an instance of this.

You can even get the intersection of two circles—sort of. Here is the statement, just for
fun. We give the proof in Section 10.1, but you are welcome to prove it now.

* What happens below when we take x =@, y = b, 7 = ¢?
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Lemma 6.18. Suppose X and Y are the intersection points of two circles. Points A and
B lie on the first circle, C and D on the second, such that lines AC and B D pass through

X. Then
ad — bc
y=——.
a+d—-—b—c

% D

Figure 6.5A. Handling circle intersections in the complex plane.

Finally, one common configuration which complex numbers handles well is the inter-
section of two tangents to the unit circle.
Lemma 6.19 (Complex Tangent Intersection). Let A and B be points on the unit circle
witha + b # 0. Then
2ab 2
a+b a+b

is the intersection point of the tangents at A and B.

a
2ab
a+b
b

Figure 6.5B. Intersecting two tangents in the complex plane.

Proof. Consult Figure 6.5B. Let M be the midpoint of AB and P be the desired
intersection point. It is not hard to show that OM - OP =1 (where o = 0) by similar
triangles. Hence |m| |p| = 1.

We claim this implies m - p = 1. Indeed, the magnitudes are correct, and because O,
M, P are collinear, the argument is zero as well. Hence

2 2 2ab

L = = 0
moa+b B '

p:

Problems for this Section

Problem 6.20. Prove Theorem 6.16. Hint: 217
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Problem 6.21. Prove that the complex shoelace formula (Theorem 6.7) follows from
Theorem 5.1. Hint: 644

Problem 6.22. Let ABC be a triangle with orthocenter H and let P be a point on (ABC).

(a) Show that the Simson line (Lemma 1.48) exists, i.e., that the feet from P onto AB, BC,
C A are collinear.
(b) Establish Lemma 4.4; that is, show that the Simson line at P bisects P H.

Hint: 535

6.6 Complex Incenter and Circumcenter

Two other complex setups worth mentioning are the incenter and the circumcenter.

Let us start with a different question. If b and c lie on the unit circle, what is the midpoint
of minor arc BC? It might be tempting to say ~/bc, but unfortunately taking a square root
of a complex number raises problems. For example, consider

(1-i?=G-17%=-2i.

We can no longer take a “positive root” because there is no notion of “positive” or “negative”
complex numbers.

Fortunately there is a way around this. If we set b = w? and ¢ = v?, then we can
designate one of vw or —vw as the midpoint of arc BC. This motivates the following
lemma.

2

—wu

—uv

. ,UQWC -

—vw

Figure 6.6A. Lemma 1.42.

Lemma 6.23 (Complex Incenter). Given ABC on the unit circle, it is possible to pick
complex numbers u, v, w such that

(a) a =u* b= c=w? and
(b) the midpoint of arc BC not containing A is —vw, the analogous midpoints opposite B
and C are —wu and —uv.

In this case the incenter I is given by —(uv + vw + wu).



This document was prepared on 2016-12-29 for the exclusive use of Aniket Akhade. Unauthorized distribution is strictly prohibited.

6.6. Complex Incenter and Circumcenter 107

Proof. Proving the first two claims involves cumbersome algebra; you can probably
skip it but we include it for completeness. By rotating the triangle, we may assume that
a = 1. Now set u = —1, and let v and w represent the desired midpoints. We claim this is
the desired (u, v, w). See Figure 6.6B.

w

<

—vw
— — 22
vw cC="v

Figure 6.6B. Proving the midpoints of arcs formula.

By construction, b = w? and ¢ = v>. It remains to show that —vw actually lies on the
arc BC not containing A (as opposed to the midpoint of the arc containing A). This is
equivalent to showing vw and a = 1 lie on the same side of BC.

Now for some boring details. We consider two cases, which can be extended to cover
all situations.

* Both v and w have arguments between 0 and . Let 8 be the argument of v, and y the
argument of w. Assume without loss of generality 8 > y. Then arga = 0, argc = 2y,
argvw = B + y and arg w? = 28, where

0<2y <B4y <28 <2m.

This establishes the conclusion.

¢ w has argument 8 and v has argument —y, where 0 < B,y < w.Let6 = B8 — y be the
argument of vw and without loss of generality assume 6 > 0. We also have arga = 0,
arg w?> = min{28, 27 — 2y}, and arg v> = max {28, 2w — 2y}, where

0 <6 <min{28, 27 — 2y} < max{28,2r — 2y} < 2m
as needed.

For the more interesting part, recall Lemma 1.42. We see [ is the orthocenter of the
triangle with vertices —vw, —wu, —uv, and hence is —(uv + vw + wu) since all three
vertices lie on the unit circle. O

Note also that |u| = |v| = |w| = 1, so in particular u = i,i = %,w = % still hold.
The last formula we present is the formula for the circumcenter. While we usually set
the circumcenter we care about to zero, it is actually possible to compute the circumcenter

of an arbitrary triangle, although it is not always feasible to do this computation.
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Lemma 6.24 (Complex Circumcenter). The circumcenter of a triangle XY Z is given
by the quotient

xx 1 x x 1
yy oli=+ y 1
z zz 1 z z 1

In particular, if z = 0 then the above expression equals
xy(x—y)
Xy —Xxy
Proof. Let P be the circumcenter of AXY Z and R the circumradius. We have
R =|x—pl’ =(x— p)T D)
implying
fp+xﬁ+R2 = pp + xX.
Hence, we obtain the system of equations
xp+Xp+ R>— pp =xx
YP+¥p+ R —pp=yy
P+Ip+ R —pp=2Z.

By Cramer’s Rule (Theorem A.4), we can view P, p, and R?> — pp as the unknowns
(surprise!) to get

xx 1 x 1
p=|y yy L=y ¥y 1
z zz 1 z z 1
as required. O

It is often useful to shift the points x, y, z to clear out common terms before applying the
circumcenter formula. In particular, one can shift z to zero before evaluating the determinant,
which simplifies the computation significantly (but breaks the symmetry). In this case the
circumcenter is given by
I\ -/
z+ w
Xy —Xxy

where X’ =x —zand y =y — z.

6.7 Example Problems
First, a classical result on the nine-point circle.

Proposition 6.25 (The Feuerbach Tangency). The incircle and the nine-point circle of
a (non-equilateral) triangle are tangent to each other. (The point of tangency is called the
Feuerbach point.)
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Suppose we wish to prove this using complex numbers. Firstly, how do we handle the
tangent condition? Circles are not particularly nice in complex numbers, so perhaps our
best bet is to try lengths. If 7 and Ny are the incenter and nine-point center, then it would
suffice to prove

1
INy = ER —r orequivalently 2/Ng =R —2r

since the nine-point circle has radius %R.
Actually, does the right-hand side look familiar? According to Lemma 2.22, we have
R—-2r = %1 02, where O is the circumcenter. That means we simply want to prove that

R-2INy = 10>

Now we are in business. If we toss this on the complex plane with R = 1, all we have to
do is compute some absolute values.

Seeing the incenter, let us put A = x2, B = y2, C = z? as in Lemma 6.23. Note in
particular that R = 1. Then the incenter is given by —(xy + yz + zx) while the nine-point
center is given by 1 (x? + y* 4 z?). Evidently we get that

1
2INy =2 §(x2+y2+z2)—[—(xy+yz+zx)] =|x+y+z*.

A miracle occurs—we manage to get a perfect square! Now we just compute / 02, and of
course we should get exactly the same thing and we can call it a day. We find

10% = |—(xy + yz +zx) — 01> = |xy + yz + zx|*.

Oh wait, those are not actually the same.

The problem has now reduced to showing that |x + y + z|> = |xy + yz + zx|?, which
might seem unexpected. Fortunately, squares of absolute values reduce to just conjugates.
The left hand side is merely

1 1 1
t+ty+a)|-+-+-
x y z
while the right hand side is
1 1 1
xy+yz+zx)| —+—+—.
Xy yzoozx

(x+y+2)(xy+yz+zx)

e , so we are done.

These are both equal to

Solution to Proposition 6.25. Using Lemma 6.23 we put complex numbers x2, yZ, z2,
and —(xy + yz 4+ zx) for A, B, C, I respectively. Let Ny be the center of the nine-point
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circle and let O be the circumcenter. Notice that
1, 2 2
2INyg =2 E(x + vy +277)—[—(xy + yz + zx)]

=lx+y+zf
=|xy+yz+ le2
=10?
= R(R —2r)
=R-—-2r
where R and r are the circumradius and inradius, respectively. (We have R = 1 because

we are on the unit circle.) It follows that I Ng = %R — r and hence that the circles are
tangent. O

For our second example, we examine a problem from a USA team selection test. We
present two solutions, one entirely computational (requiring basically no geometric skill at
all) and one that only minimally touches on complex numbers.

Example 6.26 (USA TSTST 2013/1). Let ABC be a triangle and D, E, F be the
midpoints of arcs BC, CA, AB on the circumcircle. Line £, passes through the feet of the
perpendiculars from A to DB and DC. Line m, passes through the feet of the perpendiculars
from D to AB and AC. Let A; denote the intersection of lines £, and m,. Define points B,
and C; similarly. Prove that triangles DE F and A B, C) are similar to each other.

Figure 6.7A. The first problem of the 2013 TSTST.

‘What makes this problem good for complex numbers? First, there are loads of points all
on a single circle, (ABC), and we will almost certainly choose that as the unit circle. The
perpendiculars are also great here, because we are dropping altitudes to the chords of the
circle, so we can use Lemma 6.11. Thirdly, there is a lot of symmetry—after we compute
Aj it is straightforward to compute By and C;. And finally, the similarity is a condition we
know how to deal with.
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Down to business. We want to compute A;. In our usual notation, we see that the foot
from D to AB (which we denote by P;) is given by

1 -
pr=7(a+b+d-abd).

If we set a = x2 and so on, along with d = —yz, then this reduces to
1 x2
D1 =—(x2+y2—yz+—y>.
2 Z

Similarly, the foot from D to AC is

1/, x%z

=5\ X+ -y +—.
2 y

‘We now consider the other half of the story. The feet from A to ‘BD and C D, which we call

Q1 and Q», are none other than

Lo, 2 v’z Lo, 2 yz*
ql=§(x +y —yz+? andq2=§ X +z —yz—i—x—2 .
Now we need to construct A;. Unfortunately, trying to apply Theorem 6.17 directly looks
painful (but feasible). We can do better by noticing that there are a lot of repeated terms in
these four points. So here is the idea: consider the map

Tia 20— (x2+y 22— y2).

Where did that come from? The key observation is that T preserves intersections, since it
just combines a dilation and a translation. That means that if A; is the intersection of lines
P, P, and Q1 Q», then (A ) represents the intersection of lines T(P;)t(P,) and 7(Q1)7(Q>).
And now it is pretty clear why we chose that map. Everything simplifies beautifully under
7. We got rid of the %s and trimmed out all the extra fat with the x> — yz terms that were
appearing everywhere. Thus,

2 2
Xy Xz
t(p)=—-2"+ — = -y + =
3 3
Yz 7y
‘L’(ql) = —Z2 + x—2 T(qz) = —y2 + 7

This looks much friendlier—still messy, maybe, but we can make it through. Abbreviating
x’ for T(x), and applying Theorem 6.17, we see that t(a;) equals

(PP, = Pp5) (41 — 45) — (9135 — 3143) (P} — P5) |
(71 = 12) (41 — a2) — (P} = P5) (@) — 02)

At this point you might want to estimate how long this computation is going to take—it
is starting to look pretty lengthy. Fortunately the time limit for this test was 4.5 hours for
three problems. This looks like it might be a 15 or 20 minute computation, which is really
not a bad investment at all.
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‘We take this calculation one bit at a time. First,

2
=t = 2 X7y _i y
PPy — P1P2= ( o+ Z ) ( 32 + xzz)

_ 2.}.& _i+i
YT 2 x%y)’

A couple of remarks. Notice you can save some effort by noticing that t(p;)t(p,) and
T(p2)T(p;) just switch y and z. That way we only need to expand once. Also, notice how
all terms have the same degree. When your expression has this property, you can use degrees
as a quick way to catch obvious errors.

Now, expanding gives

PiP = DPipy =

So t(a;) = 0, a big surprise. (Usually it does not turn out this well.) For just a dozen lines
of algebra we obtain

ta)=0=a == (x> +y*+2>—yz).

N =

Do we need to do the same for B; and C;? Of course not. We simply exploit symmetry to
get

by = = (x* +y* + 22 — zx).

= N =

a=5+y +2—xy).
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Now we just need to show that this is similar to triangle D E F, which has vertices —yz,
—zx, —xy. One can do this quite painlessly by appealing to Theorem 6.16. However, one
can simply note that A, By, C, are the midpoints of the segments joining x> + y* + z% to
each of D, E, F. This solves the problem.

We promised a mostly synthetic solution, though. An observant reader has probably by
now noticed that x> + y? 4+ z?> = a + b + c is the orthocenter of ABC. Hence A, is the
midpoint of D H. Does this configuration look familiar now?

Solution to Example 6.26. Let H be the orthocenter of ABC.

Firstly, m, is the Simson line from D onto ABC, so it passes through the midpoint M,
of DH by Lemma 4.4. Now let H4 be the orthocenter of ADBC. Since £, is the Simson
line of A onto BC D, it passes through the midpoint of D Hy, say M.

We claim that these midpoints are the same. Indeed, in the language of complex numbers,

_@+b+o+d a+b+c+d
= 5 = 5 =
Hence A; is the midpoint of D H. Similarly, B; is the midpoint of EH and C, is the

midpoint of F H. It follows that H is the center of a homothety taking A; B;C; onto DEF,
completing the problem. O

ny nyp.

Notice that we never actually used the fact that D was a midpoint of arc AB in the
above solution. In fact, it is totally irrelevant. The problem holds true for any D, E, F on
the circumcircle.

The point %(a + b + ¢ + d) foracyclic quadrilateral ABC D is called the Euler point or
the anticenter of the cyclic quadrilateral. Note that as a corollary of the above calculations,
we find that the Simson lines from A onto ABCD, B onto ACDA, C onto ADAB and D
onto AABC all pass through the anticenter.

For our third example, we select a problem from the USAMO 2012. This one is more
straightforward, especially with our knowledge of the determinant.

Example 6.27 (USAMO 2012/5). Let P be a point in the plane of AABC, and y aline
passing through P.Let A’, B, C’ be the points where the reflections of lines PA, PB, PC
with respect to y intersectlines BC, AC, A B respectively. Prove that A’, B’, C’ are collinear.

A

Figure 6.7B. USAMO 2012—reflecting lines over sides.
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We might be tempted to set (ABC) as the unit circle again, but that would make the
reflections through an arbitrary P quite gory. A better idea is to use the reflections to our
advantage rather than avoid them—Iet us set y as the real axis, so that the reflection of A
across y has coordinate a. Of course, we may as well set p = 0 at this point.

With this setup, the rest is a computation. Note that determinants heavily simplify our
calculation.

Solution to Example 6.27. Let P be the origin of the complex plane (meaning p = 0)
and y be the real axis. Now notice that A’ is the intersection of lines bc and pa. Applying
the formula for the intersection of lines gives

, a(bc — bc)
a =—= .
(b—¢a—-(b-ca

Also,

___ alec—bo
T b-ca—b-0a

Considering the cyclic quantities, the area of @’b’c’ is a multiple of

a(bc—bc) a(bc—bc)
(b—0)a—(b—c)a  (b—c)a—(b—c)a

b(ca—ca) b(ca—ca)
(E—a)b—(c—a)b (c—a)b—(c—a)b

c(ab—ab) c(ab—ab) 1

(@-b)c—(a—bye  (a—b)c—(@—b)c
This is actually a multiple of

(b—c)a—(b—c)a

a a bc—be

—  (@©—a)b—(c—a)b
b b fa—cﬁ
c T (E—b)c—(cL—b)c

ab—ab

But now if we evaluate by minors, the denominators bc — be exactly cancel out with the
resulting determinants, and we get

b—oa—(b-ca |b b _
S a =09 b bl SN (4 — az 4 ca - ba) =0
P bc — be c c
yc cyc
as desired. (Here, the “cyclic sum” is as defined in Section 0.3.) ]

We finish with a cute lemma about equilateral triangles in the complex plane.

Lemma 6.28 (Complex Equilateral Triangles). Let ABC be a triangle. It is equilateral
if and only if a> + b> + ¢*> = ab + bc + ca.

Proof. Letu =a —b, v=>b—c, w=c — a. Notice that ABC is equilateral if and
only if u, v, w are the roots of some cubic 2 —a=0. (Why?) So we actually consider the
polynomial

(z —u)z —v)(z —w).
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Expanding and noting u 4+ v + w = 0, we have that it is
2+ (uv + vw + wu)z — uvw.

Hence ABC is equilateral if and only if uv 4+ vw 4+ wu = 0.
The rest is algebra. Rewrite the given as

a* + b* + ¢* = ab + be + ca,
or equivalently,
0=(a—bP?+b—c)+(c—a)P=u’+v>+w
Standard manipulation with symmetric sums now gives us
O:(u+v+w)2=u2+v2+w2+2(uv+vw+wu).

So uv + vw + wu = 0 if and only if a®> + b* + ¢> = ab + bc + ca, as desired. O

6.8 When (Not) to use Complex Numbers

In this section we echo some of the comments made above in the examples.

First, let us mention briefly what types of problems are NOT good candidates for
complex numbers. The worst enemy of complex numbers is multiple circles. Complex
numbers give control over the unit circle, but offer little help with handling any other circles.
Intersections of arbitrary lines are also unwieldy (to say nothing of arbitrary circumcenters
or incenters).

However, if most of the points can be coaxed into lying on a single circle, then we are
in good shape. Moreover, if a central triangle features prominently on this circle, we have
already seen that we can deal with its triangle centers. Indeed one of the most common
techniques is to set (ABC) as the unit circle. This has the added bonus of exploiting any
symmetry in the problem.

Finally, you should always look for synthetic observations to simplify a complex num-
bers solution. One attitude I like to use when solving a geometry problem is to use synthetic
techniques until a problem is either solved or reduced to something that is readily susceptible
to computation.

6.9 Problems

Problem 6.29. Give a proof of the inscribed angle theorem using complex numbers. Hints:
506 343

Lemma 6.30 (Complex Chord). Show that a point P lies on a chord AB of the unit circle
if and only if p + abp = a + b. Hint: 86 Sol: p.256

Problem 6.31. Let ABCD be a cyclic quadrilateral. Let Hy, Hg, Hc, Hp denote the
orthocenters of triangles BCD, CDA, DAB, and ABC, respectively. Prove that AH,4,
BHpg, CHc, and D Hp concur. Hint: 132
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Problem 6.32. Let ABC D be a quadrilateral circumscribed around a circle with center /.
Prove that / lies on the line joining the midpoints of AC and BD. Hints: 526 395 Sol: p.257

Problem 6.33 (Chinese TST 2011). Let ABC be a triangle, and let A’, B’, C’ be points
on its circumcircle, diametrically opposite A, B, C, respectively. Let P be any point inside
ABC and let D, E, F be the feet of the altitudes from P onto BC, CA, AB, respectively.
Let X, Y, Z denote the reflections of A’, B/, C’ over D, E, F, respectively.

Show that triangles XY Z and ABC are similar to each other. Hints: 141 149

Proposition 6.34 (Napoleon’s Theorem). Let ABC be a triangle and erect equilateral
triangles on sides BC, CA, AB outside of ABC with centers O4, Op, Oc. Prove that
AO4OpOc is equilateral and that its center coincides with the centroid of triangle ABC.
Hints: 380 237 558

Figure 6.9A. Napoleon’s theorem.

Problem 6.35 (USAMO 2015/2). Quadrilateral APBQ is inscribed in circle @ with
/P =/0=90°and AP = AQ < BP. Let X be a variable point on segment P Q. Line
AX meets w again at S (other than A). Point T lies on arc AQ B of w such that XT is
perpendicular to AX. Let M denote the midpoint of chord ST. As X varies on segment
‘P Q, show that M moves along a circle. Hints: 133 361 316 283 Sol: p.258

Problem 6.36 (MOP 2006). Point H is the orthocenter of triangle ABC. Points D, E, and
F lie on the circumcircle of triangle ABC such that AD || BE || CF. Points S, T, and U
are the respective reflections of D, E, and F across the lines BC, CA, and A B. Prove that
S, T, U, and H are concyclic. Hints: 313 173 513 Sol: p.259

Problem 6.37 (USA January TST for IMO 2014). Let ABC D be a cyclic quadrilateral,
and let E, F, G, and H be the midpoints of AB,BC,CD, DA, respectively. Let W, X, Y,
and Z be the orthocenters of triangles AHE, BEF, CFG, and DG H, respectively. Prove
that quadrilaterals ABC D and W XY Z have the same area. Hints: 552 85 187 296

Problem 6.38 (Online Math Open Fall 2013). Let ABC be a triangle with AB = 13,
AC =25, and tan A = %. Denote the reflections of B, C across AC, AB by D, E,
respectively, and let O be the circumcenter of triangle ABC. Let P be a point such
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that ADPO ~ APEO, and let X and Y be the midpoints of the major and minor arcs BC
of the circumcircle of triangle ABC. Find PX - PY. Hints: 30 303 608 Sol: p.260

Proposition 6.39 (Tangent Addition). Consider angles A, B, C in the open interval
(—90°, 90°).
(a) Let x =tan A, y = tan B, z = tan C. Prove that
x+y+2)—xyz
I —(xy+yz+zx)
if xy + yz + zx # 1, and is undefined otherwise.
(b) Generalize to multiple variables. Hints: 32 650 408 589 Sol: p.261

tan(A+ B+ C) =

Proposition 6.40 (Schiffler Point). Let ABC be a triangle with incenter 1. Prove that the
Euler lines of triangles AIB, BIC, CIA, and ABC are concurrent (called the Schiffler
point of ABC). Hints: 547 586 332

Problem 6.41 (IMO 2009/2). Let ABC be a triangle with circumcenter O. The points P
and Q are interior points of the sides CA and AB, respectively. Let K, L, and M be the
midpoints of the segments BP, CQ, and P Q, respectively, and let I" be the circle passing
through K, L, and M. Suppose that the line P Q is tangent to the circle I'. Prove that
OP = OQ. Hints: 50 72 357

Problem 6.42 (APMO 2010/4). Let ABC be an acute triangle with AB > BC and
AC > BC. Denote by O and H the circumcenter and orthocenter of ABC. Suppose
that the circumcircle of triangle A H C intersects the line AB at M (other than A), and the
circumcircle of triangle AH B intersects the line AC at N (other than A). Prove that the
circumcenter of triangle M N H lies on line O H. Hints: 642 121 445 Sol: p.261

Problem 6.43 (Shortlist 2006/G9). Points A;, B;, C; are chosen on the sides BC, CA,
AB of atriangle A BC respectively. The circumcircles of triangles AB,Cy, BC1A, CA1 B,
intersect the circumcircle of triangle ABC again at points A,, B,, C, respectively (A, #
A, B, # B, C, # C). Points A3, B3, C3 are symmetric to Ay, B;, C; with respect to the
midpoints of the sides BC, C A, A B respectively. Prove that triangles A, B,C, and A3 B3C3
are similar. Hints: 509 210 167

Problem 6.44 (MOP 2006). Given a cyclic quadrilateral A BC D with circumcenter O and
a point P on the plane, let O, O,, O3, O4 denote the circumcenters of triangles PAB,
PBC, PCD, PDA respectively. Prove that the midpoints of segments O O3, O, 04, and
O P are collinear. Hints: 29 431 Sol: p.263

Problem 6.45 (Shortlist 1998/G6). Let ABC DEF be a convex hexagon such that /B +
4D + ZF =360° and

BC DE FA "
Prove that

BC AE FD

CA EF DB

Hints: 153 668 649 197 Sol: p.264
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Problem 6.46 (ELMO Shortlist 2013). Let ABC be a triangle inscribed in circle w, and
let the medians from B and C intersect w at D and E respectively. Let O; be the center
of the circle through D tangent to AC at C, and let O, be the center of the circle through
E tangent to ‘AB at B. Prove that O;, O,, and the nine-point center of ABC are collinear.
Hints: 371 655 554 203
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CHAPTER 7

Barycentric Coordinates

I suppose it is tempting, if the only tool you have is a hammer, to treat everything as
if it were a nail. Maslow’s Hammer

We now present another technique, barycentric coordinates. At the time of writing, it is
surprisingly unknown to most olympiad contestants and problem writers.

In this chapter, the area notation [X Y Z] refers to signed areas (see Section 5.1). That
means that the area [ XY Z] is positive if the points X, Y, Z are oriented in counterclockwise
order, and negative otherwise.

7.1 Definitions and First Theorems

Throughout this section we fix a nondegenerate triangle A BC, called the reference triangle.
(This is much like selecting an origin and axes in a Cartesian coordinate system.) Each
point P in the plane is assigned an ordered triple of real numbers P = (x, y, z) such that

13=x2+y1§~|—zé and x+y+z=1

These are called the barycentric coordinates of point P with respect to triangle ABC.

Barycentric coordinates are also sometimes called areal coordinates because if P =
(x,y, 2), then the signed area [P BC] is equal to x[A BC], and so on. In other words, these
coordinates can be viewed as

_([PBC] [PCA] [PAB])
" \[ABC] [BCA] [CAB]/)"

The areas are signed in order to permit the point P to lie outside the triangle. If P = (x, y, z)
and A lie on opposite sides of BC, then the signed areas of [PBC] and [ABC] have
opposite signs and x < 0. In particular, the point P lies in the interior of ABC if and only
ifx,y,z>0.

Observe that A = (1,0,0), B =(0,1,0) and C = (0,0, 1). This is why barycentric
coordinates are substantially more suited for standard triangle geometry problems; the
vertices are both simple and symmetric.

The soul of barycentric coordinates derives from the following result, which we state
without proof.

119
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B D C
Figure 7.1A. Regions corresponding to the areas of ABC when P is inside the triangle.
Theorem 7.1 (Barycentric Area Formula). Let Py, P,, Ps be points with barycentric

coordinates P; = (x;, yi, z;) for i = 1,2, 3. Then the signed area of APy P, P is given by
the determinant

[P P, Ps] AU
aBe) | )
X3 Y3 23

Again, the area is signed, following the convention in Section 5.1.
As a corollary, we derive the equation of a line.

Theorem 7.2 (Equation of aLine). The equation of a line takes the formux + vy + wz =
0 where u, v, w are real numbers. The u, v, and w are unique up to scaling.

Proof. The main idea is that three points are collinear if and only if the signed area of
their “triangle” is zero. Suppose we wish to characterize the points P = (x, y, z) lying on
aline XY, where X = (x1, y1, z1) and Y = (x2, y», 22). Using the above area formula with
[PAB] = 0, we find this occurs precisely when

0= (y1z2 — y220)x + (21X2 — 22x1)y + (X1¥2 — X2Y1)2,
i.e., 0 = ux + vy + wz for some constants u, v, w. O

In particular, the equation for the line A B is simply z = 0, by substituting (1, 0, 0) and
(0, 1, 0) into ux + vy 4+ wz = 0. In general, the formula for a cevian through A is of the
form vy 4+ wz = 0, by substituting the point A = (1, 0, 0).

In fact, the above techniques are already sufficient to prove both Ceva’s and Menelaus’s
theorem.

Example 7.3 (Ceva’s Theorem). Let D, E, F be points in the interiors of sides BC,
CA,ABofa triangle ABC. Then the cevians AD, BE, CF are concurrent if and only if

BDCEAF_1

DC EAFB
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Proof. Define
D=(0,d,1—-d)
E=(0—-e¢,0,¢)
F=(f1-/10)

where d, e, f are real numbers strictly between 0 and 1.
Then the corresponding equations of lines are

AD:dz=(1—-d)y
BE :ex =(1—e)
CF:fy=(~ .

We wish to show there is a nontrivial solution to this system of equations (i.e., one other
than (0, 0, 0)) if and only if def = (1 — d)(1 — e)(1 — f), which is evidently equivalent to
the constraint 22 £ A2 — 1,

First suppose that a nontrivial solution (x, y, z) exists. Notice that if any of x, y, z is
zero, then the others must all be zero as well. So we may assume xyz # 0. Now taking the
product and cancelling xyz yields def = (1 — d)(1 —e)(1 — f).

On the other hand, suppose the condition def = (1 —d)(1 —e)(1 — f) holds. We
opportunistically pick x, y, z. Put y; = d and z; = 1 — d. Then we require

1—e f
. (1-4d)= md
and this is okay since def = (1 — d)(1 — e)(1 — f); hence we can set x; as above. Thus
X = X1,y = ¥, and z = z; is a solution to the equations above.

However, there is no reason to believe that x; + y; + z; = 1, so the triple we found
earlier may not actually correspond to a point. (However, we at least know xi, yi, z; > 0.)
This is not a big issue: we instead consider the triple

X1 =

X1 N1 <1
(x,y,2) = ( ; ; )
Xi+yi+tz xityi+za x1+y+2
which still satisfies the conditions, but now has sum 1. Thus this triple corresponds to the

desired point of concurrency. O

The last step in the above proof illustrates that barycentric coordinates are homogeneous.
Let us make his idea explicit. Suppose (x, y, z) lies on a line

ux + vy +wz =0.

Then so does the “triple”, (2x, 2y, 2z), (1000x, 1000y, 1000z) or indeed any multiple. In
light of this, we permit unhomogenized barycentric coordinates by writing (x : y : z) as
shorthand for the appropriate triple

X y Z
x:y:2)= ( ) ) )
X+y+z x+y+z x+y+z
whenever x 4+ y + z # 0. Note the use of colons instead of commas. An equivalent defini-
tion is as follows: for any nonzero k, the points (x : y : z) and (kx : ky : kz) are considered
the same, and (x : y : 7) = (x,y,z) whenx +y +z = 1.
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This shorthand is convenient because such coordinates may still be “plugged in” to the
line formula, often saving computations. For example, we have the following convenient
corollary.

Theorem 7.4 (Barycentric Cevian). Let P = (x| : y; : z1) be any point other than A.
Then the points on line AP (other than A) can be parametrized by

(t:y1:21)
wheret € Randt + y; + 71 # 0.

On the other hand, it makes no sense to put unhomogenized coordinates into, say,
the area formula. For these purposes, our usual coordinates (x, y, z) with the restriction
x +y + z =1 will be called homogenized barycentric coordinates and delimited with
colons.

Problems for this Section
Problem 7.5. Find the coordinates for the midpoint of AB. Hint: 623

Lemma 7.6 (Barycentric Conjugates). Let P = (x : y : z) be a point with x,y,z # 0.
Show that the isogonal conjugate of P is given by

P*_<a2.b2'c2>
=757

and the isotomic conjugate is given by

—x.y.Z.

7.2 Centers of the Triangle

Hint: 419

In Table 7.1 we give explicit forms for several centers of the reference triangle. Remember
that (« : v : w) refers to the point with coordinates (u+vu+w’ u+11)}+w’ Hv"’+w ); that is, we are
not normalizing the coordinates.

This is so important we say it twice: the coordinates here are unhomogenized.

Here G, I, H, O denote the usual centroid, incenter, orthocenter, and circumcenter,
while 7, denotes the A-excenter and K denotes the symmedian point. Notice that O and
H are not particularly nice in barycentric coordinates (as compared to in, say, complex
numbers), but 7 and K are particularly elegant.

It is often more useful to convert the trigonometric forms of H and O into expressions
entirely in terms of the side lengths by

O = (>S4 : b*Sg : ¢*S¢)
and

H = (SBSC . SCSA . SASB)
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Table 7.1. Barycentric Coordinates of the Centers of

a Triangle.

Point/Coordinates Sketch of Proof
G=({1:1:1) Trivial
I=(:b:c) Areal definition

Ip =(—a:b:c),etc. Areal definition
K=(a*:b*:c% Isogonal conjugates
H = (tanA : tan B : tan C) Areal definition

O = (sin2A :sin2B :sin2C) Areal definition

where we define

b2+ % —a? 2+ a? —b? a? 4+ b? — 2
Sp=———, - = ————
2 2 2

Sg =
In Section 7.6 we investigate further properties of these expressions which provide a more
viable way of dealing with them.

Just to provide some intuition on why Table 7.1 and Theorem 7.4 are useful, here is a
simple example.

Example 7.7. Find the barycentric coordinates for the intersection of the internal angle
bisector from A and the symmedian from B.

Solution. Suppose the desired intersection pointis P = (x : y : z). Itis the intersection
of lines Al and BK. According to Theorem 7.4, because I = (a : b : ¢) we deduce that
y :z = b : c. Similarly, because K = (a” : b : ¢*) we deduce that x : z = a® : ¢?. Itis now
elementary to find a solution to this: take

P = (a%:bc:P). O

Moral: Cevians are extremely good in barycentric coordinates. And do not be afraid to use
the law of sines if you have angles instead of side ratios.

Problems for this Section

Problem 7.8. Using the areal definition, show that I = (a : b : ¢). Deduce the angle bisector
theorem. Hint: 605

Problem 7.9. Find the barycentric coordinates for the intersection of the symmedian from
A and the median from B. Hint: 463

7.3 Collinearity, Concurrence, and Points at Infinity

Theorem 7.1 can often be applied to show that three points are collinear. Specifically, we
have the following result.
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Theorem 7.10 (Collinearity). Consider points P\, P, Py with P; = (x; : y; : z;) for
i = 1,2, 3. The three points are collinear if and only if

X1 Y1 21
0= X2 y2 221
X3 Y3 3

Note the coordinates need not be homogenized! This saves much computation.

Proof. The signed area of Py, P, P is zero (i.e., the points are collinear) if and only if

X1 i 21
X1+yi+z1 X1+yi+z1 X1+yi+z1
— X2 Y2 22 3
0= X2+y2+22 X2+y2+22 X2+y2+22 [ABC] :

X3 Y3 23
x3+y3+2z3 X3+y3+2z3 X3+y3+23

The right-hand side simplifies as

[ABC] SR
3 X2 Y2 22
nizl (xi +yi +2) X3 Y3 23
Because [ABC] # 0 the conclusion follows. [

This can be restated in the following useful form.

Proposition 7.11. The line through two points P = (x1 : y1 : z1) and Q = (x2 : y2 : 22)
is given precisely by the formula

Xy z
O=|x1 yi zi
X2 Y2 22

We often use this in combination with Theorem 7.4 in order to intersect a cevian with
an arbitrary line through two points.

We also have a similar criterion for when three lines are concurrent. However, before
proceeding, we make a remark about points at infinity. We earlier defined

X y Z
(x:y:z)=< ) ) )
X+y+z x+y+z x+y+z

whenever x + y 4+ z # 0. What of the case x + y + z = 0?
Consider two parallel lines u;x + vy + wiz = 0 and upx + voy + wpz = 0. Because
they are parallel, we know that the system

O=uix+viy+wz

0=urx +v2y + wyz

l=x+y+z
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has no solutions (x, y, z). This is only possible when

up vp wi
U Uy Wy| = 0.
1 1 1

However, this implies that the system of equations

O=uix+viy+wz

0=urx +v2y + wyz

O=x+y+z
has a nontrivial solution! (Conversely, if the lines are not parallel, the determinant is nonzero,
and hence there is exactly one solution, namely (0, 0, 0).)

In light of this, we make each of our lines just “a little longer” by adding one point

to it, a point at infinity. It is a point (x : y : z) satisfying the equation of the line and the
additional condition x + y + z = 0. With this addition, every two lines intersect; the lines

that were parallel before now correspond to lines that intersect at points at infinity. Points
at infinity are defined more precisely at the start of Chapter 9.

Example 7.12. Find the point at infinity along the internal bisector of angle A.

Solution. The point at infinity is (—(b 4 ¢) : b : ¢). After all, it lies on the equation of
the angle bisector, and the sum of its coordinates is zero. O

Theorem 7.13 (Concurrence). Consider three lines
g tuix +v;iy+wiz=0
fori =1,2,3. They are concurrent or all parallel if and only if

U V1 w1
0= U vy wWa|.
us V3 w3

Proof. This is essentially linear algebra. Consider the system of equations

O=ux +viy+wz
0= Urx + v2y + wrz
0 = u3zx 4+ v3y + wsz.
It always has a solution (x, y, z) = (0, 0, 0) and other solutions exist if and only if the lines

concur (possibly at a point at infinity), which occurs only when the determinant of the
matrix is zero. O
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7.4 Displacement Vectors

In this section, we develop the notion of distance and direction through the use of vectors.
This gives us a distance formula, and hence a circle formula, as well as a formula for the
distance between two lines.

The chief definition is as follows. A displacement vector of two (normalized) points

P = (p1, p2, p3) and O = (q1, q2, q3) is denoted by P Q and is equal to (g1 — p1, g2 —
D2, q3 — p3). Note that the sum of the coordinates of a displacement vector is 0.

This section frequently involves translating the circumcenter O to the zero vector 6;
this lets us invoke properties of the dot product described in Appendix A.3. This translation
is valid since the point (x, y, z) satisfies x + y + z = 1, so the coordinates of the points do
not change as a result; to be explicit, we can write

f’—é:x(ﬁ—é)—i—y(é—é)—i—z(é—é)
since x + y 4+ z = 1. As a result, however:
It is important that x 4+ y 4+ z = 1 when doing calculations with displacement vectors.
Our first major result is the distance formula.

Theorem 7.14 (Distanﬁ) Formula). Let P and Q be two arbitrary points and consider
a displacement vector PQ = (x, y, z). Then the distance from P to Q is given by

PO = —a’yz — b*zx — cPxy.

Proof. Translate the coordinate plane so that the circumcenter O becomes the zero
vector. Recall (from Appendix A.3) that this implies

> o - o 1
A-A:RzandA-B:R2—5c2.

Here R is the circumradius of triangle ABC, as usual. Then we simply compute
PO = (xﬁ +yB+ z@) : (xﬁ +yB+ zé) .

Applying the properties of the dot product and using cyclic sum notation (defined in
Section 0.3),

PO =) x?A-A+2) xyA B

cyc cyc

1
= R*(x* + 2+2+25 R>— —¢%).
x"+y +z9) xy 2c

cyc
Collecting the R? terms,
PO = R?(x* + y* + 22 4+ 2xy 4 2yz + 22x) — (*xy + a*yz + b*zx)
=R (x 4+ y+2)* —a’yz — b’zx — c*xy
= —a’yz — b’zx — c*xy

since x + y 4+ z = 0, being the sum of the coordinates in a displacement vector. [
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As a consequence we can deduce the formula for the equation of a circle. It looks
unwieldy, but it can often be tamed; see the remarks that follow the proof.

Theorem 7.15 (Barycentric Circle). The general equation of a circle is
—a’yz —b*zx —xy + (ux + vy +wz)x +y+2) =0
for reals u, v, w.

Proof. Assume the circle has center (j, k, /) and radius r. Then applying the distance
formula, we see that the circle is given by

~a’(y = k)@ =) = bz~ Dx — j) = A = Py —k) =r’.
Expand everything, and collect terms to get
—a’yz —b*zx — xy+ Cix + Coy +C3z2=C
for some hideous constants C; and C. Since x + y + z = 1, we can rewrite
—a’yz —b’zx —Pxy+ux +vy +wz =0
as
—a’yz —b*zx — Pxy + (ux +vy +wz)x +y+2) =0

where u = C; — C, etc. ]

While this may look complicated, it turns out that circles that pass through vertices and
sides are often very nice. For example, consider what occurs if the circle passes through
A = (1, 0,0). The terms azyz, b2zx, czxy all vanish, and accordingly we arrive at u = 0.
Even if only one coordinate is zero, we still find many vanishing terms. Several examples
are illustrated in the exercises.

As aresult, whenever you are trying to solve a problem involving circumcircles through
barycentrics, you should strive to set up the coordinates so that points on the circle are points
on the sides, or better yet, vertices of the reference triangle. In other words, the choice of
reference triangle is of paramount importance whenever circles appear.

Our last development for this section is a criterion to determine when two displacement
vectors are perpendicular.

—

Theorem 7.16 (Barycentric Perpendiculars). Let 1\7\7 =(x1,y1,z1) and PQ =
(X2, y2, 22) be displacement vectors. Then MN 1 P Q if and only if
0 =a*(z1y2 + y122) + b*(x122 + 21%2) + (122 + x1y2).

The proof is_e)ssentially the same as before: shift O to the zero vector, and then expand
the condition M N - PQ = 0, which is equivalent to perpendicularity. We encourage you
to prove the theorem yourself before reading the following proof.

Proof. Translate 0 t0 0. It is necessary and sufficient that

(xn‘i +y1l§ +215> . (ng —i—yzé +Z26) =0.
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Expanding, this is just

Z(xlng . A) +Z((x1y2+x2yl)g . é) =0.

cye cye
Taking advantage of the fact that 0 = 0, we may rewrite this as
0 R? e
= X1X X X - —).
Czy;(lz )+CZYC:(1)/2+ 2)’1)( 2)
This rearranges as

1
R? (Z(XIXZ) + Z(lez + x2y1)> =3 Z (G132 + x2y1(c?))

cyc cyc cyc

1
R +yi+z)+n+2)= 5 Z (G132 + x231)(cD)) -

cyc

But we know that x; + y; + 21 = x2 + y2 + 22 = 0 in a displacement vector, so this
becomes

1
R*.0-0= 3 Z (G132 + x231)(c?))

cyc

0= ((x1y2 +x231)(c?)). m

cyc

Theorem 7.16 is particularly useful when one of the displacement vectors is a side of the
triangle. Several applications are given in the exercises, and more are seen in the examples
section.

Problems for this Section

Lemma 7.17 (Barycentric Circumcircle). The circumcircle (ABC) of the reference tri-
angle has equation

a’yz + b*zx + ¢*xy = 0.
Hint: 688

Problem 7.18. Consider a displacement vector P_Q) = (x1, y1, z1). Show that PQ L BC
if and only if

0=a*(zi — y1) + x1(c? — b?).

Lemma 7.19 (Barycentric Perpendicular Bisector). The perpendicular bisector of BC
has equation

0 =a’*(z —y)+ x(c* — b?).
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7.5 A Demonstration from the IMO Shortlist

Before proceeding to even more obscure theory, we take the time to discuss an illustrative
example. Here is a problem from the IMO Shortlist of 2011.

Example 7.20 (Shortlist 2011/G6). Let ABC be a triangle with AB = AC and let D
be the midpoint of AC. The angle bisector of Z/BAC intersects the circle through D, B,
and C at the point E inside triangle ABC. The line B D intersects the circle through A, E,
and B in two points B and F. The lines AF and BE meet at a point /, and the lines C/
and B D meet at a point K. Show that I is the incenter of triangle K AB.

Figure 7.5A. IMO Shortlist 2011, Problem G6 (Example 7.20).

There are many nice and relatively painless synthetic observations that you can make
in this problem. However, for the sake of discussion, we pretend we missed all of them.
How should we apply barycentric coordinates?

Perhaps a better question is whether we should apply barycentric coordinates at all.
There are two circles, but they seem relatively tame. There are lots of intersections of lines,
but they seem to be mostly things that could be made into cevians. The final condition is
about an angle bisector, which could pose difficulties, but we might make it.

A large part of this decision is based on what we choose for our reference triangle. At
first we might be inclined to choose AABC, as the two circles in the problem pass through
at least two vertices, and the condition AB = AC is easy to encode. However, trying to
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prove that BI bisects ZABD, and that AT bisects /BAK, seems much less pleasant. Can
we make at least one of them nicer?

That motivates a new choice of reference triangle: let us pick AA B D instead. That way,
the BE bisection condition is extremely clean, and in fact almost immediate from the start
(since E is the first point we compute). We still have the property that all circles pass through
two vertices. Even better, the points F and K now lie on a side of the triangle, rather than
just on some cevian (even though cevians are usually good too). And the second bisection
condition looks much nicer now too, because we would only need to check ji,?i = ﬁ—z;
since F' and K lie on B D, the right-hand side of this equality looks much better, and so the
only truly nontrivial step would be computing AK 2. And finally, the isosceles condition is
just AB = 2A D, which is trivial to encode.

It really is quite important that everything works out. A single thorn can doom the
entire solution. We should always worry the most about the most time-consuming step of
the entire plan—often this bottleneck takes longer to clear than the rest of the problem
combined.

Let us begin. Set A = (1,0,0), B =(0,1,0),and D = (0, 0, 1), and denote a = BD,
b=AD, c = AB = 2b. We also abbreviate /A = /BAD, /B = /ZDBA, and /D =
ZADB.

Our first objective is to compute E, so we need the equation of (BDC). We know
that C is the reflection of A over D, and hence C = (—1, 0, 2). Thus we are plugging in
B=(0,1,0),C =(—1,0,2),and D = (0, 0, 1) into the circle equation

(BDC): —azyz —b’zx — czxy + x4+ y+2)ux +vy+wz)=0.

The points B and D now force v = w = O—indeed this is why we want circles to pass
through vertices. Now plugging in C gives

2 —u=0=u=2b"

Great. Now E lies on the bisector of ZBAD. Hence, set E = (¢ : 1 : 2) (which is equivalent
to (bs : b :2b) = (bs : b:c), where s = ;—7) for some t. We can now solve for ¢ by just
dropping it into the circle equation, which gives

—a*(1)(2) — b*)(t) — *()(1) + B+ 1)(2b* - 1) = 0.

Putting ¢ = 2b, we enjoy a cancellation of all the ¢ terms, leaving us with merely 2b° - 1> =
2a?,and hence t = +4. Wepickt > Osince E is in the interior, and accordingly we deduce
E:(%:1:2),0r

E=@:b:2b)=(@:b:c).

This means E is the incenter of A A B D! Glancing back at the diagram, that implies that
BE is the angle bisector of ZABD. And the explanation is simple: if D’ is the reflection of
D across AE, then the arcs D'E and DE of (BC D) are equal by simple symmetry. Hence
/D'BE = ZEBD. Oops. That was embarrassing. But let us trudge on.

The next step is to compute the point F. We first need the equation of (AEB). By
proceeding as before with generic u, v, w, we may derive that u = v = 0 with the points
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A and B. As for E, we require
—a’be — b*ca — c*ab+ (a + b+ ¢)(cw) =0 = w = ab.

Now set F = (0 : m : n) and throw this into our discovered circle formula. The computa-
tions give us

—a’mn + (m + n)(abn) =0 = —am +b(m +n) =0

andsom :n =b :a — b. Hence

F:(O:b:a—b):(O:Z:a_b>.

a

Wait, that is pretty clean. Why might that be?
Upon further thought, we see that

DF=§~BD=b=AD.
In other words, F is the reflection of A over the bisector E D. Is this obvious? Yes, it is—the
center of (AEB) lies on ED by our ubiquitous Lemma 1.18. Cue sound of slap against
forehead.

(At this point we might take a moment to verify that @ > b, to rule out configuration
issues. This just follows from the triangle inequality a + b > 2b.)

Next, we compute /. This is trivial, because AF and BE are cevians. Verify that
I =(a(a—"b):bc:cla—Db)) = (ala —b):2b>: 2b(a — b))

is the correct point.
We now wish to compute K. Letusset K = (0 : y : z) and solve again for y : z. Because
the points 7, K, and C are collinear, our collinearity criterion (Theorem 7.10) gives us

0 y z
0= -1 0 2 .
ala —b) 2b* 2b(a —b)

Let us see if we make more zeros. Add a(a — b) times the second row to the last to obtain

0o vy z
0=2(-1 0 2 i
0 b (b+a)a—b)

Here we have factored the naturally occurring 2 in the bottom row. Apparently this implies,
upon evaluating by minors (in the first column) that we have

y Z
b2 a2_b2 .

Hence we discover K = (0: b*: a® — b?) = (O, Z—z, “za_zbz). This is really nice as well.
Actually, it implies in a similar way as before that
b AD?

DK = = DB - DK = AD>.
a BD
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Did we miss another synthetic observation? This new discovery implies ADAK ~ ADBA,
and hence /ZKAD = ZK BA. That would mean /BAK = ZA — ZB, which is positive
bya > b.

Our calculations have given us /ZBAK = ZA — ZB, meaning it suffices to prove that
ZBAF = Y(LA — ZB). And yet ZBAE = /A, so we only need to prove ZFAE =
%ZB. In a blinding flash of obvious, ZFAE = ZFBE = %ZB and we are done.

The calculation of K from F encodes all of the nontrivial synthetic steps of the problem,
and our surprise at the resulting K led us naturally to the end. We write this up nicely, hiding
the fact that we ever missed such steps.

Solution to Example 7.20. Let D’ be the midpoint of AB. Evidently the points B, D',
D, E, C are concyclic. By symmetry, DE = D'E, and hence BE is a bisector of ZD'BD.
It follows that E is the incenter of triangle AB D. Since the center of (AE B) lies on ray
DE by Lemma 1.18, it follows that the reflection of A over ED lies on (AE B), and hence
is F.

We now claim that DK - DB = DA?. The proof is by barycentric coordinates on
AABD. Set A=(1,0,0), B=(0,1,0), C =(0,0,1) and let a = BD, b = AD, and
¢ = AB = 2b. The observations above imply that F = (0 :b:b—a)and E = (a : b : ¢).
This implies

I =(a(a—b):bc:cla—>b)= (a(a—b) : 2b2:2b(a —b)).
Finally, C = (—1,0, 2). Hence if K = (0 : y : z) then we have
0 y z 0 vy z

0=| -1 0 2 =|-1 0 2
a(a—b) 2b* 2b(a —b) 0 2b* 2a*-bY

s0y:z=>b:(@>—b?,50K = (O, Z—z, 1 — Z—z) It follows immediately that DK = %2
as desired.
Now remark that

DK - DB = DA*> = ADAK ~ ADBA = /FAD = /B.

So /BAK = /A —/B. But ZEAD =1/A and /FAE = /FBE = /B imply
/BAF = %(4A — /B), and we are done. O

7.6 Conway’s Notations

We now adapt Conway’s notation™ and define

b+ —a?
and Sp and S¢ analogously. Furthermore, let us define the shorthand Sgc = SgSc, and so
on.

We first encountered these when we gave the coordinates of the circumcenter, and
claimed they were friendlier than they seemed. This is because they happen to satisfy a

* The notation is named after John Horton Conway, a British mathematician.
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lot of nice identities. For example, it is easy to see that S 4+ S¢ = a>. Here are some less
obvious ones.

Proposition 7.21 (Conway Identities). Let S denote twice the area of triangle ABC.

Then
8% = Ssp + Spc + Sca
= Spc + aZSA
= %(azSA +b*Sp + ¢*Sc)
= (bc)* — S3.
In particular,

a’S, + b*Sp — *Sc = 284p.

One might notice that there are a lot of a*S, and S, g terms involved. This is because these
are the coordinates of the circumcenter and orthocenter—hence these terms tend to arise
naturally, and the identities provide a way of manipulating them.

More generally, if S is again equal to twice the area of triangle ABC, we define

Sp = Scotf.

Here the angle is directed modulo 180°. The special case when 6 = ZA yields Sy =
1B+ —ad).
With this notation, we also have the following occasionally useful result.

Theorem 7.22 (Conway’s Formula). Let P be an arbitrary point. If B = £LPBC and
y = {BCP, then

P=(—a*:Sc+S,:S5+ Sgp).

The proof follows by computing the signed areas of triangles PBC, PAB, PCA and
performing some manipulations. The proof is not particularly insightful and left to a diligent
reader as an exercise. An example of an application appears in the exercises, Problem 7.37.

1.7 Displacement Vectors, Continued

In this section we refine some of our work in Section 7.4.
First of all, we look at our circle again:

—a’yz —b*zx — *xy + (x + y + 2)(ux + vy + wz) = 0.

It might have seemed odd to insist on the negative signs in the first three terms, since we
could have just as easily inverted the signs of u, v, w. It turns out that there is a good reason
for this. Recall that we derived the circle formula by writing

(distance from (x, y, z) to centelr)2 — radius’® = 0.
y
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This should look familiar! What happens if we substitute an arbitrary point (x, y, z) into the
formula? In that case we obtain the power of a point with respect to the circle. Explicitly,
we obtain the following lemma.

Lemma 7.23 (Barycentric Power of a Point). Let w be the circle given by
—azyz —bzx — czxy +x+y+2)ux +vy+wz)=0.
Then let P = (x, y, z) be any point. Then
Pow,(P) = —a’yz — b*zx — *xy + (x + y + 2)(ux + vy + wz).

Note that we must have (x, y, z) homogenized here. Otherwise the distance formula breaks,
and hence so does this lemma.

An easy but nonetheless indispensable consequence of Lemma 7.23 is the following
lemma which gives us the radical axis of two circles.

Lemma 7.24 (Barycentric Radical Axis). Suppose two non-concentric circles are given
by the equations

—a’yz — b’zx — Pxy + (x + y + D)uix + vy + wiz) =0
—a’yz — b?zx — xy + (x + y + 2)(uax + vyy + wpz) = 0.
Then their radical axis is given by
(ur —u2)x + (vy —v2)y + (w1 —w2)z = 0.

Proof. Just set the powers equal to each other and remark x 4 y 4+ z # 0. Notice that
this equation is homogeneous. O

We may also improve upon Theorem 7.16. In our proof of the theorem, we shifted 0
to zero and then used that

RXxi+y1+ 20+ 24+ 2)=R>-0-0=0.

In fact, we only need one of the displacement vectors to be zero for the entire product to be
zero. For the other, we can get away with using a pseudo displacement vector; that is, we
may cheat and, for example, write

—_— - - N - - -
HO=H-0=H=A+B+C=(,1,1).
+ B+

(Again, O = 0 here. The lemma that H = A C under these conditions was proved

in Chapter 6.)
Of course this is strictly nonsense, but the idea is there. Here is the formal statement.

Theorem 7.25 (Generalized Perpendicularity). Suppose M, N, P, and Q are points
with

— —
x1AO +leO + 21

Sl 2l
S

— —
=xA0 +»BO + 7,

such that either x; +y1 +z1 =0o0rx; + y2 + 22 = 0.
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In that case, lines MN and P Q are perpendicular if and only if
0 = a*(z1y2 + y122) + b*(x122 + 21%2) + (132 + xX1)2).
Proof. Repeat the proof of Theorem 7.16. O

This becomes useful when O or H is involved in a perpendicularity. For example, we
can obtain the following corollary by finding the perpendicular line to A O through A.

Example 7.26. The tangent to (ABC) at A is given by
b’z +cy =0.

Proof. Let P = (ﬁ) ¥, z) be a point on the tangent and assume as usual that 0 = 0. The
displacement vector P A is

— - - -
PA=(x—-1,y,2) =k —-DA+yB+zC.
We can also use the pseudo displacement vector
— - - - - -
AO=A—-0=1A4+0B+0C.

Putting (x1, y1,z1) = (x — 1, y, z) and (x2, ¥2, z2) = (1, 0, 0) yields the result. O

7.8 More Examples
Our first example is the famous Pascal’s theorem from projective geometry.

Example 7.27 (Pascal’s Theorem). Let A, B, C, D, E, F be six distinct points on a
circle I'. Prove that the three intersections of lines AB and DE, BC and EF, and C D and
F A are collinear.

B

Figure 7.8A. Pascal’s theorem (or one case thereof).

This problem seems okay because we have lots of intersections and only one circle.

Now we need to decide on a reference triangle. We might be tempted to pick ABC, but
doing so loses much of the symmetry in the statement of Pascal’s theorem. In addition, the
lines DE and E F would fail to be cevians. Let us set reference triangle AC E instead—
this way, our computations are symmetric, and the lines AB, DE, BC, EF, CD, FA are
symmetric.

We can now proceed with the computation.
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Solution. In some terrible notation, leta = CE,b = EA,c = AE. Set A = (1,0, 0),
C =(0,1,0), E = (0,0, 1). We still have to deal with the other points, which have a lot of
freedom. Now we write

B=(x1:y1:21)
D= (x2:y2:22)
F=(x3:y3:23)

and hope for the best. Here, the points are subject to the constraint that they must lie on
(ACE). That is, we have that

—azyiz,- — bzzix,- — czx,-yi =0, i=1,2,3.

Hopefully this will be helpful later, but for now there is no clear way to use this.

Now to actually compute the intersections. First, we need to smash the cevians AB and
E D together. (For organization, I am always writing the vertex of the reference triangle
first.) The line A B is the locus of points (x : y : z) with y : z = y; : z;, while the line ED
is the locus of points with x : y = x, : y,. Hence, the intersection of lines AB and E D is

ﬁmﬁ:@;ui).
2 Y1

(Here we are borrowing the intersection notation from Chapter 9, a bit prematurely. Bear
with me.) We can do the exact same procedure to determine the other intersections:

c—umﬁz@;&q)

22 23
—_ b4
FﬂCB:(l:E:—I).
X3 X1
Now to show that these are collinear, it suffices to show that the determinant
z
1 » oa
X3 X
X z
2 A
2 V1
X
2o»noy
22 13

is zero. (We have lined up the 1s on the main diagonal.) Seeing this, we are inspired to
rewrite our given condition as

1 1

a’ — b — 4 —=0
X1 Y1 21
1 1 1

at-—4+b—4+c* —=0
X2 2 22

, 1 1 , 1

at — b — =
X3 V3 23
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Linear algebra now tells us that

1 1 1
X1 N A
1
O=|— — —
X2 2 22
1 1 1
X3 Y3 23
but this equals
a
Xt N
1 |, ==
X2Y321 Y2 22
Boo»
X3 73
which quickly implies that the first determinant is zero. O

There is actually little geometry involved in our proof of Pascal’s theorem. In fact,
there is very little special about the use of barycentric coordinates versus any other type of
symmetric coordinates. Indeed they are a special case of homogeneous coordinates, i.e.,
a coordinate system that identifies (kx : ky : kz) with (x, y, z). This is why the determinant
calculations involved virtually no geometric observations.

Our next example involves a pair of incircles.

Example 7.28. Let ABC be a triangle and D a point on BC. Let I; and I, denote the
incenters of triangles ABD and AC D, respectively. Lines BI, and CI; meet at K. Prove
that K lies on AD if and only if AD is the angle bisector of angle A.

Figure 7.8B. Using barycentric coordinates to tame incircles.

The first thing we notice in this problem is the incenters. This should evoke fear, because
we do not know much about how to deal with incenters other than that of ABC. Fortunately,
these ones seem somewhat bound to ABC, so we might be okay.
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We take ABC as the reference triangle. (After all, we do have a set of concurrent
cevians, so this seems like something we want to use.) Now the hard part is deciding how
to determine /5.

Perhaps we can phrase I, as the intersection of two angle bisectors. Obviously one of
them is the C-bisector. For the other, we consider the bisector DI, (using Al will also
work). If we can intersect the lines D1, and C I, this will of course give 1.

So how can we handle D1,? If we let C; be the intersection of DI, with AC, then C,
splits side AC in an AD : AC ratio, by the angle bisector theorem. This suggests setting
d=AD,p=CD,q = BD,where p+q =a.Inthatcase, C; = (p : 0: d).

One might pause to worry about the fact we now have six variables. There are some
relations, p + g = a and Stewart’s theorem, but we prefer not to use these. The reassurance
is that so far all our equations have been of linear degree, so high degrees seem unlikely to
appear. Indeed, we see that the solution is very short.

Solution to Example 7.28. Use barycentric coordinates with respect to ABC. Put
AD=d,CD=p,BD =gq.

Letray DI, meet AC at C;. Evidently C; = (p : 0: d) while D =(0: p : q).

Thus if I = (a : b : t) then we have

p 0 d

0 p ¢q|=0=1r= M
a b t p
which yields
I =(ap : bp :ad + bq).
Similarly,

Iy =(aq :ad +cp : cq).
So lines B, and C1 intersect at a point
K = (apq : plad +cp) : q(ad + bq)) .
This lies on line AD, so

p _ plad +cp)
q qlad+bq)

Hence we obtain cp = bg or p : ¢ = b : c implying D is the foot of the angle bisector. [
Next in line is a problem from the USAMO in 2008.

Example 7.29 (USAMO 2008/2). Let ABC be an acute, scalene triangle, and let M, N,
and P be the midpoints of BC, CA, and AB, respectively. Let the perpendicular bisectors
of AB and AC intersect ray AM in points D and E respectively, and let lines BD and CE
intersect in point F, inside triangle ABC. Prove that points A, N, F, and P all lie on one
circle.

This one is actually a straightforward computation (but not a straightforward synthetic
problem) with reference triangle ABC, but we have selected it to illustrate the use of
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B M c

Figure 7.8C. Show that A, N, F, P are concyclic.

determinants and Conway’s notation. There are only two nontrivial steps we will make.
The first is to compute D as the intersection of lines PO and AM (where O is of course
the circumcenter); there are other approaches but this is (I think) the cleanest. The second
is that a homothety with ratio 2 at A to check that F lies on (AN P); we show that the
reflection of A over F lies on (ABC), which solves the problem. All else is algebra.

Solution to Example 7.29. First, we find the coordinates of D. As D lies on AM, we
know D = (¢ : 1 : 1) for some ¢. Now by Lemma 7.19, we find

2+ b2—a?

0=0Ct-D+@-H=>r= -

Thus we obtain

D=(28y:c":c%).
Analogously E = (25, : b? : b?), and it follows that

F=(284:0":¢%).
The sum of the coordinates of F is

B* + 2 —a>)+b* + 2 =207 + 2% — d°.
Hence the reflection of A over F is simply
2F — A= (—a®:2b%:2c%).

It is evident that F' lies on (ABC) : —a’yz — b*zx — c*xy = 0, and we are done. O

Our final example is the closing problem from Chapter 3. It stretches the power of our
technique by showing even intersections with circles can be handled.

Example 7.30 (USA TSTST 2011/4). Acute triangle ABC is inscribed in circle .
Let H and O denote its orthocenter and circumcenter, respectively. Let M and N be the
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midpoints of sides AB and AC, respectively. Rays M H and NH meet w at P and Q,
respectively. Lines M N and P Q meet at R. Prove that OA L RA.

A

Figure 7.8D. Show that RA is a tangent.

This one is going to be wilder. We step back and plan before we begin the siege.

Intersecting M N and P Q, and then showing the result is tangent, does not seem too
hard. We have M, N, and H for free. However, it seems trickier to obtain the coordinates
of P and Q.

Not all hope is lost. We want to avoid solving quadratics, so consider what happens
when we intersect line M H with circle (ABC). Because M = (1:1:0)and H = (Sp¢ :
Sca : Sap), the equation of line M H can be computed as

Sac — S
ozx_y+<u)z,
San

Also, we of course know 0 = a’yz + b>zx + c¢?xy. Letusselect P = (x : y : —S43). Then
our system of equations in x and y is

x+y=3Sc(Sa— Sp)
*xy = S48 (a®y + b*x).

We can attempt to solve directly for x, and we get some sloppy quadratic of the form
ax? + Bx +y = 0 for some (messy) expressions «, 8, y. The quadratic formula seems
hopeless at this point.

But we are not stuck yet. Think about the two values of x. They correspond to the
coordinates of two points, P and second point P’, which has been marked in Figure 7.8E.

But the point P’ is very familiar—it is just the point diametrically opposite C, and also
the reflection of H over M. So itis straightforward to compute the value of x corresponding
to P’. Vieta’s formulas then tell us the sum of the roots of our quadratic is —g, and we get
our value of x for free.

Now we can start the computation.
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P! Q'

Figure 7.8E. Vieta jumping, anyone?

Solution to Example 7.30. We use barycentrics on ABC.

First, we compute the coordinates of P’, the second intersection of line M H with
(ABC). Since it is the reflection of H = (Sgc, Sca, Sap) over M, and the coordinates of
H sumto Sqp + Spc + Sca, we may write

S S S S S S
P’:2( A + ;c—i- CA: AB + ;c-i- CA:O)

—(Spc : Sca : Sap)
= (S4B + Sac : Sap + Spc : —SaB)
= (CZZSA . bZSB . —SAB).

Now let us determine the coordinates of P, where we let P = (x’ 1y z/) =

(x/ cy' —SAB) (valid since we just scale the coordinates so that 77 = —S,p). Because
it lies on line M H, we find

Sac — Spc

0=x’—y’+( 3 )Z/=>y,=x/+SBC_SAC~
AB

Also, we know that a®y’z’ + b>z'x" + c2x’y’ = 0, which gives
x'y = Sap (a®y +b°x').
Substituting, we have
c? (x’ (x’ + Spc — SAC)) = Sup (a2 (x/ + Spc — SAC) + bzx') .
Collecting like terms gives the quadratic
x? 4+ [* (Spc — Sac) — (a> 4+ b*)Sap] x’ + constant = 0.
By Vieta’s formulas, then, the x” we seek is just

a’ + b?
2

Sag — Sgc + Sac — a*S.
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Writing a®> = S + Sac in hopes of clearing out some terms, this becomes

a4+ b*—¢? SaSeSc
———5Sap — Spc = cg — Sae.

c
Now y' = S*‘i—’,’sc — Sac. Cleaning further,

P = (S;Sc : S55c 1 *Sas).
Analogous calculations give that

Q = (SpSZ : b*Sac : S3S5) .

Finding the equation of line P Q looks painful, so let us find where R should be
first. Let the tangent to A meet line M N at R’. It is straightforward to derive that R’ =
(b2 —c* bt —cz). Now we can just take a determinant. To show the three points P, Q,
R’ are collinear it suffices to check that

S2Sc  S2Sc  c*SaSs
0= SpS2  b’SaSc  S3Ss
b2 2 »? _c2
Note that S3S5c — S2Sc — ¢?SaSp = ¢? [Sc(Sp — Sa) — SaSz]. So upon subtracting the
second and third columns from the first, this factors as
2 S3Sc  SaSp
(Spc — Sap — Sac) - |b*> b*SaSc  S3Sp
0 b’ —c?
To show this is zero, it suffices to check that
b* (*S5Sp — b*c*SaSp) = ¢* (b*S3Sc — b*c*SaSc).

The left-hand side factors as S Spb*c* (Sa — b*) = —SaSpSch*c? and so does the right-
hand side, so we are done. L]

This is certainly a somewhat brutal solution, but the calculation can be carried out
within a half hour (and two pages) with some experience (and little insight). Notice how
Conway’s notation kept the expressions manageable.

7.9 When (Not) to Use Barycentric Coordinates
To summarize, let us discuss briefly when barycentrics are useful.

¢ Cevians are wonderful in every way, shape, and form. Know them, use them, love them.
Pick reference triangles in which many lines become cevians.

* Problems heavily involving centers of a prominent triangle are in general good, because
we have nice forms for most of the centers.

* Intersections of lines, collinearity, and concurrence are fine. Bonus points when cevians
are involved.
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* Problems that are symmetric around the vertices of a triangle. Because barycentric
coordinates are also symmetric, this allows us to take advantage of the nice symmetry,
unlike with Cartesian coordinates.

¢ Ratios, lengths, or areas.

* Problems with few points. This is kind of obvious—the fewer points you have to compute,
the better.

In contrast, here are things that barycentric coordinates do not handle well.

* Lots of circles. One can sometimes find a way around circles (for example, if only the
radical axis or power of a point is relevant).

* Circles that do not pass through vertices of sides of a reference triangle. In general, the
equation of a circle through three completely arbitrary points will be very ugly. However,
the circle becomes much more tractable if the points it passes through have zeros.

* Arbitrary circumcenters.

* General angle conditions. Of course, there are exceptions; they typically involve angle
conditions that can be translated into length conditions. The angle bisector theorem is
your friend here.

7.10 Problems

There are quite a few contest problems that can be solved by barycentrics; this represents a
rather small subset of problems I have encountered that are susceptible. Part of the reason is
that, at the time of writing, barycentrics are a relatively unknown technique. As a result, test-
writers are not aware when a problem they propose is trivialized by barycentric coordinates,
as they would have been for a problem approachable by either complex numbers or Cartesian
coordinates.

Lemma 7.31. Let ABC be a triangle with altitude AL and let M be the midpoint of AL.
If K is the symmedian point of triangle ABC, prove that K M bisects BC. Hints: 652 393

Problem 7.32. Let I and G denote the incenter and centroid of a triangle ABC and let
N denote the Nagel point; this is the intersection of the cevians that join A to the contact
point of the A-excircle on BC, and similarly for B and C. Prove that I, G, N are collinear
and that NG = 2G . Hints: 271 243

Problem 7.33 (IMO 2014/4). Let P and Q be on segment BC of an acute triangle ABC
such that /PAB = ZBCA and ZCAQ = ZABC.Let M and N be the points on AP and
A Q, respectively, such that P is the midpoint of AM and Q is the midpoint of AN. Prove
that the intersection of BM and CN is on the circumference of triangle A BC. Hints: 486 574
251 Sol: p.265

Problem 7.34 (EGMO 2013/1). The side BC of triangle ABC is extended beyond C to
D so that CD = BC. The side C A is extended beyond A to E so that AE = 2CA. Prove
that, if AD = BE, then triangle ABC is right-angled. Hint: 188 Sol: p.265

Problem 7.35 (ELMO Shortlist 2013). In AABC, a point D lies on line BC. The
circumcircle of ABD meets AC at F (other than A), and the circumcircle of ADC meets
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AB at E (other than A). Prove that as D varies, the circumcircle of AE F always passes
through a fixed point other than A, and that this point lies on the median from A to BC.
Hints: 657 653

Problem 7.36 (IMO 2012/1). Given triangle ABC the point J is the center of the excircle
opposite the vertex A. This excircle is tangent to side BC at M, and to lines AB and AC at
K and L, respectively. Lines LM and BJ meet at F', and lines K M and CJ meet at G. Let
S be the point of intersection of lines AF and BC, and let T be the point of intersection of
lines AG and BC. Prove that M is the midpoint of ST'. Hints: 447 280 Sol: p.266

Problem 7.37 (Shortlist 2001/G1). Let A be the center of the square inscribed in acute
triangle ABC with two vertices of the square on side BC. Thus one of the two remaining
vertices of the square is on side ‘AB and the other is on AC. Points B;, C; are defined in
a similar way for inscribed squares with two vertices on sides AC and AB, respectively.
Prove that lines AA;, BB, CC; are concurrent. Hints: 123 466

Problem 7.38 (USA TST 2008/7). Let ABC be a triangle with G as its centroid. Let P be
a variable point on segment BC. Points Q and R lie on sides AC and A B respectively, such
that PQ | AB and PR || AC. Prove that, as P varies along segment BC, the circumcircle
of triangle A QR passes through a fixed point X such that /BAG = ZCAX. Hints: 6 647
Sol: p.266

Problem 7.39 (USAMO 2001/2). Let ABC be a triangle and let w be its incircle. Denote
by D; and E; the points where w is tangent to sides BC and AC, respectively. Denote
by D, and E, the points on sides BC and AC, respectively, such that CD, = BD; and
CE, = AE), and denote by P the point of intersection of segments AD, and BE;. Circle
w intersects segment A D, at two points, the closer of which to the vertex A is denoted by
Q. Prove that AQ = D, P. Hints: 320 160

Problem 7.40 (USA TSTST 2012/7). Triangle ABC is inscribed in circle Q. The interior
angle bisector of angle A intersects side BC and 2 at D and L (other than A), respectively.
Let M be the midpoint of side BC. The circumcircle of triangle ADM intersects sides AB
and AC again at Q and P (other than A), respectively. Let N be the midpoint of segment
P Q, and let H be the foot of the perpendicular from L to line N D. Prove that line M L is
tangent to the circumcircle of triangle H M N. Hints: 381 345 576

Problem 7.41. Let ABC be a triangle with incenter /. Let P and Q denote the reflections of
B and C across C1 and BI, respectively. Show that PQ | OT, where O is the circumcenter
of ABC. Hints: 396 461

Lemma 7.42. Let ABC be a triangle with circumcircle Q and let Ty denote the tangency
points of the A-mixtilinear incircle to Q2. Define Ty and T¢ similarly. Prove that lines ATy,
BTg, CTc, 10 are concurrent, where I and O denote the incenter and circumcenter of
triangle ABC. Hints: 490 54 602 488 Sol: p.267

Problem 7.43 (USA December TST for IMO 2012). In acute triangle ABC, /A < /B
and ZA < ZC. Let P be a variable point on side BC. Points D and E lie on sides AB and
AC, respectively, such that BP = PD and CP = PE. Prove that as P moves along side
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BC, the circumcircle of triangle AD E passes through a fixed point other than A. Hints: 179
144 137

Problem 7.44 (Sharygin 2013). Let C, be an arbitrary point on side AB of AABC. Points
A, and Bj are on rays BC and AC such that ZAC,B; = /BC1A| = ZACB. The lines
AA; and B B; meet in point C;. Prove that all the lines C;C, have a common point. Hints:
511266 304 Sol: p.268

Problem 7.45 (APMO 2013/5). Let ABC D be a quadrilateral inscribed in a circle w, and
let P be a point on the extension of AC such that P B and P D are tangent to o. The tangent
at C intersects PD at Q and the line AD at R. Let E be the second point of intersection
between E and w. Prove that B, E, R are collinear. Hints: 379 524 129

Problem 7.46 (USAMO 2005/3). Let ABC be an acute-angled triangle, and let P and Q be
two points on its side BC. Construct a point C; in such a way that the convex quadrilateral
APBC is cyclic, QC; | CA, and C; and Q lie on opposite sides of line AB. Construct
a point Bj in such a way that the convex quadrilateral APC B, is cyclic, OB, || BA, and
B; and Q lie on opposite sides of line AC. Prove that the points By, C;, P, and Q lie on a
circle. Hints: 191 325 204

Problem 7.47 (Shortlist 2011/G2). Let A;AyA3A, be a non-cyclic quadrilateral. For
1 <i < 4,let O; and r; be the circumcenter and the circumradius of triangle A; 1 A; 17 A;13
(where A; 14 = A;). Prove that
1 N 1 N 1 n 1
01A%—r12 OZA%—rzz 03A§—r32 04A§—rf

Hints: 468 588 224 621 Sol: p.269

Problem 7.48 (Romania TST 2010). Let ABC be a scalene triangle, let I be its incenter,
and let A, Bj, and C; be the points of contact of the excircles with the sides BC, CA,
and A B, respectively. Prove that the circumcircles of the triangles AT A}, BI By, and CIC,
have a common point different from 7. Hints: 549 23 94

Problem 7.49 (ELMO 2012/5). Let ABC be an acute triangle with AB < AC, and let D
and E be points on side BC such that BD = CE and D lies between B and E. Suppose
there exists a point P inside ABC such that PD | AE and ZPAB = ZEAC. Prove that
/PBA = ZPCA. Hints: 171 229 Sol: p.270

Problem 7.50 (USA TST 2004/4). Let ABC be a triangle. Choose a point D in its interior.
Let w, be a circle passing through B and D and w; be a circle passing through C and D so
that the other point of intersection of the two circles lies on AD. Let w; and w, intersect
side BC at E and F, respectively. Denote by X the intersection of lines DF and AB, and
let Y the intersection of DE and AC. Show that XY || BC. Hints: 301 206 567 126

Problem 7.51 (USA TSTST 2012/2). Let ABC D be a quadrilateral with AC = BD. Diag-
onals AC and BD meet at P. Let w; and O; denote the circumcircle and the circumcenter
of triangle AB P. Let w, and O, denote the circumcircle and circumcenter of triangle CD P.
Segment BC meets w; and w; again at S and T (other than B and C), respectively. Let
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M and N be the midpoints of minor arcs SP (not including B) and TP (not including C).
Prove that M N || O O,. Hints: 651 518 664 364

Problem 7.52 (IMO 2004/5). In a convex quadrilateral ABC D, the diagonal B D bisects
neither the angle ABC nor the angle CDA. Point P lies insidle ABCD with ZPCB =
ZDBA and ZPDC = ZBDA. Prove that ABCD is a cyclic quadrilateral if and only if
AP = CP. Hints: 117 266 641 349 Sol: p.270

Problem 7.53 (Shortlist 2006/G4). Let ABC be a triangle with Z/C < ZA < 90°. Select
point D on side AC so that BD = BA. The incircle of ABC is tangent to AB and AC at
points K and L, respectively. Let J be the incenter of triangle BC D. Prove that the line
K L bisects AJ. Hints: 5 295 281 394



Part |
Farther from Kansas

"panqiyosd Apowis sl uonnguisip pazuoyineun "apeuydy 19XIUY JO 8sn SAISN|oXa au) 10} 62-2T-9T0Z Uo paredald sem juswinoop siyl

147



"panqiyosd Apowis sl uonnguisip pazuoyineun "apeuydy 19XIUY JO 8sn SAISN|oXa au) 10} 62-2T-9T0Z Uo paredald sem juswinoop siyl



This document was prepared on 2016-12-29 for the exclusive use of Aniket Akhade. Unauthorized distribution is strictly prohibited.

CHAPTER 8

Inversion

Out of nothing I have created a strange new universe. Janos Bolyai

In this chapter we discuss the method of inversion in the plane. This technique is useful for
turning circles into lines and for handling tangent figures.

8.1 Circles are Lines

A cline (or generalized circle) refers to either a circle or a line. Throughout the chapter, we
use “circle” and “line” to refer to the ordinary shapes, and ““cline” when we wish to refer
to both.

The idea is to view every line as a circle with infinite radius. We add a special point Py
to the plane, which every ordinary line passes through (and no circle passes through). This
is called the point at infinity. Therefore, every choice of three distinct points determines a
unique cline—three ordinary points determine a circle, while two ordinary points plus the
point at infinity determine a line.

With this said, we can now define an inversion. Let @ be a circle with center O and
radius R. We say an inversion about w is a map (that is, a transformation) which does the
following.

Figure 8.1A. A* is the image of the point A when we take an inversion about w.

¢ The center O of the circle is sent to Pno.
* The point P, is sent to O.

149
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* For any other point A, we send A to the point A* lying onray O A suchthat OA - O A* =

r2.

Try to apply the third rule to A = O and A = P, and the motivation for the first two
.. 2 2
rules becomes much clearer. The way to remember it is “% = 00” and “ = 07.
At first, this rule seems arbitrary and contrived. What good could it do? First, we make

a few simple observations.

1. A point A lies on w if and only if A = A*. In other words, the points of w are fixed.
2. Inversion swaps pairs of points. In other words, the inverse of A* is A itself. In still other
words, (A*)* = A.

We can also find a geometric interpretation for this mapping, which provides an impor-
tant setting in which inverses arise naturally.

Lemma 8.1 (Inversion and Tangents). Let A be a point inside w, other than O, and A*
be its inverse. Then the tangents from A* to w are collinear with A.

This configuration is shown in Figure 8.1A. It is a simple exercise in similar triangles:
just check that OA - OA* = r2.

This is all fine and well, but it does not provide any clue why we should care about
inversion. Inversion is not very interesting if we only look at one point at a time—how
about two points A and B?

Figure 8.1B. Inversion preserves angles, kind of.

This situation is shown in Figure 8.1B. Now we have some more structure. Because
OA.-OA* = OB - OB* = r?, by power of a point we see that quadrilateral ABB*A* is
cyclic. Hence we obtain the following theorem.

Theorem 8.2 (Inversion and Angles). If A* and B* are the inverses of A and B under
inversion centered at O, then {OAB = —£ O B*A*.

Unfortunately, this does not generalize nicely” to arbitrary angles, as the theorem only
handles angles with one vertex at O.

It is worth remarking how unimportant the particular value of r has been so far. Indeed,
we see that often the radius is ignored altogether; in this case, we refer to this as inversion

* The correct generalization is to define an angle between two clines to be the angle formed by the tangents at
an intersection point. This happens to be preserved under inversion. However, this is in general not as useful.
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around P, meaning that we invert with respect to a circle centered at P with any positive
radius. (After all, scaling r is equivalent to just applying a homothety with ratio r2.)

Problem for this Section

Problem 8.3. If z is a nonzero complex number, show that the inverse of z with respect to
the unit circle is (Z)’l.

8.2 Where Do Clines Go?

So far we have derived only a few very basic properties of inversion, nothing that would
suggest it could be a viable method of attack for a problem. The results of this section will
change that.

Rather than looking at just one or two points, we consider entire clines. The simplest
example is a just a line through O.

Proposition 8.4. A line passing through O inverts to itself.

By this we mean that if we take each point on a line £ (including O and P,) and invert
it, then look at the resulting locus of points, we get £ back again. The proof is clear.
What about a line not passing through O? Surprisingly, it is a circle! See Figure 8.2A

Figure 8.2A. A line inverts to a circle through O, and vice versa.

Proposition 8.5. The inverse of a line £ not passing through O is a circle y passing
through O. Furthermore, the line through O perpendicular to £ passes through the center

of y.

Proof. Let £* be the inverse of our line. Because P, lies on £, we must have O on £*.
We show £* is a circle.

Let A, B, C be any three points on £. It suffices to show that O, A*, B*, C* are concyclic.
This is easy enough. Because they are collinear, { OAB = £ O AC. Using Theorem 8.2,
AOB*A* = £LOC*A*, as desired. Since any four points on £* are concyclic, that implies
£* is just a circle.

It remains to show that ¢ is perpendicular to the line passing through the centers of w
(the circle we are inverting about) and y . This is not hard to see in the picture. For a proof,
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let X be the point on £ closest to O (so OX L £). Then X* is the point on y farthest from
0, so that O X* is a diameter of y. Since O, X, X* are collinear by definition, this implies
the result. O

In a completely analogous fashion one can derive the converse—the image of a circle
passing through O is a line. Also, notice how the points on w are fixed during the whole
transformation.

This begs the question—what happens to the other circles? It turns out that these circles
also invert to circles. Our proof here is of a different style than the previous one (although
the previous proof can be rewritten to look more like this one). Refer to Figure 8.2B.

C*

Figure 8.2B. A circle inverts to another circle.

Proposition 8.6. Ler y be a circle not passing through O. Then y* is also a circle and
does not contain O.

Proof. Because neither O nor Py is on y, the inverse y* cannot contain these points
either. Now, let AB be a diameter of y with O on line AB (and A, B # O). It suffices to
prove that y* is a circle with diameter A*B*.

Consider any point C on y. Observe that

90° = 4BCA=—-4£0CB + £0CA.

By Theorem 8.2, we see that —£{OCA = LOA*C* and —£OCB = £0 B*C*. Hence, a
quick angle chase gives
90° = LOB*C* — LOA*C* = LA*B*C* — AB*A*C* = —A{B"C*A*

and hence C* lies on the circle with diameter A* B*. By similar work, any point on y* has
inverse lying on y, and we are done. O

It is worth noting that the centers of these circles are also collinear. (However, keep in
mind that the centers of the circle do not map to each other!)
We can summarize our findings in the following lemma.

Theorem 8.7 (Images of Clines). A cline inverts to a cline. Specifically, in an inversion
through a circle with center O,
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(a) A line through O inverts to itself.

(b) A circle through O inverts to a line (not through O ), and vice versa. The diameter of
this circle containing O is perpendicular to the line.

(c) A circle not through O inverts to another circle not through O. The centers of these
circles are collinear with O.

We promised that inversion gives the power to turn circles into lines. This is a result of
(b)—if we invert through a point with many circles, then all those circles become lines.

Finally, one important remark. Tangent clines (that is, clines which intersect exactly
once, including at P, in the case of two lines) remain tangent under inversion. This has the
power to send tangent circles to parallel lines—we simply invert around the point at which
they are internally or externally tangent.

Problems for this Section

Problem 8.8. In Figure 8.2C, sketch the inverse of the five solid clines (two lines and three
circles) about the dotted circle w. Hint: 279

y

Figure 8.2C. Practice inverting.

Lemma 8.9 (Inverting an Orthocenter). Let ABC be a triangle with orthocenter H and
altitudes AD, BE,CF. Perform an inversion around C with radius ~/CH - CF. Where do
the six points each go? Hint: 257

Lemma 8.10 (Inverting a Circumcenter). Let ABC be a triangle with circumcenter O.
Invert around C with radius 1. What is the relation between O*, C, A*, and B*? Hint: 252

Lemma 8.11 (Inverting the Incircle). Let ABC be a triangle with circumcircle ' and
contact triangle DEF . Consider an inversion with respect to the incircle of triangle ABC.
Show that T is sent to the nine-point circle of triangle D E F . Hint: 560
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8.3 An Example from the USAMO

An example at this point would likely be illuminating. We revisit a problem first given in
Chapter 3.

Example 8.12 (USAMO 1993/2). Let ABCD be a quadrilateral whose diagonals AC
and BD are perpendicular and intersect at E. Prove that the reflections of E across AB,
BC, CD, DA are concyclic.

Figure 8.3A. Adding in some circles.

Let the reflections respectively be W, X, Y, Z.
At first, this problem seems a strange candidate for inversion. Indeed, there are no
circles. Nevertheless, upon thinking about the reflection condition one might notice

AW = AE = AZ

which motivates us to construct a circle w4 centered at A passing through all three points. If
we define wg, wc, and wp similarly, suddenly we no longer have to worry about reflections.
W is the just the second intersection of w4 and wg, and so on.

Let us rephrase this problem in steps now.

. Let ABC D be a quadrilateral with perpendicular diagonals that meet at E.
. Let wy4 be a circle centered at A through E.

Define wg, wc, wp similarly.

. Let W be the intersection of w4 and wp other than E.

. Define X, Y, Z similarly.

. Prove that W XY Z is concyclic.
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At this point, it may not be clear why we want to invert. Many students learning inversion
for the first time are tempted to invert about w,. As far as I can tell, this leads nowhere,
because it misses out on one of the most compelling reasons to invert:

Inversion lets us turn circles into lines.

This is why inversion around w, seems fruitless. There are few (read: zero) circles
passing through A, so all the circles in the figure stay as circles, while some former lines
become new circles. Hence inverting about wy is counterproductive: the resulting problem
is more complicated than the original!

So what point has a lot of circles passing through it? Well, how about E? All four circles
pass through it. Hence, we invert around a circle centered at E with radius 1. (Just because
a point has no circle around it does not prevent us from using it as the center of inversion!)

What happens to each of the mapped points? Let us consider it step-by-step.

1. A*B*C*D* is still some quadrilateral. As A*, and C* stay on line AC, and B* and D*
stay on line B D, we have that A* B*C*D* also has perpendicular diagonals meeting at
E. Since ABCD is arbitrary, we likewise treat A* B*C* D* as arbitrary.

2. wy passes through E, so it maps to some line perpendicular to line EA. This is not
enough information to determine w’ yet—what is the point of intersection w? has with
line EA? Actually, it is the midpoint of A*E. For let M, be the point diametrically
opposite E on wy,; this is the pre-image of the their intersection. Now A is the midpoint
of MAE, so M is the midpoint of A*E.

In other words, 7 is the perpendicular bisector of A*E.

. Define wy, of, wj, similarly.

4. W* is the intersection of the two lines w’ and w}, simply because W is the intersection
of ws and wp other than E. (Of course, v’ and w} also meet at the point at infinity,
which is the image of E.)

5. X*, Y*, Z* are also defined similarly.

6. We wish to show WXYZ is cyclic. By Theorem 8.7, this is equivalent to showing
W*X*Y*Z* is cyclic.

w

This is the thought process for inverting a problem. We consider the steps used to construct
the original problem, and one by one find their inversive analogs. While perhaps not easy
at first, this requires no ingenuity and is a skill that can be picked up with enough practice,
since it is really just a mechanical calculation.

Figure 8.3B shows the completed diagram.

We are just moments from finishing. We wish to show that quadrilateral W*X*Y*Z* is
cyclic. But it is a rectangle, so this is obvious!

Solution to Example 8.12. Define wa, wp, wc, wp to be circles centered at A, B, C, D
passing through E. Observe that W is the second intersection of w4 and wg, et cetera.

T Degrees of freedom, anyone? When you are considering the inverted version of a problem, you want to
make sure the number of degrees of freedom does not change. See Section 5.3 for more discussion on degrees of
freedom.
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A*
W* W 7%
B Bl .
wp wh
X* wk Y
O

Figure 8.3B. Inverting the USAMO.

Consider an inversion at E. It maps w4, wp, ¢, wp to four lines which are the sides of
a rectangle. Hence the images of W, X, Y, Z under this inversion form a rectangle, which
in particular is cyclic. Inverting back, W XY Z is cyclic as desired. O

Notice that we do not have to go through the full detail in explaining how to arrive at
the inverted image. In a contest, it is usually permissible to just state the inverted problem,
since deriving the inverted figure is a straightforward process.

Usually an inverted problem will not be this easy." However, we often have good reason
to believe that the inverted problem is simpler than the original. In the above example, the
opportunity to get rid of all the circles motivated our inversion at E, and indeed we found
the resulting problem to be trivial.

8.4 Overlays and Orthogonal Circles

Consider two circles w; and w, with centers O and O, intersecting at two points X and Y.
We say they are orthogonal if

201X 0, =90°,

i.e., thelines O X and O, Y are the tangents to the second circle. Of course, w; is orthogonal
to w, if and only if w, is orthogonal to w;.

It is clear that if w, is a circle and O; a point outside it, we can draw a unique circle
centered at O; orthogonal to w,: namely, the circle whose radius is equal to the length of
the tangent to w;.

Orthogonal circles are nice because of the following lemma.

 But you can certainly find other examples. At the 2014 IMO, one of my teammates said that he was looking
for problems that were trivialized by inversion. Another friend responded that this was easy—just take a trivial
problem and invert it!



This document was prepared on 2016-12-29 for the exclusive use of Aniket Akhade. Unauthorized distribution is strictly prohibited.

8.4. Overlays and Orthogonal Circles 157

Figure 8.4A. Two orthogonal circles.

Lemma 8.13 (Inverting Orthogonal Circles). Let w and y be orthogonal circles. Then
y inverts to itself under inversion with respect to w.

Proof. This is a consequence of power of a point. Let @ and y intersect at X and Y,
and denote by O the center w. Consider a line through O intersecting y at A and B. Then

0X?>=0A-0OB
but since O X is the radius w, A inverts to B. O

What’s the upshot? When a figure inverts to itself, we get to exploit what I call the
“inversion overlay principle”. Loosely, it goes as follows:

Problems that invert to themselves are usually really easy.

There are a few ways this can happen. Sometimes it is because we force a certain circle
to be orthogonal. Other times it is a good choice of radius that plays well with the problem.
In either case the point is that we gain information by overlaying the inverted diagram onto
the original.

Here is the most classical example of overlaying, called a Pappus chain embedded in
a shoemaker’s knife. See Figure 8.4B.

Example 8.14 (Shoemaker’s Knife). Let A, B, C be three collinear points (in that
order) and construct three semicircles I s ¢, ' 4 g, wo, on the same side of AC, with diameters
AC, AB, BC, respectively. For each positive integer k, let wy; be the circle tangent to I'4¢
and I' 45 as well as wy_;.

Let n be a positive integer. Prove that the distance from the center of w, to AC is n
times its diameter.

The point of inverting is to handle the abominable tangency conditions. Note that each
w; is tangent to both I" 4 3 and I"s¢, so it makes sense to force both of these circles into lines.
This suggests inverting about A. As an added bonus, these two lines become parallel.

It is perhaps not clear yet what to use as the radius, or even if we need to pick a radius.
However, we want to ensure that the diameter of w, remains a meaningful quantity after
the inversion. This suggests keeping w,, fixed.
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A B c

Figure 8.4B. The Shoemaker’s Knife.

This motivates us to invert around A with radius r in such a way that w, is orthogonal
to our circle of inversion. What effect does this have?

* w, stays put, by construction.

* The semicircles I'y g and I'4¢ pass through A, so their images I'} ; and I'}} - are lines
perpendicular to line AC.

¢ All the other w; are now circles tangent to these two lines.

Aniket Akhade. Unauthorized distribution is strictly prohibited.

Figure 8.4C. Inverting with w; fixed (so n = 3). We invext around the dashed circle centered at A,
orthogonal to ws.
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8.5 More Overlays

An example of the second type of overlay is the short inversive proof of Lemma 4.33 we
promised.

M

Figure 8.5A. Revisiting Lemma 4.33.

Example 8.15. Let BC be a chord of a circle Q. Let w be a circle tangent to chord BC
at T and internally tangent to w at 7. Then ray T K passes through the midpoint M of the
arc BC not containing 7. Moreover, M C? is the power of M with respect to w.

Proof. LetT be the circle centered at M passing through B and C. What happens when
we invert around I'?

Firstly, €2 is a circle through M, so it gets sent to a line. Because B and C lie on I' and
are fixed by this inversion, it must be precisely the line BC. In particular, this implies line
BC gets sent to 2. In other words, the inversion simply swaps line BC and T".

Perhaps the ending is already obvious. We claim that w just gets sent to itself. Because
BC and Q trade places, w* is also a circle tangent to both. Also, the centers of w* and w
are collinear with M. This is enough to force w = w*. (Why?)

Now K is the tangency point of w with BC, so K* is the tangency point of w* = w
with (M B*C*) = Q. But this is T; hence K and T are inverses.

In particular, M, K, T are collinear and MK - MT = MC?. ]

Here is a nice general trick that can force overlays when dealing with a triangle ABC.

Lemma 8.16 (Force-Overlaid Inversion). Let ABC be a triangle. Consider the transfor-
mation consisting of an inversion about A with radius ~/AB - AC, followed by a reflection
around the angle bisector of ZBAC. This transformation fixes B and C.

The above demonstration applies the lemma with A = M. Because ABM C was isosce-
les, there was no need to use the additional reflection.

Fixing a triangle ABC is often very powerful since problems often build themselves
around ABC. In particular, tangency to (ABC) is involved (as it becomes tangency to line
BC). This led to the solution in the above example.
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Problem for this Section

Problem 8.17. Work out the details in the proof of Lemma 8.16.

8.6 The Inversion Distance Formula

The inversion distance formula gives us a way to handle lengths in inversion. It is completely
multiplicative, making it nice for use with ratios but more painful if addition is necessary.

Theorem 8.18 (Inversion Distance Formula). Let A and B be points other than O and
consider an inversion about O with radius r. Then

r2
A*B*= ——— . AB
OA-OB

Equivalently,

r2

AB=————A*B".
OA*- OB*
This first relation follows from the similar triangles we used in Figure 8.1B, and is left as
an exercise. The second is a direct consequence of the first (why?).
The inversion distance formula is useful when you need to deal with a bunch of lengths.
See Problem 8.20.

Problems for this Section

Problem 8.19. Prove the inversion distance formula.

Problem 8.20 (Ptolemy’s Inequality). For any four distinct points A, B, C, and D in a
plane, no three collinear, prove that

AB-CD+ BC-DA > AC - BD.

Moreover, show that equality holds if and only if A, B, C, D lie on a circle in that order.
Hints: 118 136 539 130

8.7 More Example Problems

The first problem is taken from the Chinese Western Mathematical Olympiad.

Example 8.21 (Chinese Olympiad 2006). Let ADBE be a quadrilateral inscribed in
a circle with diameter A B whose diagonals meet at C. Let y be the circumcircle of ABOD,
where O is the midpoint of AB. Let F be on y such that OF is a diameter of y, and let
ray FC meet y again at G. Prove that A, O, G, E are concyclic.

We are motivated to consider inversion by the two circles passing through O, as well
as the fact that O itself is a center of a circle through many points. Inversion through O
also preserves the diameter A B, which is of course important.
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Figure 8.7A. Show that O AEG is concyclic.

Before inverting, though, let us rewrite the problem with phantom point G, as the
intersection of (O F B) and (O AE), and attempt to prove instead that F', C, G are collinear.
This lets us define G7 as the intersection of two lines.

Figure 8.7B. 1In the inverted image, we wish to show that points O, F*, C*, G are cyclic.

We now invert around the circle with diameter AB. We figure out where each point
goes.

1. Points D, B, A, E stay put, because they lie on the circle we are inverting around. So
D* = D, etc.
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2. C was the intersection of AB and DE. Hence C* is a point on line AB so that C*DOE
is cyclic.

3. F is the point diametrically opposite O on (B O D). That means that ZODF = 90°. So,
Z/OF*D* = 90°. Similarly, Z0 F*B* = 90°. Hence, F* is just the midpoint of D B!

4. G is defined as the intersection of (O FB) and (O AE), so G7 is the intersection of lines
F*B and AE.

5. We wish to show that O, F*, C*, and G, are concyclic.

Okay. Well, ‘OF* 1 BD;thusto prove O, F*, C*, G7 are concyclic, it suffices to show
that @ L AC*. Now look once more at circle (O E DC*). Notice something?

Because AD L B_G*l‘, BE L A_G’f, and O is the midpoint of ‘AB, we discover this is
the nine-point circle of AABG7}. We are done.

Solution to Example 8.21. Let G be the intersection of (O D B) and (O AE) and invert
around the circle with diameter AB. In the inverted image, F* is the midpoint of BD, C*
lies on line AB and (DOE), and G* is the intersection of lines DB and AE. We wish to
show O, F*, C*, G are cyclic.

Because (O E D) is the nine-point circle of AABG?, we see C* is the foot of G} onto
line AB. On the other hand, Z0 F*B = 90° as well so we are done. O]

Let us conclude by examining the fifth problem from the 2009 USA olympiad.

Example 8.22 (USAMO 2009/5). Trapezoid ABC D, with AB || CD, is inscribed in
circle w and point G lies inside triangle BC D. Rays AG and BG meet w again at points P
and Q, respectively. Let the line through G parallel to AB intersect BD and BC at points
R and S, respectively. Prove that quadrilateral P QRS is cyclic if and only if BG bisects
/CBD.

Figure 8.7C. USAMO 2009/5.
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The main reason we might want to attempt inversion is that there are not just four, or
even five, but six points all lying on one circle. It would be great if we could make that
circle into a line.

So if we are going to invert, we should do so around a point on the circle w. Because we
have a bisector at ZC B D, it makes sense to invert around B in order to keep this condition
nice. Also, the parallel lines become tangent circles at B. More plainly, there are just a lot
of lines passing through B.

Again we work out what happens in steps.

1. Cyclic quadrilateral ABC D becomes a point B and three points A*, C*, D* on a line in
that order. Because AB || CD, we actually see that A*B is tangent to (BC*D™).

2. G is an arbitrary point inside triangle BC D. That means G* is some point inside
ZC*BD*, but outside triangle BC*D*.

3. R and § are the intersections of a parallel line through G with BD and BC. Therefore
R* is the intersection of a circle tangent to (BC*D*) at B (this is the image of parallel
lines) with ray BD*. S* is the intersection of this same circle with ray BS*.

4. Q was the intersection of (ABC D) with ray BG, so now Q* is the intersection of BG*
with the line through A*, C*, and D*.

5. P was the intersection of (ABC D) with line AG. Hence P* is the point on line A*C*
such that BA*G* P* is cyclic.

6. We wish to show that P*Q*R*S* is cyclic if and only if BG* bisects ZR* BS*.

The inverted diagram is shown in Figure 8.7D.

Figure 8.7D. Inverting the USAMO. . . again!

Now it appears that P* Q* is parallel to S* R*. Actually, this is obvious, because there
is a homothety at B taking C* D* to S* R*. This is good for us, because now P*Q*R*S* is
cyclic if and only if it is isosceles.

We can also basically ignore (BC*D*) now; it is just there to give us these parallel lines.
For that matter, we can more or less ignore C* and D* now too.

Let us eliminate the point A*. We have

LQ*P*G* = LA*P*G* = LA*BG" = {BS*G".
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Seeing this, we extend line G* P* to meet (BS*R*) at X, as in Figure 8.7E. This way,
LO*P*G* = ABS*G* = {BX*"G*.

Therefore, P*Q* | BX holds unconditionally. This lets us get rid of P* in the sense that
it is just a simple intersection of G*X and the parallel line; we can anchor the problem
around (BX R*S*).

Figure 8.7E. Cleaning up the inverted diagram.

Thus, we have reduced the problem to the following.

Let BX S*R* be an isosceles trapezoid and ¢ a fixed line parallel to its bases. Let G*
be a point on its circumcircle and denote the intersections of £ with BG* and X G* by
Q* and P*. Prove that P*S* = Q*R* if and only if G* is the midpoint of arc R*S*.

This is actually straightforward symmetry. See the solution below.

Solution to Example 8.22. Perform an inversion around B with arbitrary radius, and
denote the inverse of a point Z with Z*.

After inversion, we obtain a cyclic quadrilateral BS*G* R* and points C*, D* on BS*,
‘BR*, such that (BC* D*) is tangent to (B S*G* R*)—in other words, so that C* D* is parallel
to S*R*. Point A* lies on line C*D* so that A*B is tangent to (BS*G*R*). Points P* and
Q* are the intersections of (A*BG*) and BG* with line C* D*.

Observe that P*Q*R*S* is a trapezoid, so it is cyclic if and only if it isosceles.

Let X be the second intersection of line G* P* with (BS*R*). Because £ Q*P*G* =
AA*BG* = £BXG™*, we find that BX S* R* is an isosceles trapezoid.

If G* is indeed the midpoint of the arc then everything is clear by symmetry now.
Conversely, if P*R* = Q*S* then that means P*Q*R*S* is a cyclic trapezoid, and hence
that the perpendicular bisectors of P*—Q* and R*S* are the same. Hence B, X, P*, Q* are
symmetric around this line. This forces G* to be the midpoint of arc R*S* as desired. [

These two examples demonstrate inversion as a means of transforming one problem
into another (as opposed to some of the overlaying examples, which used both at once). It is
almost like you are given a choice—which of these two problems looks easier, the inverted
one or the original one? Which would you like to solve?
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8.8 When to Invert

As areminder, here are things inversion with a center O handles well. Hopefully these were
clear from the examples.

¢ Clines tangent to each other. In particular, we can take a tangent pair of circles to two
parallel lines.

¢ Several circles pass through O. Inverting around O eliminates the circles.

¢ Diagrams that invert to themselves! Overlaying an inverted diagram is frequently fruitful.

Here are things that inversion does not handle well.

¢ Scattered angles. Theorem 8.2 gives us control over angles that have a ray passing through
a center O, but we do not have much control over general angles.
* Problems that mostly involve lines and not circles.

Finally, here is a reminder of what inversion through a circle w with center O preserves
(and what it does not).

* Points on w are fixed.
¢ (Clines are sent to clines. Moreover,

* If acircle y is mapped to a line £, then ¢ is perpendicular to the line joining O to the
center of y.

e If a circle y is mapped to y*, the center of y is not in general the center of y*. It is
true, however, that the centers of y and y* are collinear with the center of inversion.

* Tangency and intersections are preserved.

8.9 Problems

Problem 8.23. Let ABC be aright triangle with ZC = 90° and let X and Y be points in the
interiors of CA and C B, respectively. Construct four circles passing through C, centered
at A, B, X, Y. Prove that the four points lying on at exactly two of these four circles are
concyclic. (See Figure 8.9A.) Hints: 198 626 178 577

G

Figure 8.9A. The four intersections are concyclic (dashed circle).
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Problem 8.24. Let w;, w,, w3, w4 be circles with consecutive pairs tangent at A, B, C, D,
as shown in Figure 8.9B. Prove that quadrilateral ABC D is cyclic. Hints: 294 677 172 Sol:

p.272

Figure 8.9B. Is there a connection between this and Theorem 2.25?

Problem 8.25. Let A, B, C be three collinear points and P be a point not on this line. Prove
that the circumcenters of APAB, APBC, and APCA lie on a circle passing through P.
Hints: 465 536 496

Problem 8.26 (BAMO 2008/6). A point D lies inside triangle ABC.Let Ay, By, C; be the
second intersection points of the lines AD, BD, and C D with the circumcircles of BDC,
CDA, and AD B, respectively. Prove that

AD BD CD

+ + =1.
AA, ' BB,  CC

Hints: 439 170 256

Problem 8.27 (Iran Olympiad 1996). Consider a semicircle with center O and diameter
AB. A line intersects line AB at M and the semicircle at C and D such that MC > M D
and MB < M A. Suppose (AOC) and (B O D) meet at a point K other than O. Prove that
/MK O = 90°. Hints: 403 27 Sol: p.272

Problem 8.28 (Shortlist 2003/G4). Let I';, I'», '3, I'y be distinct circles such that 'y, I's
are externally tangent at P, and I',, I'4 are externally tangent at the same point P. Suppose
that I'; and I'p, I’ and '3, '3 and 'y, 'y and '} meet at A, B, C, D, respectively, and that
all these points are different from P. Prove that

AB-BC _ PB?
AD-DC  PD?

Hints: 120 247 22

Problem 8.29. Let ABC be a triangle with incenter / and circumcenter O. Prove that line
I O passes through the centroid G, of the contact triangle. Hints: 532 323 579

Problem 8.30 (NIMO 2014). Let ABC be a triangle and let Q be a point such that
AB L QB and AC L QC. A circle with center I is inscribed in AABC, and is tangent to
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BC,CA, and AB at points D, E, and F, respectively. If ray Q1 intersects E F at P, prove
that DP L EF. Hints: 362 125 578 663 Sol: p.273

Problem 8.31 (EGMO 2013/5). Let 2 be the circumcircle of the triangle ABC. The circle
w is tangent to the sides AC and BC, and it is internally tangent to the circle 2 at the point
P. A line parallel to AB intersecting the interior of triangle ABC is tangent to w at Q.
Prove that ZAC P = ZQC B. Hints: 282 449 255 143 Sol: p.273

Problem 8.32 (Russian Olympiad 2009). In triangle ABC with circumcircle €2, the
internal angle bisector of /A intersects BC at D and  again at E. The circle with
diameter DE meets S again at F. Prove that AF is a symmedian of triangle ABC. Hints:
594 648 321

Problem 8.33 (Shortlist 1997). Let A;A;Aj3 be a non-isosceles triangle with incenter /.
Let C;, i =1, 2, 3, be the smaller circle through I tangent to A; A;;; and A; A; 4, (indices
taken mod 3). Let B;, i = 1,2, 3, be the second point of intersection of C;;; and C;4.
Prove that the circumcenters of the triangles A BI, A, B,;1, A3 B3I are collinear. Hints: 76
242 620 561

Problem 8.34 (IMO 1993/2). Let A, B, C, D be four points in the plane, with C and D on
the same side of the line AB, suchthat AC - BD = AD - BC and ZADB =90° + ZACB.
AB-CD

Find the ratio 4 =77, and prove that the circumcircles of the triangles ACD and BCD are

orthogonal. Hints: 7 384 322 3
Problem 8.35 (IMO 1996/2). Let P be a point inside a triangle ABC such that
/APB— /ACB=/APC — ZABC.

Let D, E be the incenters of triangles AP B, APC, respectively. Show that the lines AP,
BD, CE concur. Hints: 581 638 338 341

Problem 8.36 (IMO 2015/3). Let ABC be an acute triangle with AB > AC. Let I be its
cirumcircle, H its orthocenter, and F the foot of the altitude from A. Let M be the midpoint
of BC. Let Q be the point on I such that /H QA = 90° and let K be the point on I such
that ZH K Q = 90°. Assume that the points A, B, C, K, and Q are all different and lie on
" in this order. Prove that the circumcircles of triangles K Q H and F K M are tangent to
each other. Hints: 402 673 324 400 155 Sol: p.274

Problem 8.37 (ELMO Shortlist 2013). Let w; and w, be two orthogonal circles, and let
the center of w; be O. Diameter AB of w; is selected so that B lies strictly inside w;.
The two circles tangent to w, through both O and A touch w; at F and G. Prove that
quadrilateral F O G B is cyclic. Hints: 96 353 112 Sol: p.274
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CHAPTER 9

Projective Geometry

Projective geometry is all geometry. Arthur Cayley

In the previous chapter we studied inversion, a transformation that deals with circles. It also
happened to nicely preserve incidence, i.e., inversion preserves intersections. Projective
geometry features a powerful set of tools that this time focus primarily on analyzing
incidence. Problems that mostly deal with intersections, parallel lines, tangent circles, and
so on, often succumb to projective geometry.

9.1 Completing the Plane

First, we set up the projective plane with points at infinity.
Imagine we are walking down the infinitely long corridor in Figure 9.1A and take a
moment to look around us.

Figure 9.1A. A long hallway with a few doors.

There are some parallel lines in the figure, say the two lines that mark the floor. But
they are not actually parallel in the picture: the two lines are converging towards a point. In
fact, all the parallel lines are converging towards the same point on the horizon. So it does

169
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seem like parallel lines intersect infinitely far away, even in a plane (for example, consider
the left wall or the right wall).

Figure 9.1B. Are the parallel lines really parallel?

The real projective plane uses precisely this idea. In addition to the standard points
of Euclidean plane (which we call Euclidean points), it also includes a point at infinity
for each class of parallel lines (one can think of this as adding a point at infinity for
each direction). To be more precise, we partition all the lines of the Euclidean plane into
equivalence classes (called pencils of parallel lines) where two distinct lines are in the same
class if they are parallel. Then we add a point at infinity for each pencil. We also add one
extra line, the line at infinity, comprising exactly of all the points at infinity.

With this modification, any two lines do in fact intersect at exactly one point. The
intersection of two non-parallel lines is a Euclidean point, while two parallel lines meet
at the point at infinity. The use of this convention lets us replace the clumsy language of
“concurrent or all parallel” (as in Theorem 2.9).

Finally, throughout this chapter we use a special shorthand. For points A, B, C, D, let
AB N CD denote the intersection of lines AB and C D, possibly at infinity.

9.2 Cross Ratios

The cross ratio is an important invariant in projective geometry. Given four collinear points
A, B, X, Y (which may be points at infinity), we define the cross ratio as

XA YA
(A, B; X, Y)= — + —.
XB YB

Here the ratios are directed with the same convention as Menelaus’s theorem; in particular,
the cross ratio can be negative! If A, B, X, Y lie on a number line then this can be written
as

X—a y-—a

(A,B;X,Y)= : .
x—b y—>b
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You can check that (A, B; X, Y) > 0 precisely when segments AB and XY are disjoint
or one is contained inside the other. We also generally assume A # X, B # X, A#Y,
B#Y.

We can also define the cross ratio for four lines a, b, x, y concurrent at some point P.
If Z(€, m) is the angle between the two lines ¢ and m, then we can write

sinZ(x,a) = sinZ(y,a)

ybix,y) =£— = — :
@ b;x, y) sin Z(x,b)  sin Z(y, b)

The sign is chosen in a similar manner as the procedure for four points: if one of the
four angles formed by line a and b contains neither x nor y, then (a, b; x, y) is positive;
otherwise it is negative.

If A, B, X, Y are collinear points on lines a, b, x, y (respectively) concurrent at P, we
write

P(A,B;X,Y)=(a,b;x,y).

The structure P(A, B; X, Y) is called a pencil of lines. See Figure 9.2A.

Figure 9.2A. Actually, P(A, B; X,Y) = (A, B; X, Y).
As you might have already guessed, the sign convention for the trigonometric form is
just contrived so that the following theorem holds.

Theorem 9.1 (Cross-Ratio Under Perspectivity). Suppose that P(A, B; X, Y) is a pen-
cil of lines. If A, B, X, Y are collinear then

P(A,B;X,Y)=(A, B X, Y).

Proof. This is just a computation with the law of sines on AXPA, AXPB, AYPA,
AY P B. There are multiple configurations to check, but they are not so different. O

We can even define the cross ratio for four points on a circle, as follows:

Theorem 9.2 (Cross Ratios on Cyclic Quadrilaterals). Ler A, B, X, Y be concyclic. If
P is any point on its circumcircle, then P(A, B; X, Y) does not depend on P. Moreover,

PAB;X,Y)=f— + —

where the sign is positive if AB and XY do not intersect, and negative otherwise.
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The invariance just follows from the fact that the angles are preserved as P varies
around the circle. Hence, we just define the cross ratio of four concyclic points to be the
value of P(A, B; X, Y) for any particular P. The actual ratio % : % follows by applying
the law of sines and the details are left as an exercise.

Figure 9.2B. Taking perspectivity at P.

Why do we care? Consider the situation in Figure 9.2B. Two lines £ and m are given,
and points A, B, X, Y are on £. We can pick any point P and consider the intersections of
lines PA, PB, PX, PY withm, say A’, B’, X', Y’'. Then

(A,B;X,Y)=P(A,B;X,Y)=P(A", B X', Y)= (A", B X".Y).

In effect, that means we have the power to project (A, B; X, Y) from line £ onto line m.
This is called taking perspectivity at P. We often denote this by

(A,B:X.Y)Z (A, B:X.Y)).

The same technique can be done if P, A, X, B, Y are concyclic, in which case we may
project onto a line. Conversely, given (A, B; X, Y) on a line we may pull from P onto circle
through P, as in Figure 9.2C (and vice versa). The important thing is that these operations
all preserve the cross ratio (A, B; X, Y).

Y

Figure 9.2C. Projecting via P from a line onto a circle through P.

The fact that cross ratio is preserved under all of these is why it is well-suited for
problems that deal with lots of intersections. One can even think of chasing cross ratios
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around the diagram by repeatedly applying perspectives. We see more of this in later
examples.

In the next section we investigate the most important case of the cross ratio, the harmonic
bundle.

Problems for this Section
Problem 9.3. Check that

(A,B;X,Y)=(B,A;X,Y)"' =(A,B;Y, X)"' = (X, Y;A, B).
for any four distinct points A, B, X, Y.

Problem 9.4. Let A, B, X be distinct collinear points and k a real number. Prove that there
is exactly one point Y (possibly the point at infinity) such that (A, B; X, Y) = k. Hint: 287

Problem 9.5. In Figure 9.2A, is P(A, B; X, Y) positive or negative? Hint: 83

Problem 9.6. Let A, B, X be collinear points and P, a point at infinity along their common
line. What is (A, B; X, Py )? Hint: 666

Problem 9.7. Give the proof of Theorem 9.2.

9.3 Harmonic Bundles

The most important case of our cross ratio is when (A, B; X,Y) = —1. We say that
(A, B; X, Y) is a harmonic bundle in this case, or just harmonic. Furthermore, a cyclic
quadrilateral AX BY is a harmonic quadrilateral if (A, B; X, Y) = —1.

Observe thatif (A, B; X,Y) = —1,then (A, B;Y, X) = (B, A; X,Y) = —1. We some-
times also say that Y is the harmonic conjugate of X with respect to AB; as the name
suggests, it is unique, and the harmonic conjugate of Y is X itself.

Harmonic bundles are important because they appear naturally in many configurations.
We present four configurations in which they arise.

The first lemma is trivial to prove, but gives us a new way to handle midpoints, particu-
larly if they appear along with parallel lines.

Lemma 9.8 (Midpoints and Parallel Lines). Given points A and B, let M be the
midpoint of AB and P, the point at infinity of line AB. Then (A, B; M, Py) is a harmonic
bundle.

The next lemma (illustrated in Figure 9.3A) describes harmonic quadrilaterals in terms
of tangents to a circle.

Lemma 9.9 (Harmonic Quadrilaterals). Ler w be a circle and let P be a point outside
it. Let PX and PY be tangents to w. Take a line through P intersecting w again at A and
B. Then

(a) AXBY is a harmonic quadrilateral.
(b) If Q = ABN XY, then (A, B; Q, P) is a harmonic bundle.
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Y

Figure 9.3A. A harmonic quadrilateral. (A, B; P, Q) is also harmonic.

Proof. We use symmedians. We obtain % = % from Lemma 4.26, and (A, B; X, Y)
is negative by construction. This establishes that AX BY is harmonic.
To see that (A, B; Q, P) is harmonic, just write

(A,B:X,Y)X (A, B;0, P).

Here we are projecting from the circle onto the line AB from X, noting that line X X in
this context is actually just the tangent to w. (To see this, consider the behavior of line X X’
when X' is very close to X on the circle.) O

This also implies the tangents to A and B intersect on line XY. (Why?)
An important special case is when AB is selected as a diameter of . In that case, P
and Q are inverses when inverting around w. In full detail, we have the following.

Proposition 9.10 (Inversion Induces Harmonic Bundles). Let P be a point on line AB,
and let P* denote the image of P after inverting around the circle with diameter AB. Then
(A, B; P, P*) is harmonic.

The third and fourth lemmas involve no circles at all. Actually the fourth is really a
consequence of the third.

Lemma 9.11 (Cevians Induces Harmonic Bundles). Let ABC be a triangle with con-
current cevians AD, BE, CF (possibly on the extensions of the sides). Line E F meets BC
at X (possibly at a point at infinity). Then (X, D; B, C) is a harmonic bundle.

“ — —
X B D C

Figure 9.3B. Ceva’s and Menelaus’s theorems produce (X, D; B, C) = —1.
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Proof. Use the directed form Ceva’s theorem and Menelaus’s theorem on Figure 9.3B.
O

Lemma 9.12 (Complete Quadrilaterals Induces Harmonic Bundles). Let ABCD be
a quadrilateral whose diagonals meet at K. Lines AD and BC meet at L, and line KL
meets AB and CD at M and N. Then (K,L;M, N) is a harmonic bundle.

D N C

Figure 9.3C. You can modify Lemma 9.11 to get (K, L; M, N) a harmonic bundle as well.

Proof. AsinFigure 9.3C,let P = ABNCD,andlet Q = PK N BC.By Lemma9.11,
(Q, L; B, C) = —1. Projecting onto the desired line, we derive

—1=(Q,L;B,C) 2 (K,L;M, N). O

Harmonic bundles let us move from one of these configurations to the others. As an
example, we revisit Problem 4.45.

C

Figure 9.3D. The first problem from the USA TST 2011.

Example 9.13 (USA TST 2011/1). In an acute scalene triangle ABC, points D, E,
F lie on sides BC, CA, AB, respectively, such that AD 1. BC, BE L CA, CF L AB.
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Altitudes AD, BE, C F meetat orthocenter H. Points P and Q lie on segment E F such that
AP L EFand HQ 1 EF.Lines DP and QH intersect at point R. Compute H Q/H R.

We might readily dismiss this as an uninteresting problem. The answer is 1; the problem
is just Lemma 4.9 applied to triangle D E F'. However, it turns out there is a quick projective
proof completely independent of this.

Remember Lemma 9.8? We indeed have both a midpoint (H of QR) and a line parallel
to it (AP || QR). Hence we take perspectivity through P. More precisely, let Py, be the
point at infinity for AP and QR. Then

(Q,R;H, P) = (QP NAD, D; H, A).

If we can show the latter is a harmonic bundle, then we are done. But this is just Lemma 9.12!
Needless to say, we can go backwards, as in the proof below.

Solution. By Lemma9.12, (A, H; ADNEF, D) = —1. Projecting through P, we find
(Pso, H; O, R) = —1, where P, is the point at infinity on parallel lines A P and Q R. Hence

HQ _
Ho _1. O

Problems for this Section

Problem 9.14. Check the details in the proofs of Lemma 9.11 and Lemma 9.18.

Problem 9.15. In the coordinate plane, the points A = (—1,0), B =(1,0), X = (ﬁ, 0)
and Y = (m, 0) form a harmonic bundle (A, B; X, Y) = —1. What is m? Hint: 334

Problem 9.16. Show that Problem 1.43 (see Figure 9.3E) is immediate from the tools
developed in this chapter. Hints: 107 687 607 451 520

A
4 ’

Figure 9.3E. Solve JMO 2011/5 (Problem 1.43) using harmonic bundles.

Lemma 9.17 (Midpoint Lengths). Points A, X, B, P lie on a line in that order, and
(A, B; X, P) = —1. Let M be the midpoint of AB. Show that MX - MP = (%AB)Z and
PX-PM = PA - PB. Hints: 41 557

9.4 Apollonian Circles

There is one additional configuration with naturally occurring harmonic bundles. First, we
need to state a lemma (see Figure 9.4A).



This document was prepared on 2016-12-29 for the exclusive use of Aniket Akhade. Unauthorized distribution is strictly prohibited.

9.4. Apollonian Circles 177

Lemma 9.18 (Right Angles and Bisectors). Let X, A, Y, B be collinear points in that
order and let C be any point not on this line. Then any two of the following conditions
implies the third condition.

(i) (A, B;X,Y) is a harmonic bundle.

(ii) ZXCY =90°.
(iii) CY bisects ZACB.

* \d

X LY B
Figure 9.4A. CX and CY are external and internal angle bisectors.
Proof. There is a straightforward trigonometric proof, but here we present a synthetic

solution. Draw the line through Y parallel to CX and let it intersect rays C A and CB at P
and Q, respectively. Since AXAC ~ AYAP and AXBC ~ AYBQ, we derive

AY BY
PY=— -CXand QY = — - CX.
AX BX
Thus PY = QY if and only if (A, B; X, Y) = —1. Now any two of the conditions imply
ACY P and ACY Q are congruent, which gives the third. O

While this is useful in its own right, it leads directly to the so-called Apollonian circle,
which is a way of linking angles with ratios. The statement is as follows.

Theorem 9.19 (Apollonian Circles). Let AB be a segment and k # 1 be a positive real.
The locus of points C satisfying % = k is a circle whose diameter lies on AB.

Figure 9.4B. Apollonian Circles
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This is really just a restatement of Lemma 9.18, with the congruent angles rewritten as
a ratio because of the angle bisector theorem. Here are the details; refer to Figure 9.4B.
Proof. First of all, let X and Y be the two points on line AB with
XA _Ya_,
XB YB
Without loss of generality, Y lies on AB.

Now observe that for any other point C, % = k is just equivalent to ZCAY = LY BC

by the angle bisector theorem. That is equivalent to ZXCY = 90° by Lemma 9.18, and
hence we discover the Apollonian circle. O

Problems for this Section

Problem 9.20. In the notation of Figure 9.4B, what is the Apollonian circle of XY through
A? Hints: 411 70

Problem 9.21. Check that as k varies, the resulting set of circles are all coaxial*. Hints: 315
147

Lemma 9.22 (Harmonic Bundles on the Bisector). Let ABC be a triangle with incenter
I and A-excenter 14. Prove that

(I,14;A, AINBC) = —1.

9.5 Poles/Polars and Brocard’s Theorem

Projective and inversive techniques are actually closely related by the concepts of poles
and polars.

Figure 9.5A. The polar of point P is the line shown.

Fix a circle o with center O and a point P. Let P* be the inverse of P with respect to
inversion around w. The polar of point P (possibly at infinity and distinct from O) is the
line passing through P* perpendicular to O P. As we have mentioned before, when P is
outside circle w then its polar is the line through the two tangency points from P to w. The
polar of O is just the line at infinity.

* Actually, it turns out any non-intersecting coaxial circles are Apollonian.
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Similarly, given a line £ not through O, we define its pole' as the point P that has ¢ as
its polar.
First, an obvious result that is nonetheless useful.

Theorem 9.23 (La Hire’s Theorem). A point X lies on the polar of a point Y if and only
if Y lies on the polar of X.

Proof. Left as an exercise. It is merely similar triangles. O

La Hire’s theorem demonstrates a concept called duality: one can exchange points for
lines, lines for intersections, collinearity for concurrence. Simply swap every point with its
polar and every line with its pole.

We can now state an important result relating poles and polars to harmonic bundles.

Proposition 9.24. Let AB be a chord of a circle w and select points P and Q on line AB.
Then (A, B; P, Q) = —1 if and only if P lies on the polar of Q.

Figure 9.5B. Harmonic quadrilaterals again.

Proof. We consider only the case where P is outside @ and Q is inside it. Construct
the tangents PX and PY to w. Lemma 9.9 gives

(A,B;P,XYNAB) = —1,
so Q lies on the polar of P (namely line XY) if and only if (A, B; P, Q) = —1. O

We are now ready to state one of the most profound theorems about cyclic quadrilaterals.
It shows that any cyclic quadrilateral has hidden within it three pairs of poles and polars.

Theorem 9.25 (Brocard’s Theorem). Let ABCD be an arbitrary cyclic quadrilateral
inscribed in a circle with center O, and set P = ABNCD, 0= BCNDA, and R =
ACNBD.Then P, 0O, R are the poles of OR, RP, P Q, respectively.

In particular, O is the orthocenter of triangle P QOR.

We say that triangle P QR is self-polar with respect to w, because each of its sides is
the polar of the opposite vertex.

T Not the best choice of terms, as the two are easily confused. Mnemonic: “pole” is shorter than “polar”, and
points are much smaller than lines.
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Figure 9.5C. The triangle P Q R determined by completing a cyclic quadrilateral is self-polar.

Take a moment to appreciate the power of Brocard’s theorem. Nowhere do the words
“pole”, “polar”, “harmonic”, “projective”, or anything of that sort appear in the hypothesis.
We could have stated this theorem in Chapter 1—all we did was take a completely arbitrary
cyclic quadrilateral and intersect the sides and diagonals—and then suddenly, we have an
entire orthocenter! It seems too good to be true. This really highlights the type of problems
that projective geometry handles well: anything with lots of intersections and maybe a few
circles.

On to the proof of the theorem. The idea is that Brocard’s theorem looks a lot like

Lemma 9.11.

Figure 9.5D. Triangle P QR is self-polar.



This document was prepared on 2016-12-29 for the exclusive use of Aniket Akhade. Unauthorized distribution is strictly prohibited.

9.6. Pascal’s Theorem 181

Proof. First, we show that Q is the pole of line P R. Define the points X = AD N PR
andY = BC N PR, asinFigure 9.5D.By Lemma9.11,both (A, D; Q, X)and (B, C; Q,Y)
are harmonic bundles.

Therefore, X and Y both lie on the polar of Q, by Proposition 9.24. Since the polar of
Q is a line, it must be precisely line XY, which is the same as line PR.

The same can be used to show that P is the pole of line QR and R is the pole of line
P Q; projective geometry is immune to configuration issues. (This is part of the reason we
like points at infinity.) This gives that P Q R is indeed self-polar. Finally, the definition of a
polar implies that O is the orthocenter of triangle P Q R, completing the proof. O

Problems for this Section

Problem 9.26. Prove La Hire’s theorem (Theorem 9.23).

Lemma 9.27 (Self-Polar Orthogonality). Let w be a circle and suppose P and Q are
points such that P lies on the pole of Q (and hence Q lies on the pole of P). Prove that the
circle y with diameter P Q is orthogonal to . Hint: 616

Problem 9.28. Let ABC be an acute scalene triangle, and let H be a point inside it such
that AH L BC. Rays BH and C H meet AC and AB at E, F. Prove that if quadrilateral
BFEC is cyclic then H is in fact the orthocenter of ABC. Hints: 492 52

9.6 Pascal’s Theorem

Pascal’s theorem is of a different flavor than the previous theorems, but is useful in similar
situations. It handles many points on a circle and their intersections. Here is the statement';
see Example 7.27 for a proof. Many other proofs exist, of course.

Theorem 9.29 (Pascal’s Theorem). Let ABCDEF be a cyclic hexagon, possibly self-
intersecting. Then the points AB N DE, BC N EF, and CD N FA are collinear.

Note that Pascal’s theorem can look very different depending on what order the vertices
lie in. Figure 9.6A shows four different shapes that Pascal’s theorem can take on. It is often
useful to take two consecutive vertices of the hexagon to be the same point. The “side” AA
degenerates to a tangent to the circle at A.> An example of this technique is in the solution
to Example 9.38.

For an example, we revisit the first part of Lemma 4.40, and give a short proof using
Pascal’s theorem.

Example 9.30. Let ABC be a triangle inscribed in a circle. The A-mixtilinear circle is
drawn, tangent to AB, AC at K, L. Then the incenter I is the midpoint of KL.

f The converse is also true if we replace “circle” with “conic”. See the next section on projective transformations.
§ Think of it this way: XY is the line intersecting the circle at points X and Y. So AA is a line intersecting the
circle at A and A, i.e., the tangent to A.
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Figure 9.6A. The many faces of Pascal’s theorem.

Proof. Obviously AT bisects K L (since AK = AL and /K AI = /I AL) so it suffices
to prove that K, I, L are collinear.

By Lemma 4.33, M¢, K, T are collinear, where M is the midpoint of arc AB not
containing C. In particular, C, I, M¢ are collinear. Similarly, the midpoint Mp of arc
AC lies on both lines Bl and LT. Now we just apply Pascal’s theorem on the hexagon
ABMpTMcC. O

An even more striking illustration is Problem 9.32 below.

Figure 9.6B. Using Pascal’s theorem on the A-mixtilinear incircle.
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Problems for this Section

Problem 9.31. Let ABC be a triangle with circumcircle I". Let X be the intersection of line
BC with the tangent to I" at A. Define Y and Z similarly. Show that X, Y, Z are collinear.
Hint: 378

Problem 9.32. Let ABCD be a cyclic quadrilateral and apply Pascal’s theorem to
AABCCD and ABBCDD. What do we discover? Hints: 421 473 309

9.7 Projective Transformations

This is only a brief digression on what is otherwise a deep topic. See the last chapter of [7]
for further exposition.

Occasionally we run into a problem that we say is purely projective. Essentially this
means the problem statement involves only intersections, tangency, and perhaps a few
circles. This happens very rarely, but when it does, the problems can usually be eradicated
via projective transformations.

Figure 9.7A. An example of a projective transformation.

Projective transformations are essentially the most general type of transformation. Actu-
ally, they are defined as any map that sends lines to lines and conics to conics (but need not
preserve anything else). Loosely speaking, a conic is a second-degree curve in the plane
determined by five points. In more precise terms, a conic is a curve in the xy-plane of the
form

Ax* 4 Bxy +Cy*+ Dx+ Ey+F =0

extended to include points at infinity. This includes parabolas, hyperbolas, and ellipses (in
particular, circles). For our purposes, we only care that a circle is a conic. See Figure 9.7A.

Why would we consider a transformation that preserves so few things? The gain is
encapsulated in the following theorem, stated without proof, which exploits the generality
of the transformation.
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Theorem 9.33 (Projective Transformations). Each of the following is achievable with
a unique projective transformation.

(a) Taking four points A, B, C, D (no three collinear) to any other four points W, X, Y, Z
(no three collinear).

(b) Taking a circle to itself and a point P inside the circle to any other point Q inside the
circle.

(c) Taking a circle to itself and any given line outside the circle into the line at infinity.

Furthermore, projective transformations preserve the cross ratio of any four collinear
points. Moreover, if four concyclic points are sent to four concyclic points, then the cross
ratio of the quadrilaterals are the same.

The power of this technique is made most clear by example.

Example 9.34. Let ABCD be a quadrilateral. Define the points P = AD N BC, Q
ABNCD,and R=ACNBD. Let X;, X5, Yy, Y» denote PRNAD, PRN BC, ﬁ
AB,QRNCD.

Prove that lines XY}, X,Y>, and P Q are concurrent.

Dl

This problem looks like a nightmare until we realize that it is purely projective. That
means we can make some very convenient assumptions—we simply use a projective map
taking ABC D to a square A’B’'C'D’.

Figure 9.7B. We can take ABC D to a square, trivializing the problem.

Solution. By Theorem 9.33, we can use a projective transformation to send ABC D
to the vertices of a square A’B’C’'D’. Then P’ is the intersection of lines A’D’ and B'C’,
since projective transformations preserve intersections. We can define the remaining points
similarly.

The problem is now trivial: just look at Figure 9.7B! P’ and Q' become the points at
infinity, and we find that X/, X/, Y{, ¥; are just midpoints of the respective sides. Hence
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the intersection of lines XY and X} is yet another point at infinity (as they are parallel).
This implies P’, Q', and X|Y| N X} Y} are collinear along the line at infinity. O

We can even extend this technique to tackle problems that do not look purely projective
when the condition can be re-written with cross ratios. For example, consider the famous
butterfly theorem.

Theorem 9.35 (Butterfly Theorem). Let AB, CD, P Q be chords of a circle concurrent
atM.PutX = PQNADandY = PQNBC.IfMP = MQ then MX = MY .

4 C

B

Figure 9.7C. The butterfly theorem.

Proof. This problem looks completely projective except for the midpoint condition.
We can handle this by adding the point at infinity Py, to line P Q. The condition becomes
(P, Q; Pso, M) = —1, and we wish to show that (X, Y; Py, M) = —1.

By rewriting the givens as cross ratios, the problem becomes purely projective! We
therefore take the projective transformation sending M to the center of the circle, say M.
Then P’Q’ is a diameter. Because we must have the cross ratio (P’, Q’, P, ,M)=—1lis
preserved, we find that P/  is still the point at infinity. Hence it simply suffices to prove
that M’ is the midpoint of X'Y".

On the other hand, proving the butterfly theorem when M is the center of the circle
is not very hard. Actually, it is obvious by symmetry. Therefore (X', Y', P, , M') = —1.
Consequently (X, Y; Poo, M) = —1 as well and we are done. O

Problems for this Section

Problem 9.36. Give a short proof of Lemma 9.9 using projective transformations. Hints:
183 218 231

Problem 9.37. Give a short proof of Lemma 9.11 using projective transformations. Hints:
333 595

9.8 Examples

We present two example problems. First, let us consider the following problem from the
51st IMO.
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Example 9.38 (IMO 2010/2). Let 7 be the incenter of a triangle ABC and let I be its
circumcircle. Let line A intersect I' again at D. Let E be a point on arc BDC and F a
point on side BC such that ZBAF = ZCAE < %ABAC . Finally, let G be the midpoint
of I F. Prove that DG and E[ intersect on I.

A
I
G
B\F C
E
D

Figure 9.8A. Example 9.38.

We begin by extending A F to meet I' again at a point F;; evidently F| E || BC. We also
let K denote the second intersection of EJ with I'. Our goal is to prove that DK bisects
IF.

Seeing so many points and intersections on a circle motivates us to try Pascal’s theo-
rem in the hopes of finding something interesting. Specifically, we have ] = AD N K E,
DD N EF, is the point at infinity, and F = AF, N BC. Trying to string two of these into
one application of Pascal’s theorem, we find with some trial and error that the hexagon
AF,EK DD is useful.

A

Figure 9.8B. Applying Pascal’s theorem on Example 9.38.

Pascal’s theorem now implies that A F; N K D, the point at infinity F; E N DD, and the
incenter I = DA N KE are collinear. In other words, if we set P = AF; N K D, then we
findthat IP | EF; || BC.
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Once the point P is introduced, we can effectively ignore the points E, F|, and K now.
In other words, we have the convenient recasting of the problem as follows.

Let AF be a cevian of the triangle ABC and let P be a point on AF with P || BC.
If D is the midpoint of arc BC not containing A, then D P bisects 1 F.

This is much simpler, and you can actually finish using barycentric coordinates. At least
this indicates that we are probably on the right track. So what do we do next?

Figure 9.8C. The finishing touch using harmonic bundles.

Seeing the midpoint, we consider a homothety at / with ratio 2, which conveniently
grabs the excenter /4. That means it suffices to prove that if Z = I, F N I P, then P is the
midpoint of 7Z. Seeing midpoints and parallel lines once again, we take harmonic bundles
(in light of Lemma 9.8). And indeed, the first decent choice of a point on ‘BC works;
perspectivity at F solves the problem.

Solution to Example 9.38. Let EI meet I again at K and AF meet I" again at F|. Set
P=DKNAF and Z=1TP N1,F. By Pascal’s theorem on AF{EK DD, we see that
1P | BC.

Setting /4 as the A-excenter and recalling Lemma 9.22 gives

—1=(1,15;A,AINBC) £ (1,Z; P, BCNTP).

Since I P || BC, we conclude that P is the midpoint of I Z. Then we simply take a homothety
at /. 0

Our other example is the final problem from an Asian-Pacific olympiad; it yields many
different projective solutions. We present three of them.

Example 9.39 (APMO 2013/5). Let ABCD be a quadrilateral inscribed in a circle o,
and let P be a point on the extension of AC such that PB and P D are tangent to . The



This document was prepared on 2016-12-29 for the exclusive use of Aniket Akhade. Unauthorized distribution is strictly prohibited.

188 9. Projective Geometry

tangent at C intersects PD at Q and the line AD at R. Let E be the second point of
intersection between E and w. Prove that B, E, R are collinear.

P
Figure 9.8D. Problem 5 from APMO 2013.

We immediately recognize Lemma 9.9 twice: ACED and ABC D are both harmonic
quadrilaterals. This motivates us to try projective geometry in the first place, since there are
a lot of intersections and the conditions are natural in the language of harmonic bundles.

Figure 9.8E. A solution to Example 9.39 that involves only harmonic bundles.

In order to place things more in the frame of our projective tools, we let E’ be the second
intersection of line BR and w. Then it would just suffice to prove ACE’D is harmonic
(rather than prove three points are collinear). How might we do that? We wish to prove
that (A, E’; C, D) = —1. Are there any points that look good for projecting through on w?
After some trial we find that B looks like a good choice, because it handles the other points
somewhat nicely, but more importantly it lets us deal with the point E’.
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Because we again want to focus on making point E’ behave well, we choose to project
onto line CR.
So we find that

(A,E;C,D)2 (ABNCR, R;C,BDNCR).

Taking advantage of the fact that ABCD is harmonic, we put T = BD N CR as the
intersection of the tangents at A and C (hence on line BD). The point 7 seems nice
because it is pretty closely tied to ABCD.

On the other hand we should probably clean up AB N CR in the next projection.
Since we already took perspectivity from B, we try taking perspectivity from A this time
(otherwise we are back where we started). Now the most logical choice for the line to
project onto is BD. Letting Z = AB N CR for brevity, we find

(Z,R;C,T)2 (B, D;ACNBD,T).
But this is harmonic by Lemma 9.9. Hence with just two projections we are done.

Solution1. Set T = BDNCR, K =ACNBD, Z=ABNCR and let E’ be the
second intersection of BR with w. Since ABCD is harmonic, we have T, K, B, D
collinear and therefore

1 =(T,K:B,D)2(T,C;Z,R) 2 (D, C; A, E).
But DACE is harmonic, so E = E’. O

A second solution involves interpreting the problem from the context of symmedians
(see Lemma 4.26). We can view D B and AE as the symmedians of triangle AC D. Suddenly
we can ignore the points P and Q completely! On the other hand we should probably add
in the symmedian point K of triangle AC D, which is the intersection of AE and BD.

Figure 9.8F. Solving Example 9.39 using symmedians.

Now what of the point R? It is the intersection of the tangent at C with line AD. Trying
to complete Lemma 9.9 again, we let F be the other point on w other than C such that RF
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is a tangent. Hence AC D F is harmonic. So CF is a symmedian as well. This completes
the picture of the symmedian point. In particular, K lies on CF.

Now for the finish. By Brocard’s theorem, BE N AD is the point on AD that lies on
the polar of K = BD N AE. This is none other than the point R.

Solution 2. Let K = AE N BD be the symmedian point of triangle ACD. Let F be
the second intersection of ray C K with (AC D). Noticing the symmedians, we find three
harmonic quadrilaterals ACED, ABCD, and ACDF.

In harmonic quadrilateral AC D F, we notice (by Lemma 9.9, say), that R is the pole of
CF. Because CF contains K, point R lies on the polar of K. Now by Brocard’s theorem,
the intersection of line BE with AD lies on the polar of K as well, implying that B, E, R
are collinear. O

Finally, one last solution—note this problem is purely projective!

A D .
7 0
B c

Figure 9.8G. Projective transformations trivialize Example 9.39, because they allow us to assume
ABCD is a square.

Take a projective transformation that fixes w and sends the point AC N BD to the center
of the circle. Thus ABC D is a rectangle. Because ABC D is harmonic, it must in fact be
a square. Thus P is the point at infinity along AB || C D and the problem is not very hard
now.

9.9 Problems

Lemma 9.40 (Incircle Polars). Let ABC be a triangle with contact triangle DEF and
incenter I. Lines EF and BC meet at K . Prove that IK | AD. Hints: 351 689 Sol: p.275

Theorem 9.41 (Desargues’ Theorem). Let ABC and XY Z be triangles in the projective
plane. We say that the two triangles are perspective from a point if lines AX, BY, and
CZ concur (possibly at infinity), and we say they are perspective from a line if the
points ABNXY,BCNYZ, CANZX are collinear. Prove that these two conditions are
equivalent. Hints: 253 456

Problem 9.42 (USA TSTST 2012/4). In scalene triangle ABC, let the feet of the perpen-
diculars from A to BC, Bto CA, C to AB be A1, By, Cy, respectively. Denote by A, the
intersection of lines BC and B;C;. Define B, and C, analogously. Let D, E, F be the
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respective midpoints of sides BC, CA, AB. Show that the perpendiculars from D to AA,,
E to BB,, and F to CC, are concurrent. Hints: 308 233

Problem 9.43 (Singapore TST). Let w and O be the circumcircle and circumcenter of
right triangle ABC with ZB = 90°. Let P be any point on the tangent to w at A other
than A, and suppose ray P B intersects w again at D. Point E lies on line CD such that
AE | BC. Prove that P, O, and E are collinear. Hints: 587 675

Problem 9.44 (Canada 1994/5). Let ABC be an acute triangle. Let A D be the altitude on
BC, and let H be any interior point on AD. Lines BH and C H, when extended, intersect
AC,AB atE and F respectively. Prove that /EDH = /F D H. Hints: 20 164 80 Sol: p.275

Problem 9.45 (Bulgarian Olympiad 2001). Let ABC be a triangle and let k be a circle
through C tangent to AB at B. Side AC and the C-median of AABC intersect k again at
D and E, respectively. Prove that if the intersecting point of the tangents to k through C
and E lies on the line BD then ZABC = 90°. Hints: 111 318 571

Problem 9.46 (ELMO Shortlist 2012). Let ABC be a triangle with incenter /. The foot
of the perpendicular from / to BC is D, and the foot of the perpendicular from / to AD is
P. Prove that /ZBP D = /D PC. Hints: 240 354 347 Sol: p.276

Problem 9.47 (IMO 2014/4). Let P and Q be on segment BC of an acute triangle ABC
such that /PAB = ZBCA and ZCAQ = ZABC.Let M and N be the points on AP and
A Q, respectively, such that P is the midpoint of AM and Q is the midpoint of AN. Prove
that the intersection of BM and CN is on the circumference of triangle ABC. Hints: 145216
286 Sol: p.276

Problem 9.48 (Shortlist 2004/G8). Given a cyclic quadrilateral ABCD, let M be the
midpoint of the side CD, and let N be a point on the circumcircle of triangle ABM.
Assume that the point N is different from the point M and satlsﬁes = AM . Prove that
the points E, F, N are collinear, where E = AC N BD and F = BC N DA Hints: 58 503
632

Problem 9.49 (Sharygin 2013). The incircle of triangle ABC touches BC, CA, and AB
at points A’, B, and C’ respectively. The perpendicular from the incenter / to the C-median
meets the line A’B’ in point K. Prove that CK || AB. Hint: 55 Sol: p.277

Problem 9.50 (Shortlist 2004/G2). Let I' be a circle and let d be a line such that I" and
d have no common points. Further, let ‘AB be a diameter of the circle I'; assume that this
diameter AB is perpendicular to the line d, and the point B is nearer to the line d than
the point A. Let C be an arbitrary point on the circle I, different from the points A and
B. Let D be the point of intersection of the lines AC and d. One of the two tangents from
the point D to the circle I' touches this circle I" at a point E; hereby, we assume that the
points B and E lie in the same half-plane with respect to the line AC. Denote by F the
point of intersection of the lines BE and d. Let the line AF intersect the circle I" at a point
G, different from A.
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Prove that the reflection of the point G in the line AB lies on the line C F. Hints: 25 285
406 497 Sol: p.277

Figure 9.9A. Problem 9.50 is a mouthful.

Problem 9.51 (USA January TST for IMO 2013). Let ABC be an acute triangle. Circle
wy, with diameter AC, intersects side BC at F (other than C). Circle w,, with diameter BC,
intersects side AC at E (other than C). Ray AF intersects w, at K and M with AK < AM.
Ray BE intersects w; at L and N with BL < BN. Prove that lines AB, ML, NK are
concurrent. Hints: 168 374 239

Problem 9.52 (Brazilian Olympiad 2011/5). Let ABC be an acute triangle with ortho-
center H and altitudes BD, CE. The circumcircle of ADE cuts the circumcircle of ABC
at F # A. Prove that the angle bisectors of /BFC and ZBHC concur at a point on BC.
Hints: 405 221 366

Problem 9.53 (ELMO Shortlist 2013). In AABC, a point D lies on line BC. The
circumcircle of AB D meets AC at F (other than A), and the circumcircle of ADC meets
AB at E (other than A). Prove that as D varies, the circumcircle of AE F always passes
through a fixed point other than A, and that this point lies on the median from A to BC.
Hints: 511 34 270

Problem 9.54 (APMO 2008/3). Let I" be the circumcircle of a triangle ABC. A circle
passing through points A and C meets the sides BC and BA at D and E, respectively. The
lines AD and CE meet I' again at G and H, respectively. The tangent lines to I at A and
C meet the line DE at L and M, respectively.

Prove that the lines L H and M G meet at I". Hints: 156 444 352 572 Sol: p.277

Theorem 9.55 (Brianchon’s Theorem). Let ABCDEF be a hexagon circumscribed
about a circle w. Prove that AD, BE, CF are concurrent. Hints: 241 35

Problem 9.56 (ELMO Shortlist 2014). Suppose ABC D is a cyclic quadrilateral inscribed
in the circle w. Let E = ABNCD and F = AD N BC. Let w;, w, be the circumcircles of
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triangles AEF, CEF, respectively. Let G and H be the intersections of @ and w, w and
wy, respectively, with G # A and H # C. Show that AC, BD, and GH are concurrent.
Hints: 404 590 443 Seol: p.278

Problem 9.57 (ELMO Shortlist 2014). Let ABC D be a cyclic quadrilateral inscribed in
circle w. The tangent to w at A intersects lines C D and BC at E and F. Lines BE and DF
meet w again G and I, and H = BENAD, J = DF N AB. Prove that GI, HJ, and the
B-symmedian of AABC are concurrent. Hints: 667 234

Problem 9.58 (Shortlist 2005/G6). Let ABC be a triangle, and M the midpoint of its side
BC. Let y be the incircle of triangle ABC. The median AM of triangle A BC intersects the
incircle y at two points K and L. Let the lines passing through K and L, parallel to BC,
intersect the incircle y again in two points X and Y. Let the lines AX and AY intersect BC
again at the points P and Q. Prove that BP = C Q. Hints: 682 543 328 104 563
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CHAPTER 10

Complete Quadrilaterals

Geometry is the art of correct reasoning from incorrectly drawn figures.
Henri Poincaré

This chapter relies on both inversive and projective geometry (Chapters 8 and 9).
We study complete quadrilaterals, a frequently recurring configuration in olympiad
geometry.

A complete quadrilateral consists of four lines, no three concurrent and no two parallel,
as well as the six points of intersection they determine. Any quadrilateral (possibly non-
convex) with non-parallel sides gives rise to a complete quadrilateral by just extending
its sides, and so throughout this chapter we refer to a complete quadrilateral ABC D with
P =ADNBC and 0= ABNCD,* as in Figure 10.0A.

P

Q-

Figure 10.0A. A complete quadrilateral.

This should be reminiscent of Lemma 9.11 and Brocard’s theorem (Theorem 9.25).
Indeed, the special case where ABC D is cyclic is discussed in Section 10.5.

* Recall from the Chapter 9, page 170, that AB N XY is shorthand for the intersection of lines AB and XY .

195
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10.1 Spiral Similarity

Before proceeding, we first need to discuss the concept of a spiral similarity. A spiral
similarity with a center O combines a rotation about O with a dilation. Figure 10.1A gives
an example of a spiral similarity.

/
A c
/
/
C /
// g
/
B .
N 4 o7
A N Loyt
~ \\ / 4 //
~ \ 7 7 -
~ N %
\\\\///
4
0]

Figure 10.1A. A spiral similarity taking AABC to AA'B'C".

The most commonly occurring case of a spiral similarity is between two segments.
Consider a spiral similarity at O mapping a segment AB to C D, as in Figure 10.1B.

¢ D

@)

Figure 10.1B. A spiral similarity taking AB to CD.

Of course, AOAB is similar to AOCD.
We now determine O in terms of A, B, C, D via complex numbers. It is easy to check
that

c—o d—o

a—o0o b-o
That implies
ad — bc
T at+d—-b—c
So O is uniquely determined by A, B, C, D. That implies in general there is exactly one

spiral similarity taking any segment to any other segment. The exception is if ABDC is a
parallelogram, since then a + d = b + ¢ and the spiral similarity fails to exist.

o
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This is all fine and well, but where do spiral similarities arise in nature? In fact, they
are actually hidden whenever two circles intersect.

Lemma 10.1 (Spiral Centers). Let AB and CD be segments, and suppose X = AC N
BD.If (ABX) and (CDX) intersect again at O, then O is the center of the unique spiral
similarity taking AB into CD.

Figure 10.1C. O is the spiral center.

We say “the spiral similarity” instead of “a spiral similarity”, because we know already that
it is unique.

Proof. This is actually just a matter of angle chasing. We have
LOAB =4£0XB=4£0XD =40CD
and similarly
LOBA =£0DC.

That implies AOAB ~ AOC D, which is sufficient. O

Do not forget this configuration! Whenever all six points in Figure 10.1C appear, we
automatically have a pair of similar triangles.

By now, an observant reader may have realized that there is more than one set of
similar triangles in Figure 10.1C. We see that in fact, AOAC ~ AOBD as well. After all,
ZAOC = ZBOD and % = % (the ratios arising from the original spiral similarity).

What this means is that spiral similarities occur in pairs. More precisely, we get the
following proposition.

Proposition 10.2.  The center of the spiral similarity taking AB to CD is also the center
of the spiral similarity taking AC to BD.

Thus we have a second spiral similarity, but this time we know its center. What happens
if Lemma 10.1 is applied again, this time in the other direction? Does this really mean
that AB N CD lies on (AOC) and (BO D) as well? Oh, yes. That is precisely Miquel’s
theorem, discussed in the next section.
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10.2 Miquel’s Theorem

With these results, we return to our complete quadrilateral ABC D with P = AD N BC
and Q = AB N CD. We now state one of the most basic results on complete quadrilaterals,
namely Miquel’s theorem. It is really just the re-interpretation of the spiral similarity in a
more natural setting.

Theorem 10.3 (Miquel’s Theorem). The four circles (PAB), (PDC), (QAD), (QBC)
concur at the Miquel point M . Furthermore, M is the center of the spiral similarity sending
AB to DC and BC to AD. (In particular, AMAB ~ AMDC and AMBC ~ AMAD.)

Figure 10.2A. The Miquel point M of a complete quadrilateral.

The point M is called the Miquel point of ABC D. This is the same Miquel point as in
Lemma 1.27; consider triangle PC D with O, A, B on its sides.

Proof. Define M to be the second intersection of (PAB) and (P DC). By Lemma 10.1,
M is the center of the spiral similarity taking AB to DC. Hence, it is also the center of the
spiral similarity taking BC to DA. Invoking Lemma 10.1 again, this time in the reverse
direction, we see that M lies on (QBC) and (QAD). O

What this means is that spiral similarity and complete quadrilaterals go hand in hand.
Each gives rise to the other. This gives a powerful way to relate similarities, circles, and
intersections to one another.

Problem for this Section

Problem 10.4. Prove that the four circles in Theorem 10.3 concur without appealing to
Lemma 10.1. (This is just angle chasing.)

10.3 The Gauss-Bodenmiller Theorem

Consider the three diagonals of a complete quadrilateral, namely AC, BD, P Q. It turns out
their midpoints are collinear. The line through them is called the Gauss line (sometimes
also called the Newton-Gauss line).
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Figure 10.3A. The Gauss line.

Actually, this is a simple corollary of an even more general theorem. Recall that three
circles are coaxial if each pair has the same radical axis (see Section 2.4).

Theorem 10.5 (Gauss-Bodenmiller Theorem). The circles with diameters AC, BD,
P Q are coaxial. Their radical axis is a line passing through each of the four orthocenters
of the triangles PAB, PCD, QAD, QBC.

The radical axis is sometimes called the Steiner line (or sometimes Aubert line). The
figure is shown in Figure 10.3B.

Figure 10.3B. The full form of the Gauss-Bodenmiller theorem.
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The proof is surprisingly simple. The idea is to take any orthocenter and show that it
has the same power with respect to all three circles. Hence all four orthocenters lie on all
the radical axes. This implies the conclusion.

Proof. Let w;, w,, w3 denote the circles with diameters P Q, AC, BD, respectively.

Let H; denote the orthocenter of triangle BC Q. Check that it is the radical center w,
w,, and the circle with diameter QC (Theorem 2.9). That implies that H; lies on the radical
axis of the circles w; and w,. Doing similar work, we see that H; lies on the radical axes of
[} and w7, Wy and w3, W3 and wi.

Similarly, the orthocenters of the other three triangles each lie on all three radical axes.
This is only possible if the radical axes of w; and w,, w, and w3, w3 and w; all coincide, as
desired. Thus all four orthocenters lie on the desired Steiner line. In particular, the centers
of w1, wy, w3 all lie on the prescribed Gauss line; this is the line perpendicular to the Steiner
line through the centers. O

10.4 More Properties of General Miquel Points

Just for fun, we present two more interesting properties of Miquel points. First, we look
more closely at the circles in Miquel’s theorem.

Lemma 10.6 (Centers are Concyclic with the Miquel Point). The four centers of
(PAB),(PDC),(QAD), (QBC) lie on a circle passing through the Miquel point.

R

Figure 10.4A. Concyclic centers.

Problem 10.7. If O is the center of (PAB) and O, is the center of (P DC), show that
AMO,0, ~ AMAD. Hints: 487 580

Problem 10.8. Establish the main result. Hint: 489

Here is one other fun fact. What happens when we drop the perpendiculars from M
onto the sides of a complete quadrilateral?
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Lemma 10.9 (Altitudes from the Miquel Point). The feet of the perpendiculars from M
to lines AB, BC, CD, DA are collinear. Furthermore, the line though these four points is
perpendicular to the Gauss line.

Figure 10.4B. The feet of the altitudes from M are collinear.

Problem 10.10. Prove that the four points are indeed collinear. Hints: 385 681

Problem 10.11. Prove that this line is perpendicular to the Gauss line. Hints: 90 412 519

10.5 Miquel Points of Cyclic Quadrilaterals

One of the most powerful configurations in olympiad geometry is the Miquel point when
complete quadrilateral ABC D is cyclic. In that case, the Miquel point gains several addi-
tional properties. All are shadows of the following theorem.

Theorem 10.12 (Miquel Point of a Cyclic Quadrilateral). Let ABCD be a cyclic
quadrilateral inscribed in circle w with diagonals meeting at R. Then the Miquel point of
ABCD is the inverse of R with respect to inversion around o.

Proof. Let O be the circumcenter of ABC D, and let R* be the image of R. It suffices
to show R* = M. Angle chasing (left as an exercise) lets us establish {AR*B = L{APB,
so that R* lies on (P AB). Similarly, R* lies on (PC D), (QBC), and (QDA). Hence R* is
indeed the Miquel point. O

Brocard’s theorem, anyone? A simple corollary is that the Miquel point M also lies on
P Q. Moreover, if O is the center of w, then OM L P Q. Inversion gives some additional
properties, deferred to the exercises.



This document was prepared on 2016-12-29 for the exclusive use of Aniket Akhade. Unauthorized distribution is strictly prohibited.

202 10. Complete Quadrilaterals

Figure 10.5A. The Miquel point of a cyclic quadrilateral.

Combining these results, we see that the magical Miquel point M has the following
properties.

(a) It is the common point of the six circles (OAC), (OBD), (PAD), (PBC), (QAB),
(QCD,). o

(b) It is the center of a spiral similarity taking AB to CD, as well as the spiral similarity
taking BC to DA.

(c) It is the inverse of R = AC N BD with respect to an inversion around (ABC D). By
Brocard’s theorem, M is the foot of O onto P_Q

Impressive, no? Below we present a few additional properties of the Miquel point M.

Problems for this Section

Problem 10.13. Finish the directed angle chase in the proof of Theorem 10.12. Hints: 310
329

Proposition 10.14. Let M be the Miquel point of cyclic quadrilateral ABC D with circum-
center O. Show that the M is the second intersection of circles (O AC) and (O B D). Hint:
63

Proposition 10.15. Let M be the Miquel point of cyclic quadrilateral ABC D with circum-
center O. Prove that M O bisects ZAMC and ZBM D. Hint: 398

10.6 Example Problems

To illustrate the results of the Miquel point, we provide as an example a problem appearing
on a USA TST for the 54th IMO.

Example 10.16 (USA December TST for IMO 2013). Let ABC be a scalene triangle
with ZBCA = 90°, and let D be the foot of the altitude from C. Let X be a point in the
interior of the segment C D. Let K be the point on the segment AX such that BK = BC.
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Similarly, let L be the point on the segment BX such that AL = AC. The circumcircle of
triangle DK L intersects segment A B at a second point 7 (other than D).
Prove that ZACT = ZBCT.

This is based on the fifth problem from the 2012 IMO, which asked to show that if AL
and BK meet at M, then ML = MK.

(7

Figure 10.6A. A variation on IMO 2012/5.

The first thing we do is add in the circles w4 and wp centered at A and B passing through
C; this lets us cleanly interpret the length condition. Now we have a nice interpretation of
the angle condition—the two circles are orthogonal.

Seeing the orthogonal circles, we construct K * the second intersection of line AK with
wp. The key observation is that K* is the image of K under inversion at w4, implying that

AK - AK* = AC? = AL”.

Similarly, let us construct L* with BL - BL* = BC* = BK>.

But now something interesting happens. Since X lies on the radical axis of w4 and
wp, we find that points K, L, K*, L* are concyclic, say on circle w. Now the above side
relations imply that AL, AL*, BK, BK* are in fact tangents to w. At this point, if we
let AL and BK intersect at a point M, then ML and MK are equal tangents; this remark
completes the original IMO problem.

Now how can we handle the cyclic quadrilateral K LT D? Here Theorem 10.12 comes
into play. We recognize D as the Miquel point of cyclic quadrilateral K LK*L*. So the
point T is none other than the intersection of K L* and LK *. This frees us from having to
consider (K L D) at all; we simply view T as the intersection of these two sides, lying on
AB (which is the polar of X).

We focus on w now. In projective terms, the quadrilateral K LK*L* is harmonic, and
A and B are the poles of LL* and K K*. Let us see if projection gives us any harmonic
bundles. If we use our information about tangents, we find

—1=(K.,K*L,L*) £ (S.T; A, B).

where S = KL N K*L* (this lies on AB by Brocard’s theorem).
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Figure 10.6B. Finding a hidden cyclic quadrilateral.

This is good, since we can apply our Lemma 9.18 now. Unfortunately, this does not
finish off the problem. We know that ZAC B = 90° and C A is a bisector of ZSCT, but we
actually want CT to bisect ZAC B, or equivalently ZSCT = 90°.

The trick now is to consider radical axes. Since triangles X ST and X A B are self-polar,
by Lemma 9.27 we find that O has the same power with respect to the circles with diameter

S A D T B
Figure 10.6C. Completing the diagram for Example 10.16.
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ST and AB. Hence the radical axis of the circles with diameter ST and AB contains the
point O. Moreover, the radical axis is perpendicular to the line through the centers, namely
AB. This implies it passes through C. Yet C lies on the circle with diameter AB. Hence it
lies on the circle with diameter ST as well, as desired.

Solution to Example 10.16. Let w4 and wg be the circles through C centered at A and
B; extend rays AK and BL to hit wg and w4 again at K*, L*. Evidently K L K*L* is cyclic,
say with circumcircle w. Moreover, by orthogonality we observe that AL, AL*, BK, BK*
are tangents to w (in particular, K L K*L* is harmonic).

This means that A B is the polar of X. Then D is the Miquel point of cyclic quadrilateral
KLK*L*, and it follows that T = KL* N LK*. This implies —1 = (K, K*; L, L*) =
(S, T; A, B)where S = KL N K*L*. Hence it suffices to prove ZSCT = 90°.

As triangles X ST and X AB are self-polar to w, it follows that O has the same power
to the circles with diameter ST and A B. Hence the radical axis of these two circles is line
OC: this means C lies on the circle with diameter ST and we are done. O

10.7 Problems

Problem 10.17 (NIMO 2014). Let ABC be an acute triangle with orthocenter H and let
M be the midpoint of BC. Denote by wp the circle passing through B, H, and M, and
denote by wc the circle passing through C, H, and M. Lines AB and AC meet wp and
wc again at P and Q, respectively. Rays PH and Q H meet w¢ and wp again at R and S,
respectively. Show that ABRS and ACRS have the same area. Hints: 268 633 556

Problem 10.18 (USAMO 2013/1). In triangle ABC, points P, Q, R lie on sides BC,
CA, AB, respectively. Let w4, wp, wc denote the circumcircles of triangles AQR, BRP,
C P Q, respectively. Given the fact that segment A P intersects w,, wg, wc again at X, Y,
Z respectively, prove that Y X/ XZ = BP/PC. Hints: 59 92 382 686

Problem 10.19 (Shortlist 1995/G8). Suppose that ABC D is a cyclic quadrilateral. Let
E =ACNBD and F = AB N CD. Prove that F lies on the line joining the orthocenters
of triangles EAD and E BC. Hints: 428 416 Sol: p.278

Problem 10.20 (USA TST 2007/1). Circles w; and w; meet at P and Q. Segments AC
and B D are chords of w; and w, respectively, such that segment AB and ray C D meet at
P.Ray BD and segment AC meet at X. Point Y lies on e, such that PY || BD. Point Z
lies on w, such that PZ || AC. Prove that points Q, X, Y, Z are collinear. Hints: 277 615 525
Sol: p.279

Problem 10.21 (USAMO 2013/6). Let ABC be a triangle. Find all points P on segment
BC satisfying the following property: If X and Y are the intersections of line P A with the
common external tangent lines of the circumcircles of triangles PAB and PAC, then

PA\? L PB-PC _
Xy AB-AC
Hints: 196 68 42 327

Problem 10.22 (USA TST 2007/5). Acute triangle ABC is inscribed in circle w. The
tangent lines to w at B and C meet at 7. Point S lies on ray BC such that AS 1. AT. Points
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By and C| lieonray ST (with C; in between B; and S) such that BjT = BT = C,T.Prove
that triangles ABC and A B C) are similar. Hints: 199 375 293 377 Sol: p.280

Problem 10.23 (IMO 2005/2). Let ABC D be a fixed convex quadrilateral with BC = DA
and BC Jf DA. Let two variable points E and F lie of the sides BC and DA, respectively,
and satisfy BE = DF. The lines AC and BD meet at P, the lines BD and E F meet at Q,
the lines EF and AC meet at R. Prove that the circumcircles of the triangles PQOR, as E
and F vary, have a common point other than P. Hints: 562 436 481 499 Sol: p.280

Problem 10.24 (USAMO 2006/6). Let ABCD be a quadrilateral, and let E and F be
points on sides AD and BC, respectively, such that % = %. Ray FE meets rays BA and
CD at S and T, respectively. Prove that the circumcircles of triangles SAE, SBF, TCF,
and T DE pass through a common point. Hints: 617 319 493

Problem 10.25 (Balkan Olympiad 2009/2). Let M N be a line parallel to the side BC of
a triangle ABC, with M on the side AB and N on the side AC. The lines BN and CM
meet at point P. The circumcircles of triangles BM P and C N P intersect at a point Q # P.
Prove that /BAQ = ZC AP. Hints: 636 358 208 399

Problem 10.26 (USA TSTST 2012/7). Triangle ABC is inscribed in circle 2. The interior
angle bisector of angle A intersects side BC and €2 at D and L (other than A), respectively.
Let M be the midpoint of BC. The circumcircle of triangle A DM intersects sides AB and
AC again at Q and P (other than A), respectively. Let N be the midpoint of P Q, and let
H be the foot of the perpendicular from L to line N D.

Prove that line M L is tangent to the circumcircle of triangle H M N. Hints: 494 517 193
604 Sol: p.281

Problem 10.27 (USA TSTST 2012/2). Let ABCD be a quadrilateral with AC = BD.
Diagonals AC and BD meet at P. Let w; and O; denote the circumcircle and the circum-
center of triangle AB P. Let w; and O, denote the circumcircle and circumcenter of triangle
CDP. Segment BC meets w; and w, again at S and T (other than B and C), respectively.
Let M and N be the midpoints of minor arcs SP (not including B) and TP (not including
C). Prove that M N || O, O,. Hints: 81 261 312

Problem 10.28 (USA TST 2009/2). Let ABC be an acute triangle. Point D lies on side
BC. Let Og, O¢ be the circumcenters of triangles ABD and AC D, respectively. Suppose
that the points B, C, Op, O¢ lie on a circle centered at X. Let H be the orthocenter of
triangle ABC. Prove that ZDAX = ZDAH. Hints: 95 163

Problem 10.29 (Shortlist 2009/G4). Given a cyclic quadrilateral ABC D, let the diagonals
AC and BD meet at E and the lines AD and BC meet at F. The midpoints of AB and C D
are G and H, respectively. Show that E F is tangent at E to the circle through the points E,
G, and H. Hints: 222 56 413 627 Sol: p.281

Problem 10.30 (Shortlist 2006/G9). Points A;, By, C; are chosen on the sides BC,
CA, AB of a triangle ABC respectively. The circumcircles of triangles AB,C;, BC1 Ay,
C A B, intersect the circumcircle of triangle ABC again at points A,, By, C; respectively
(A, # A, B, # B, C, # C). Points A3, B3, C3 are symmetric to Ay, By, C; with respect to
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the midpoints of the sides BC, CA, AB respectively. Prove that the triangles A, B,C, and
A3 B3;Cj3 are similar. Hints: 10 606 680 14 Sol: p.282

Problem 10.31 (Shortlist 2005/G5). Let AABC be an acute-angled triangle with AB #
AC. Let H be the orthocenter of triangle ABC, and let M be the midpoint of the side BC.
Let D be a point on the side AB and E a point on the side AC such that AE = AD and
the points D, H, E are on the same line. Prove that the line HM is perpendicular to the
common chord of the circumcircles of AABC and AADE. Hints: 585 254 99 625 640 98 53 250
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CHAPTER 11

Personal Favorites

Graders received some elegant solutions, some not-so-elegant solutions, and some
so-not-elegant solutions. MOP 2012

Here are some fairly nice problems taken from various sources. Full solutions to all problems
can be found in Appendix C.4.

Problem 11.0. Find as many typos in this book as you can.

Problem 11.1 (Canada 2000/4). Let ABCD be a convex quadrilateral with /CBD =
2/ADB, Z/ABD =2/CDB and AB = CB. Prove that AD = CD. Hints: 573 534 612

Problem 11.2 (EGMO 2012/1). Let A BC be a triangle with circumcenter O. The points D,
E, F liein the interiors of the sides BC, C A, A B respectively, such that DEis perpendicular
to CO and DF is perpendicular to BO. Let K be the circumcenter of triangle A FE. Prove
that the lines DK and BC are perpendicular. Hints: 305 541

Problem 11.3 (ELMO 2013/4). Triangle ABC is inscribed in circle w. A circle with chord
BC intersects segments AB and AC again at S and R, respectively. Segments BR and CS
meet at L, and rays LR and LS intersect w at D and E, respectively. The internal angle
bisector of ZBDE meets line ER at K. Prove thatif BE = BR,then /ZELK = %ABCD.
Hints: 213 568 44 538

Problem 11.4 (Sharygin 2012). Let BM be the median of right-angled triangle A BC with
/B = 90°. The incircle of triangle ABM touches sides AB and AM in points A; and A,;
points Cy, C, are defined similarly. Prove that lines A; A, and C;C, meet on the bisector
of angle ABC. Hints: 658 340

Problem 11.5 (USAMTS). Inquadrilateral ABCD,/DAB = ZABC =110°,4BCD =
35°, /CDA = 105°, and AC bisects ZDAB. Find ZABD. Hints: 559 397 423 259

Problem 11.6 (MOP 2012). Let ABC be an acute triangle with circumcenter w and
altitudes AD, BE, CF. Circle y is the image of @ when reflected across AB. Ray EF
meets w at P, and ray D F meets y at Q. Prove that the points B, P, Q are collinear. Hints:
262 679 337 694

209
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Problem 11.7 (Sharygin 2013). Chords BC and DE of circle o meet at point A. The line
through D parallel to BC meets o again at F, and FA meets o again at T. Let M denote
the intersection of ET and BC, and let N be the reflection of A over M. Show that the
circumcircle of ADEN passes through the midpoint of BC. Hints: 600 127 209 37

Problem 11.8 (ELMO 2012/1). In acute triangle ABC, let D, E, F denote the feet of the
altitudes from A, B, C, respectively, and let w be the circumcircle of AAEF. Let w; and
w; be the circles through D tangent to w at E and F, respectively. Show that w; and w,
meet at a point P on line BC other than D. Hints: 289 131 298 510

Problem 11.9 (Sharygin 2013). In trapezoid ABCD, /A = /D = 90°. Let M and N be
the midpoints of diagonals AC and B D, respectively. Line BC meets (ABN) and (CDM)
again at Q and R. If K is the midpoint of M N, show that K Q = K R. Hints: 669 232 146

Problem 11.10 (Bulgarian Olympiad 2012). Let ABC be a triangle with circumcircle 2
and let P be a variable point in its interior. The rays PA, PB, PC meet €2 again at A, B,
C|. Let A, denote the reflection of A over BC, and define B, and C, similarly. Prove that
the circumcircle of triangle A, B,C, passes through a fixed point independent of P. Hints:
464 427 430 311 631

Problem 11.11 (Sharygin 2013). Points A, By, Cy, A,, B;, C; lie inside a triangle ABC
so that A, is on ABy, B, is on BCy, C; is on CA;, A, is on AC,, B, is on BA,, C, is
on CB,. Suppose the angles BAA|, CBB;, ACC,, CAA,, ABB,, BCC; are equal. Prove
that AA| B;C; and AA;B,C, are congruent. Hints: 388 637 485 88

Problem 11.12 (Sharygin 2013). Let ABC be a triangle, and let AD denote the bisector
of ZA (with D on BC). Points M and N are the projections of B and C respectively to
AD. The circle with diameter M N intersects BC at points X and Y.

Prove that /ZBAX = ZCAY . Hints: 300 75 471 583

Problem 11.13 (USA December TST for IMO 2015). Let ABC be a scalene triangle
with incenter / whose incircle is tangent to BC,CA,ABatD,E,F, respectively. Denote
by M the midpoint of BC and let P be a point in the interior of AABC sothat MD = M P
and ZPAB = ZPAC. Let Q be a point on the incircle such that ZAQ D = 90°. Prove that
either /PQFE = 90° or ZP QF = 90°. Hints: 415 263 368 504

Problem 11.14 (EGMO 2014/2). Let D and E be points in the interiors of sides AB and
AC, respectively, of triangle ABC, such that DB = BC = CE. Lines CD and BE meet
at F'. Prove that the incenter / of triangle ABC, the orthocenter H of triangle DE F, and
the midpoint M of arc BAC of the circumcircle of triangle ABC are collinear. Hints: 392
108 692 512 630

Problem 11.15 (Online Math Open Winter 2013). In AABC, CA = 1960+/2, CB =
6720, and ZC =45°. Let K, L, M lie on lines BC, CA, and AB such that AK | BC,
BL 1 CA,and AM = BM.Let N, O, P lieon KL, BA, and BL such that AN = KN,
BO = CO, and A lies on line N P.

If H is the orthocenter of AM O P, compute H K. Hints: 629 527 33 433 516 330 105
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Problem 11.16 (USAMO 2007/6). Let ABC be an acute triangle with w, S, and R being
its incircle, circumcircle, and circumradius, respectively. Circle w, is tangent internally to
S at A and tangent externally to w. Circle S, is tangent internally to S at A and tangent
internally to w.

Let P4, and Q4 denote the centers of w, and S,, respectively. Define points
Py, Op, Pc, Q¢ analogously. Prove that

8PrQa - PpQs - PcQc < R’
with equality if and only if triangle ABC is equilateral. Hints: 292 391 235

Problem 11.17 (Sharygin 2013). Let ABC be a triangle with angle bisector AL (where
L is on BC). Points O, and O, are the circumcenters of AABL and AACL respectively,
and points B; and C; are the projections of C and B to the bisectors of angles B and
C respectively. The incircle of a triangle ABC touches AC and AB at points By and C
respectively, and the bisectors of angles B and C meet the perpendicular bisector of AL at
points Q and P respectively.

Prove that the five lines PCy, Q By, O,C;, O, B; and ‘BC are all concurrent. Hints: 331
484158 142

Problem 11.18 (January TST for IMO 2015). Let ABC be a non-equilateral triangle and
let My, M, M¢ be the midpoints of the sides BC, CA, AB, respectively. Let S be a point
lying on the Euler line. Denote by X, Y, Z the second intersections of M4 S, MgS, McS
with the nine-point circle. Prove that ﬁ, BY, CZ are concurrent. Hints: 176 182 369 546

Problem 11.19 (Iran TST 2009/9). Let ABC be a triangle with incenter I and contact
triangle DEF. Let M be the foot of the perpendicular from D to EF and let P be the
midpoint of DM. If H is the orthocenter of triangle BIC, prove that P H bisects E F. Hints:
223 288 434269 609 215 505 438

Problem 11.20 (IMO 2011/6). Let ABC be an acute triangle with circumcircle T". Let £
be a tangent line to I', and let £,, €5, £, be the lines obtained by reflecting £ in the lines
BC, CA, and AB, respectively. Show that the circumcircle of the triangle determined by
the lines ¢, €5, and £, is tangent to the circle I". Hints: 685 227 39 387 363 113 531

Problem 11.21 (Taiwan TST 2014). Let ABC be a triangle with circumcircle I" and let M
be an arbitrary point on I". Suppose the tangents from M to the incircle of ABC intersect
BC at two distinct points X and X,. Prove that the circumcircle of triangle M X X, passes
through the tangency point of the A-mixtilinear incircle with I". Hints: 422 306 498 566 389 624

Problem 11.22 (Taiwan TST 2015). In scalene triangle A BC with incenter /, the incircle
is tangent to sides CA and AB at points E and F. The tangents to the circumcircle of
AAEF at E and F meet at S. Lines EF and BC intersect at T. Prove that the circle with
diameter ST is orthogonal to the nine-point circle of ABIC. Hints: 150 189 507 582 135 264
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APPENDIX A

An Ounce of Linear Algebra

Many of the computational techniques invoke properties of determinants and vectors. We
describe in detail the relevant parts of the technology here.

A.1 Matrices and Determinants

A matrix (plural matrices) is a rectangular array of numbers, for example

1 2 3
4 5 6
7 8 9

Throughout this text, we will be mostly concerned with 2 x 2 and 3 x 3 matrices.

A determinant of a matrix A, denoted det A or |A]|, is a special value associated with
the matrix A. (When the matrix is written in full, we replace the brackets with bars.)
Determinants feature prominently in Chapter 7 and also in Chapters 5 and 6.

We define only the determinant of a 2 x 2 matrix and a 3 x 3 matrix. We have

a b

. d):ad—bc

for a 2 x 2 matrix. For a 3 x 3 matrix we have

ay ay das

by b3 SR a a3
by by b3|=a + by +c1
¢ 3 a a3 by b3
cp € C3
or equivalently
by b3 by b by b
a) as as .
C2 C3 3 (] T

In the definition, the 2 x 2 sub-matrices are called minors.
Determinants are nice because there are clean ways to evaluate them. For example, we
have the following properties, which we state without proof.

Proposition A.1 (Swapping Rows or Columns). Let A be a matrix, and B be a matrix
formed by swapping either a pair of rows or a pair of columns in A. Then det A = — det B.
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Proposition A.2 (Factoring). We have

kay, a, as a a; aj
kby by by|=k-|b; by b;
kcy ¢ o3 cp € C3

Similar statements hold for the other rows and columns.
Most surprisingly, we can actually add and subtract rows and columns from each other!

Theorem A.3 (Elementary Row Operations). For any real number k, we have

aq a; az a; + kb] a, + kb2 as + kb3
by by bi|=| b by bs
C1 Cy C3 C1 Co C3

Analogous operations can be performed on the other rows and columns.

In other words, we can add and subtract multiples of rows or columns from each other
without affecting the determinant. This often lets us eliminate terms that recur frequently
across the determinant.

Here is an example. Suppose we wish to evaluate the determinant

(ptate-%) J(t+i+t-2) 1
(pta+o-2) J(4+Lt+i-£) 1

Yp+atbro S(L+i4i+l) 1

(STl ST

Straight multiplication would be rather horrible. Fortunately, we can eliminate a lot of
common terms. First, we can pull out all the factors of % to get

prate—% S4+i4+i-L 1
pra+b—2 4 i4+p—F 1
1, 1,141
p+a+b+c statrte 1
Now noticing the plethora of common terms, we decide to subtract p + a + b + ¢ times
the third column from the first column. This gives

1—b—% S te—L& 1

Z—c—%’ %+$+%—£ 1
1,111

0 statrte 1

1

. . ] 1
Similarly, we can knock out > +.+;

+ (1 times the third column from the first. We obtain

l—b—% —1-L 1 1b+% P+ L
ab 1 _ ab 1
Z—C—F —z—ﬁ I—Z C+7 E+£
0 0 1 0 0 1

Here we have also taken the liberty of factoring out the two minus signs. Now this determi-
nant looks much tamer, and we can evaluate by minors. Because of the Os in the last row,
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we use minors on the last row: we find

1(0 12 1 b+
A 1 ab
4 S+ E ] I c+<

Now we have only one determinant to compute! We can just expand it as

)]

ac
b+7

ab
C —_—
+p

o= =

ab

{0+5)(2)- (22

p

+
+

NSRS

) |
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Conveniently enough, this expands to zero! If you have read Chapter 6, then you might

realize that this actually establishes Lemma 4.4 using complex numbers. (Why?)

A.2 Cramer’s Rule

Cramer’s rule is a method for converting a system of equations into a determinant. It also

is a good illustration of row and column operations, so we present it below.

Theorem A.4 (Cramer’s Rule). Consider a system of equations

ax +ayy+az=a
byx +byy+bz=0>

cxX +cyy+cz2=c.

Then the solution for x is

a ay, a; ay
x=\|b by b, by
c ¢ ¢ Cx

provided the denominator is nonzero. Analogous equations hold for y and z.

Proof. The numerator is

axx +ayy+a;z ay, a

ay, a
b, b,
cy ¢

axx  a,

byx +by,y+bz by, b |=|bx b,

cx+eyy+cez ¢y ¢

X Cy

Here we have subtracted y times the second column and z times the third column from the

first. Factoring, the numerator equals

ax a, a;

x|by by b.|.

cx ¢y C;

A.3 Vectors and the Dot Product

Vectors provide the most basic notion of addition in the plane, and thus form the foundation

for our analytic tools.

In the linear algebra realm, a vector is just an arrow with both a magnitude (length)
and a direction. A vector pointing from a point A to a point B is denoted AB. In order to
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A

Figure A1. A vector pointing from A to B.

associate points to vectors, we usually define a sing_le> point O as the origin,qor zero vector.
Then we associate every point P with the vector O P, abbreviated as just P. This is much
like complex numbers; indeed, the two concepts are ofter used interchangeably.

Vectors thus can be represented coordinate-wise: in the plane, the vector pointing to
(x, ) in the Cartesian plane (from (0, 0)) is denoted (x, y). The zero vector is then (0, 0).
The magnitude of a vector v is written |v|.

0

Figure A2. Adding two vectors.

Vectors add exactly as one would expect: the sum of (x;,y;) and (x2, y;) is
(x1 + 1, x2 + ¥2). A second interpretation of this addition is the parallelogram law, illus-
trated in Figure A2.

Vectors can also be scaled by real numbers by simply adjusting their magnitude.

2y

[
<y

/

Figure A3. Vectors can also be scaled by constants.

It is important to note that with this scaling, we can take weighted averages of vectors
and get the expected results. For example, given segment AB with midpoint M, we have
M=1 (A' + é).

Vanilla vectors are not used too often in olympiad problems: rather, we use one of our
well-established systems built on top of them (for example, Cartesian coordinates, complex
numbers, or barycentric coordinates). However, there is one concept from vectors that can
be useful: the dot product.
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The dot product of two vectors v and w is given by

-

v-w = |v]|w|cosb
where 0 is the angle made between the two vectors. Surprisingly, it turns out that
{(a,b) - {x,y) = ax + by.

The dot product provides a way to multiply vectors, different from the multiplication
of complex numbers. It has the following properties:

* The dot product is distributive, commutative, and associative, so you can treat it like
multiplication.

 We can express the magnitude of ¥ in terms of the dot product by |3|* = 7 - 7.

* Two (nonzero) vectors v and w are perpendicular if and only if v - w = 0.

To see an apphcatlon of this, consider a triangle ABC with circumcenter O. If we set
O as the zero vector 0, then we have the nice property that

-

IKZ :6:

where R is of course the circumradius. So that means A - A = R2, and so on.

Figure A4. Tossing AABC into a vector system.

Now what of A - B? By definition, this is R?cos2C. But cos2C = 1 — 2sin? C =

1-2 (#)2, and accordingly we discover

Lo 1
A-B=R"— "
2
Similarly, B-C=R>-— la andC-A=R>— 'bz.
Now in Chapter 6 we show that the orthocenter H of ABC is actually given by the
simple formula H = A + B + C. That means, for example, that we can compute O H! It
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is just a matter of evaluating the dot product.

2 0l |5

on*=|oH| =i
=H-H
=(A+B+C)-(A+B+C)

We will use these properties again to prove theorems in Chapter 7, when we construct
a distance formula and a perpendicularity criterion for barycentric coordinates.
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APPENDIX B

Hints

— e e
W N = O

14.
15.
16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

26.

. Try angle chasing; you might see it.

. Construct circles.

. The ratio is just /2.

. Something is concurrent. Draw a good diagram.

We can compute the angles that BJ makes with /B.

. Itis enough to take P = (0, s, ¢) with s + ¢ = 1 and do some computation.

Pick a point to handle the weird angle condition.

. You cannot take half of directed angles! How you can get around this?

. Trigonometric form of Ceva’s theorem.

. Spiral similarity, of course, but also length ratios.

. Find the homothety.

. Let A be the intersection of lines B;C; and BC.

. This is very hard for a G1, which is why there was no easy geometry at the IMO

2011.

Prove that AA, BC ~ AAC3B;3.

Do you see a pair of perpendicular lines?

Look at triangle BPC.

Remember Lemma 2.11.

Which quadrilateral is cyclic?

Use angle chasing to show that AP O Q is cyclic, thus we’re done.

There is a right angle and we want an angle bisector. Which configuration does this
remind you of?

Directed angles will fail here because the condition that X and A are on different arcs
is necessary.

Do some computation with the inversive distance formula. The answer should pop
right out.

Radical axis.

First recall that ME = MF = MB = MC.

This can be solved in a lot of ways, but there is a short solution using two applications
of Pascal’s theorem.

H is the incenter of triangle DEF .
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27. Find a nine-point circle.

28. What does the condition % = ﬁ—g mean?

29. You can get away with applying Lemma 6.24 because aa = 1.

30. Put ABC at the unit circle and compute points D, E directly.

31. Similarity generates some ratios.

32. How could we use the quantities 1 + ri?

33. Construct the circumcenter of ABC and the midpoint of AC. Do you see the three
circles now?

34. Invert around A.

35. Combine Pascal’s and La Hire’s theorems.

36. Let T be the point on AB such that AD = AT.

37. Now we can just angle chase. Find the new cyclic quadrilateral.

38. Use some similar triangles to reduce this to Heron’s formula.

39. Draw a very good diagram. You can construct A, as the second intersection of T A
with T".

40. It equivalent to prove ACZM ~ AEZP. Hence all we wantis ZCZE = /PZM.

41. Construct the circle with diameter AB.

42. Use a spiral similarity and do some computations.

43. Letx = ZABQ and use trigonometry. Here 0° < x < 60°.

44. BE = BR = BC.

45. What is the fixed point?

46. Show that PD : AD = [PBC] : [ABC]. Why are we done?

47. How can you map O to H using a homothety centered at G?

48. Ratios of the radii are sufficient.

49. What is the concurrency equivalent to?

50. Find some synthetic observations first. Parallel lines.

51. How do we handle the angle condition?

52. Deduce that the center of cyclic quadrilateral BF EC must lie on BC.

53. Add in the altitudes of ABC and compute a ratio.

54. Lemma 4.40 is likely to be very helpful.

55. Midpoints and parallel lines!

56. Intersect line EF with AB and C D to get tons of harmonic bundles.

57. This is pure angle chasing.

58. There is a very convenient point not marked that leads to a solution. Draw a good
diagram.

59. Introduce the Miquel point M of the three circles.

60. Use the fact that /ZB’OC’ > ZBOC to get ZA < 60°.

61. Focus on triangle ACD.

62. Can you get rid of the points F' and H in the expressions?

63. This follows since R is the intersection of AC and BD.

64. Simson lines! Although angle chasing works as well.

65. Use both (e) and (f).

66. Note that Bj is the intersection of lines C1 Ay and AC, and the cyclic quadrilateral.

67. If x = BD, y = AC, and z is a third diagonal, one should obtain xy = ac + bd,
vz =ad + bc, and zx = ab + cd.



This document was prepared on 2016-12-29 for the exclusive use of Aniket Akhade. Unauthorized distribution is strictly prohibited.

B. Hints 223

68.
69.
70.
71.
72.

73.
74.
75.
76.
77.

78.

79.
80.
81.
82.
83.
84.
85.

86.
87.
88.
89.
90.
91.
92.
93.
94.

95.
96.
97.
98.
99.
100.
101.
102.
103.
104.

The quantity % does not depend on P.

Prove that {TLK = ATCM.

It is the circle with diameter AB.

If all goes well, you should get something to the effectof 1 + T30 30 = Sin(T20° ) -
The condition is equivalent to the quadrilateral formed by lines KL, PQ, AB, AC
being cyclic.

The two circles with diameter AB and AC hit the foot from A to BC.

Look at triangle £ B D. Notice anything familiar?

If AB < AC, show that M is an incenter.

Coaxial circles—show they have a second common point instead.

Show that {CMN = £BM N first. (Another solution, perhaps more natural, begins
by letting N’ be the intersection of AD and BC, and showing that N’ lies on each of
the circles.)

The strange part of the problem is the final condition O P = O Q, as the circumcenter
is not related to anything in the problem. How might you encode this using something
from this chapter?

Try point H.

Use Lemma 9.11 or Lemma 9.12.

Spiral similarity.

First show that By, B,, Cy, C, are concyclic. What is their circumcenter?

It is negative since AB and XY are not disjoint.

Which quadrilateral is cyclic?

How can we get the orthocenter of A H E? We can do better than intersecting perpen-
dicular lines.

Just expand I; — € R directly.

It suffices to prove OL > %R. Can you think of some nice estimates for O L?

What do we know about the distance from O to all the sides?

The incenter/excenter lemma, see Lemma 1.18.

Show that the line is parallel to the Steiner line.

Exactly three of them have H as a vertex.

Spiral similarity is helpful here.

It is enough to show that the distance from O to BC is at least %R .

It suffices to show the circles are coaxial; equivalently, that they share the same radical
axis. Use Lemma 7.24.

Find a Miquel point; then just angle chase.

We want to prove that ZOFB = Z0OG B = 90°. Invert around ;.

Add and subtract lengths to obtain LH = X P.

K is the Miquel point of a cyclic quadrilateral.

How else can we interpret the ray M H?

Show that BQ O P is cyclic.

Apply Lemma 1.18.

Use Menelaus’s theorem.

Because A, I, I, are collinear, just check that Al LTglc.

The problem can now be solved with just two projections of harmonic bundles.

1/2 sin x+sin 60°
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105.

106.
107.

108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.

127.
128.
129.

130.

131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.

B. Hints

We obtain that H is the intersection of line AC and the line through B and the
circumcenter of triangle A BC. Finish with the law of cosines.

Add a Miquel point.

Remember that you can project bundles on circles onto lines via points also on the
circle.

Complete quadrilaterals.

£ABC = LAAC.

Shift O to O’ and obtain a cyclic quadrilateral.

What does the tangency condition mean?

Invert again around w;!

First, show that A; B, [I ‘A, B,. Then show that A, A,, BBy, C;C, concur on I'.
Rewrite the proof that a quadrilateral has angle sum 360° using directed angles.
Show that ABOE is cyclic.

Power of a point.

Normally angle conditions are horrible. Why is this one okay?

Invert around D. The radius r can be anything.

Reflecting the orthocenter again.

I am sure you can guess which point to invert around.

You can shift M, N, H by a + b + ¢ before applying the circumcenter formula.

We have equal tangents at A.

First take the homotheties sending the squares outside the triangle.

You need two configurations. Use a good diagram to figure out what Z—g should be.
AXFEI is cyclic.

Let Dy =(u:m :n)and A = (v : m : n), where D, is the second intersection of w;
and w,. This encodes all conditions.

Push the factor of 2 somewhere else.

The three concur at the symmedian point.

Now AE and DB are symmedians, so one can compute B, E. In addition, one can
compute R as the intersection of the tangent at C and (the extension of) side AD.
A*B* + B*C* > A*C* with equality if and only if A*, B*, C* are collinear in that
order. Now apply the inversion distance formula.

What must be true about the radical center?

Use the unit circle to get the orthocenter. %(a +b+c+d).

First consider X = P and X = Q; this gives four possible pairs (S, T).

Radical axes again.

Introduce the midpoint of E F to create a harmonic bundle involving S.

What is the equality case we are looking for?

The fixed point is the orthocenter.

Use a homothety.

It is also possible to compute the heights of the triangles.

This follows from the homothety used in the proof of Lemma 4.33.

Just compute all the points directly using (ABC) as the unit circle.

Try to show the contact triangle of ABC is homothetic to AP QL.

Lemma 8.16 to clean up.
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144.

145.
146.
147.

148.
149.
150.
151.
152.
153.
154.
155.

156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.

177.
178.
179.
180.

181.
182.

Use trigonometry to express the lengths BD and C E, which give the coordinates of
D and E.

Midpoints and parallel lines.

Put AB =2x,CD =2y, BC = 2¢ and compute some lengths.

Use Lemma 9.17 to compute the power of the midpoint. Then recall that all the centers
are collinear.

Radical axes.

One should getx = p+a + b + ¢ — bep.

Projective geometry.

Check that {YXP = L{AK P.

You can replace line O H with any line through the centroid G.

Can you find a nice interpretation for the two given conditions?

Use a circle of radius zero.

Construct a rectangle. Show that the line through K* perpendicular to AQ passes
through the center of I'.

There is something unnecessary in this problem.

Show that X, H, P are collinear, where P is said Miquel point.

Try homothety now.

Which quadrilateral is cyclic?

Recall Lemma 4.9.

The areas should come out to be %ab tan %C .

Show that [AO E] = [B O D] directly.

A is the Miquel point of BOgO¢C.

Let X = BENDF; by Lemma 9.18 we need (X, H; E, F) = —1.

What is the ratio of the homothety?

The given condition can be rewritten as a® + ¢> — ac = b> + bd + d>.

We geta, = bfi’:%_‘cl, and then compute the determinant in Theorem 6.16.

Which quadrilateral is cyclic?

Show that the points lie on the circle with diameter O P.

Inversion through D with radius 1.

Isogonal conjugates.

Invert around A.

Why does it suffice to consider the case d = a, e = b, f=c?

Prove also that AEAB = AMAB.

Consider triangles XED and XAK.

Ignore AABC, and focus on AM 4 MpM¢ instead. See if you can eliminate A, B, C
from the picture entirely.

Try using power of a point.

The resulting four points should invert to something nice.

Find the fixed point first! A nice diagram helps here.

One can compute the numerical D F. Letting M be the midpoint of DF, it suffices to
show that ME = { DF.

We will be using AA similarity. Which angles are equal?

Begin by using cevian nest (Theorem 3.23).



This document was prepared on 2016-12-29 for the exclusive use of Aniket Akhade. Unauthorized distribution is strictly prohibited.

226

183.
184.
185.
186.
187.
188.
189.
190.
191.
192.

193.
194.
195.
196.
197.

198.
199.
200.
201.
202.
203.
204.

205.
206.
207.
208.

209.
210.
211.
212.

213.
214.
215.
216.
217.
218.
219.
220.
221.
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Take a transformation that fixes (ABC D) and sends Q to the center of the circle.
Use the law of sines.

First compute /W XY = 40°.

Let O be the center of w.

Use homothety.

Apply Theorem 7.14 directly to AD = BE with reference triangle ABC.

Lemma 9.27 applies.

Begin by letting N be the point on AK so that BN is isogonal to BC.

Rewrite the end condition without circles.

Show that line DT passes through the reflection of A over the perpendicular bisector
of BC.

The two circles intersect at the midpoint of major arc BC.

Use property (b) twice.

Show that ZAZY = 1B and ZZAX = (A +C).

This problem is pretty silly.

A clean way to do this is by computing

[(@ —b)(c —d)e— f)+ (b —oc)d —e)(f — a)] minus

[(@ —b)(c—e)d — f)+(d—e)f —b)a—)]

An inversion can get rid of almost all the circles.

Where has this configuration appeared before?

If Op and O are the centers, show that Og O = BC.

Which quadrilateral is cyclic?

Law of cosines.

One should get 0 = and 0, = %:2"). Now what is %(01 + 05)?

Show with computation that A, By, and C| are collinear. Then {C;QP = LACP =
£ABP = £C,B,P.

Which configurations come to mind?

Pick reference triangle DE F. Here we picka = EF,b = FD,c = DE.

A is the centroid of EB D, so ray DA bisects BE.

Show that the ratio of the distance from Q to AB and AC is AB : AC. This will imply
AQ is a symmedian.

Construct an isosceles trapezoid. Power of a point.

Use Lemma 6.18 in order to compute the points A, etc.

Prove that line P Z passes through the centers of w and w;.

Find a good way to interpret the angle condition. Put another way, what are the
possible locations of P?

Incenters.

ADOQO’ and BCO O’ are also parallelograms.

Try erasing the points E, F, and A.

Show more strongly that if the intersection point is X, then ABXC is harmonic.
The argument of ’ﬁ is L BAC, and the argument of % is {BDC.

Now AB and CD are diameters.
The two sides can be found to equal
Which quadrilateral is cyclic?

Why does it suffice to show FBH’'C is harmonic?

cla+c—2b)
c—b

BG-CE
BE.-CG~
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222.

223.

224.
225.
226.

227.

228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
2309.
240.
241.
242.

243.

244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.

Consider the Gauss line of quadrilateral ADBC, and let M denote the midpoint of
EF.

This is one of my favorite tests of configuration recognition. You will need three of
the lesser-used configurations.

One choice of reference triangle is A| A, A3, with A4 = (p, q, 7).

Use the law of sines.

You should get

3 5 1
cos <§x + 30°> = cos <§x + 300) + cos (536 + 300)

or some variant. One can guess the value of x now with some persistence (try multiples
of 10°). Finish with sum-product on the right.

One standard trick for doing so: try to construct AA;B,C, on I' homothetic to
AA|B;C. Then show the center of homothety lies on I' (implying it is T').

Using the fact that /M E A = 90°, angle chase to show that AF is a symmedian.
Where does the isogonal conjugate of P lie?

You can explicitly find K.

Moreover, P is a point at infinity, so P, C, D collinear implies ABC D is a square.
Let P be the midpoint of QR and L the midpoint of M N. Show that PK L QR.
Brocard’s theorem destroys this.

Take ABC D to a rectangle; the problem becomes trivial.

Inversion at A with radius s — a makes this much easier to compute. Overlays.

Just check that AMIT = —AMK]I.

It is equal to %A=*.

Consider the reflection of X, Y over BC.

Now use Brocard’s theorem.

Right angles and bisectors again.

This looks a lot like Pascal’s theorem.

Show that A7A3A% and B Bj B3 are homothetic (all sides parallel). Why is this
enough?

Show that N = (s —a : s — b : s — ¢). Normalize coordinates to check that NG =
2G1.

Homothety again.

Which quadrilateral is cyclic?

It is equivalent to show that PC < PO.

A*B*C*D* is a parallelogram.

Add in the medial triangle.

You should be laughing.

Try to show the spiral similarity at K sends D to E as well; this implies the conclusion.
One should find that the resulting intersection is (—a? : 2b% : 2¢?).

O is the reflection of C across A*B*.

This is purely projective.

Let ray M H meet (ABC) again at K. It suffices to prove that AK DE is cyclic.
What happens now if we invert about A?

Use area ratios on the inverted picture.
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B. Hints

H and F swap places, as do A and E, as do C and F.

Now use Lemma 4.17.

Pick I the incenter of triangle BA D. Show that / BC D is cyclic. Why does this solve
the problem?

Which configuration is this?

Consider the second intersection of w; and w;.

Try inverting.

Pin down Q by invoking Lemma 4.9.

The last ingredient is Lemma 4.17.

Now just angle chase.

Isogonal conjugates.

What is line QS?

It suffices to prove R, M, § are collinear.

Can you rephrase “P H bisects E F”” more naturally?

Brocard’s theorem. Symmedians for the second part.

Try to compute N directly.

Do we want to deal with reflections? If not, what can we do?

It is equivalent to show that arcs TK and T M have the same measure.

Note that CI 1 A’B’and CM L TK. What is the conclusion equivalent to?
Evaluate BE? in terms of a, b, c, using cos BAE = —cos BAC. Do the same for AD
and then show a? = b? + ¢2.

You can compute KN using IyN - [, K = I 1% —r2.

Which quadrilateral is complete?

Show that {ZY P = LA XY P.

Do not forget to preserve intersections of clines. For example, the circle tangent to @
should invert to a line tangent to w at the same point.

One can compute M S = MT explicitly. Just compute all the points directly.

You should obtain

1 1 1
J = (“COS <A+ EB) :bcos <A+§B> : —ccos (A - EB))

or something similar.

First use homothety to make Q into something nicer.

Compute directly now; use A, S, T as free variables.

Use Ceva’s theorem twice.

First show that BC N GE lies on d.

The tangent at B is parallel to A P by angle chasing. Take perspectivity.

This just follows by taking the number line definition and solving = : ‘V%Z =k.
Draw a very good diagram. Can you say anything about the altitudes of ABH C? (The
next hint gives this away.)

We only care about the radical axis.

Let M be the midpoint of BE. Show that MA = ME = MB.

One can also compute CR, say, by evaluating AR = BR and applying Ptolemy’s
theorem.
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It will reduce down to (—a +b +c)(a — b+ c)(a + b — ¢) < abc, called Schur’s
inequality.

Prove that A is the Miquel point of B{BCC].

Try to get rid of a few circles.

We can find J by intersecting rays BJ and CJ.

Specifically, if H4 = a + b + d is the orthocenter of AAB D, then W is the midpoint
of AH,.

Look at Lemma 1.44.

Show that the tangents to @; and w, meet on BC.

You should get ZCXY = ZAX P one way or another (good diagrams may suggest
this as well). Use cyclic quadrilateral AP ZX to prove this.

Find a harmonic bundle.

Look at all those circles. Can you get them to pass through more vertices?

Find a pair of similar triangles.

Now observe that X and Y are “:l:\/%”; thatis, x +y = 0 and xy = —de. Moreover,
show that p? = de.

The fixed pointis K = (255,254 : —c).

Which quadrilateral is cyclic?

You only need the fact that line 7'/ passes through the midpoint of arc BC, say L.
Anything special on the median EC?

First find the point of concurrency.

This yields Brocard’s theorem.

Use Lemma 1.30 to handle the directed angles.

Find the diameter of the fixed circle.

The similarity is actually a congruence because AC = BD!

Are there some other reflections in this problem?

What is the orthocenter of the medial triangle?

If the problem is true, then the common radical axis must be the perpendicular
bisector.

The key observation is that the circle is the midpoint of AO.

Do you see an incenter?

The condition implies D E BC is harmonic. What next?

Let X = AD N BC and use Miquel points.

Do you recognize where the point D, has to be?

Use Lemma 8.16 applies directly.

The conditions should translate to ZD*B*C* = 90° and B*D* = B*C™*.

Lemma 8.11.

In an overlaid picture, it suffices to show MK* is tangent to the circumcircle of
AK*AQ.

Draw a good diagram. Which three points look collinear?

What is ZAZY?

Letting E and F denote the tangency points of the incircle, we have EF, KL, XY
concurrent now (due to the isosceles trapezoid).

Go via LAR*B = LAR*O + LOR*B = --- = LAPB.
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B. Hints

Apply Brocard’s theorem to locate H.

First identify B; and C;.

Specifically, find the « € R such that «(a + b + ¢) lies on the Euler line of A/ B
(where a = x? and so on). Check that « is symmetric in x, y, 2.

Suppose the cevians meet at P. Where can we send A, B, C, P?

m = 100.

Then {4FEM = {FEB+ ABEM = {FEB + ...?

This is essentially the same as the previous exercise.

Overlays are helpful here.

One should find that ZC*B*P* = ZB*C* P*. How to handle the incenters?

Areas.

Show that ZAA;C is bisected by ‘A A,. Thus P is the excenter of triangle A; BC;.
Why does ZAD*B* = 1/AP*B*?

Since LZM¢cT A = ZST M3, this is straight angle chasing now.

Why does it suffice to prove that 2 (ﬁ)2 is real?

One can also get rid of A quickly. In other words, you can view the entire problem in
terms of the quantities in quadrilateral BGCE.

Angle chasing can get rid of H and L completely.

By angle chasing, show that triangles M KL and AP Q are similar. Why is this
enough?

If E and F are the tangency points of the incircle and X is the second intersection of
'AD with the incircle, show that DE X F is harmonic.

Just note that the side length of Mg M¢ is half that of BC, so the ratio is —2.

For the setup, put A = (au : bv : cw) and C = (avw : bwu : cuv) and show that
PA = PC if and only if there is a common circle.

Homothety. Show that O3 O¢c =2 (3BC) = BC.

Prove that AD is the polar of K.

Take a projective transformation, keeping I" a circle. Many such transformations lead
to a solution.

After the first inversion, we want to show that F*G* passes through B.

Extend ray / P to hit line BC at K. It suffices to show (K, D; B, C) = —1.

How do we use the condition that AD = JAC?

Let K’ denote the intersection of the circumcircle and the angle bisector.

This is equivalent to ;:Z : % € R. Use Lemma 6.30 and expand.

Q is a Miquel point.

Borrow some ideas from the HMMT problem.

There is a homothety taking the medial triangle (the triangle whose vertices are
the midpoints of ABC) to ABC itself. This follows from the opposite sides being
parallel.

Identify the center of the circle first.

First get rid of Q by considering the point X diametrically opposite it on (ABC).
Note that A,A = P A, where P is the tangency point of £.

Show that the radical axis bisects ZP BC.

Use I E = xsin C = 73 alongside Ptolemy’s theorem to finish.

Radical axes give you a concurrence.
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Consider the circles with diameters BC, CA, and AB.

Find Lemma 1.45 hidden in the picture.

Use isotomic conjugates and reflecting X, Y, Z, one can eliminate A, B, C altogether.
EZ

It is not hard to get tan /ZZEP =tan LZCE = % So we just want to show &% =
PE

l[:wigst compute d and e using Theorem 6.17. The hard part is computing o;. You want
a similar triangle.

Of course recall Lemma 1.18.

Show that both are equal to 90° — A.

What is its center?

Find a Miquel point by using angle chasing.

Which quadrilateral is cyclic?

If K = BB, N CC,, prove B, K, A, C are concyclic.

Pascal’s theorem on AABBCC.

There are symmedians in this problem.

Why might the quantity \/% (cos 30° + sin 30°) be useful?

The condition “M L tangent to (H M N)” is an abomination; perform some simplifying
transformations.

M is the spiral center sending Y Z to BC.

Finish with the trigonemetric form of Ceva’s theorem and the law of sines.

Invert around A.

Come on now, what configuration has that many perpendiculars?

Cut and paste!

Try to guess explicitly what A,, B,, C; are.

Because the triangles are easily similar (by angle chasing), focus on finding something
shared by the two triangles.

Show that 7% and L* are actually diametrically opposite on I"*.

This is just angle chasing.

You can compute P4 Q 4 in terms of ABC. Focus on just that.

I is the orthocenter of triangle BF C.

One should find K = (a®>: 0> :¢*),M =(©0:1:1),and L = (a®: S¢ : Sp).

Dilate K and L and drop into a determinant.

Use Lemma 6.19 and do some calculations.

The use of “reflection” in this problem is kind of a misnomer. Draw a good diagram
and you will see why.

Add a point to construct a cyclic quadrilateral.

Again just invert.

ABQOM ~ ANQC,thenuse BM : NC = AB : AC.

Since K*M || AQ, it suffices to prove that K*A = K* Q.

This uses an idea similar to that of Problem 1.40.

Notice the duality between the nine-point circle and the circumcircle.

Inversion through the circle with diameter A B is most of the problem.

Construct a radical center.

Reflect the orthocenter.

Pascal’s theorem on AGE E BC first.
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B. Hints

Law of sines.

What is the argument of (1 + xi)(1 4+ yi)(1 4 zi)? Answer this in two ways.

H is aradical center.

Reflect the orthocenters.

(A, B;X,Y)=—-1=(X,Y;A,B)=—1.

More Simson line properties.

Reap the harmonic bundles using Lemma 9.17. You will want to use power of a point
alot.

Recall Theorem 2.25, the Pitot theorem.

Assume that AB < AC, and show that /P QFE = 90°.

Consider the radical axis of the circles with diameters AB and CD.

Use the law of sines on AABD and AACD.

Finish by taking a homothety to the centroid of AAST, and finally to M.

The first part follows from Theorem 4.22.

Simson lines. Lemma 4.4 kills this.

After Pascal’s theorem on AABCC D, we find that AA N CC is collinear with P =
ABNCDand Q = BCN DA.

To handle the point T, use Lemma 4.40.

Add an incenter /.

Simson lines.

This is equivalent to showing A, E, S are collinear, where S and E are the reflection
of T and D. Why does this follow from Lemma 4.40?

You want a homothety sending one of the points to another.

What to do with reflections?

Reuse the proof of Steiner lines.

Use the law of cosines to show the quadrilateral is cyclic, and then apply
Theorem 5.10.

The fixed point is the orthocenter. Try reflecting the entire triangle.

Show that % is symmetric in a, b, ¢, d. It is easiest to evaluate the denominator
first.

A, I, X are collinear. Hence we just want to show that YZ L AX and the analogous
equations.

Show that line N P passes through the circumcenter of triangle ABC.
Lemma 1.45.

How do we interpret the angle condition?

The condition BC = DA, BE = DF can be weakened to just 2£ = DX,
Actually, you do not even need I D, I E. The answer is no.

Finish off with Lemma 4.14.

All circles pass through one point.

Show that P is the desired incenter.

You can simplify sin x 4 sin 60° to cancel with something in the denominator.

First get rid of the midpoints of the altitudes using Lemma 4.14. Who uses midpoints
of altitudes?

Brocard’s theorem on ABCD, AGCH, with K the radical center of the three
circles.
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The condition that AE DC is cyclic is actually extraneous! What does this allow us
to do?

One should compute the circumcenter as
Ceva’s theorem with a quick angle chase.
One can compute the points K, G, T first, then use symmetry.

Use law of sines on the five triangles. Vertical angles cancel.

Take the tangency point of the A-excircle as Q. Ignore Q now.

Let K 14 (with I, the A-excenter) meet the perpendicular bisector of BC at T. Show
that BNCT is cyclic.

Project it through E.

Repeatedly use law of sines and power of a point.

Which quadrilateral is cyclic?

Note that Lemma 1.17 helps involve HM.

How can one obtain angle information from midpoints?

Try sending the points AB N XY, BC N Y Z infinitely far away.

First compute PK and QL.

In Figure 4.2A, consider the midpoint of T1,.

Which quadrilateral is cyclic?

Let 7 be the incenter.

Use Theorem 7.25 now to handle the circumcenter.

Write this as [ABC] = [AIB] + [BIC] + [CI A], with I the incenter.

Answer is (c? : b? : ¢?), up to scaling.

See if you can guess the fixed point. (Pick a convenient P.)

Use Lemma 8.10.

Now use Conway’s formula (Theorem 7.22).

Sum equal tangents.

Power of a point.

Symmedians.

Note that AT bisects ZB'AC'.

Prove (A, D;M,N) = —1.

This is pure angle chasing.

After both applications, we find that AANCC, BBN DD, P, Q are collinear.

Let T be the intersection of the tangents at A and K. Show that AT K M is cyclic and
recal TK = TA.

Several forms of computation work, but there is a very clean solution.

First compute ZCY X in terms of angles at X. What you get depends on what variables
you selected.

Ptolemy’s theorem.

Use Ceva’s theorem to show that ray A P bisects the opposite side.

Answers are 30° and 150°.

It just gives a pair of similar triangles.

The common point is the Miquel point M of ADBC.

The perpendicular bisectors are actually just giving you a circumcenter.

Some lengths in the figure are computable. Let AC = 3 and compute some lengths.
Lemma 1.45.

(a+b+o)(b*+c?)
b2+bc+c?
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B. Hints

Try adding the circumcenter O.

Compute the lengths BP, C P, BQ, C Q using similar triangles, and then compute all
points directly.

M is the center of the spiral similarity sending AB to CD, so it also sends O; to
0;.

The determinant can be rewritten so that all terms are degree 2.

Just some angle chasing with the above.

Show without barycentrics that the cevians concur. Name the concurrency point.
Homothety with ratio %

By Brocard’s theorem, EF N BC has polar AH.

Spiral similarity sending AD to BC also sends E to F.

It suffices to prove that MN || AD. (Why?)

There is a radical axis.

Just use Lemma .48 now.

Then Pascal’s theorem on CG'GE B B, where G’ is the reflection.

What technique does this lemma open up that was not feasible before?

What is the Miquel point of complete quadrilateral FARM?

This is true whenever A < 60°. Prove this.

Add a nine-point circle!

There are three cyclic quadrilaterals due to all the right angles, as well as ABPC
itself. Use these to your advantage.

Let T be the intersection of line E F with CD. Show that T lies on (ABM).

Show that D, P, E are collinear, and angle chase.

I is the orthocenter of ABHC. Use Lemma 4.6.

Suppose we wish to show ZBOC =2/BAC. Put A, B, C on the unit circle.

Use Lemma 1.45 to handle the nine-point circle.

This just follows from the homothety between ABC and AB’C’ sending E to X.
How can we compute A, nicely?

Use Lemma 1.44.

There are three circles through one point. What might this motivate you to do?

Let X, Y denote the midpoints of BD and CE. Show that I M is the line through 1
perpendicular to the Gauss line XY.

At this point s = b + ¢ — abc and so on. Apply Theorem 6.15.

There is a homothety between triangles /4 IzIc and DEF.

One should get a® — ac + ¢? = “Hcdaetbo

Where is H?

Look for spiral similarities with (ADM) and (ABC).

Use reference triangle PBC.

Apply Lemma 4.4 directly, using a homothety with ratio 2.

Note that ABC D is harmonic, so (A, C; B, D) = —1; projecting through E gives that
(A, C;BENAC, Ps,) = —1, where Py is the point at infinity along line AC.

This is obvious by Lemma 1.17.

Use the law of cosines now and some trigonometry. P O can be found by the law of
cosines on APCO.

Take WXYZ with WX =a, XY =c¢,YZ =b, ZW = d. Find WY.
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Use triangle AC D as the reference triangle.

Q is a Miquel point of quadrilateral DXAP.

Consider the four tangency points W, X, Y, Z and solve the problem in terms of
them.

The radical center is N.

Isogonal conjugates.

Hidden symmetry.

Let A be the point diametrically opposite A on the circle.

The first part is relatively easy angle chasing, the second part is fairly short complex
numbers.

What is the line G; and 1?

Focus on AAST; points P and Q are not especially important.

Specifically: construct AB N CD and BC N DA. Do you notice anything?

A solution to this exercise appears as a linear algebra example in Appendix A.1.
After a homothety on the inverted picture, does this look familiar?

If the four points are not concyclic, what point must the radical axis of (PRS) and
(QRS) pass through?

K is the incenter of ALED.

What do A*, B*, C* look like at the equality case when ABC D is cyclic?

Work with each center individually.

You can just angle chase this one.

Take a homothety.

First recall Lemma 4.17.

The condition O P = O Q is equivalent R> — OP? = R> — 0 Q*.

Use the fact that AG = 2G M.

Apply barycentric coordinates to the resulting problem.

What is the best way to characterize the Euler lines of the other triangles?

The point of concurrency is yet another radical center.

Avoid intersecting quadratics. Find a better way.

What is OA; - O A, in terms of the circumradius R?

What is the orthocenter of ACIK?

You can compute everything.

Show the circles are coaxial by finding a second point with the same power to all the
circles. Why does this imply the conclusion?

Use AAOD ~ ADCOj to get ”C‘:j = %, and then compute 0.

Construct a quadrilateral.

AHSR = £H BC by spiral similarity, but { HBC = £ HSM as well.

The tangents from P to this circle lie on a line through X. Now just apply similar
triangles and/or power of a point.

The center of AO,OpgO¢ is w Note that we do not need the unit circle at all
in this problem.

Trigonometry will work, but there is an elegant synthetic solution.

Simply verify that each of A*, B*, C* lies on the nine-point circle.

A7 is the midpoint of EF, etc. The three circles are congruent, so Cy is parallel to
EF.
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B. Hints

Focus on the conditions BC = DA and BE = DF. (These can actually be weak-
ened.)

Start from (A, Z; K, L) = —1; end with M the midpoint of w Here Z is the
concurrency point of EF, KL, XY.

This is just angle chasing.

Express BC? in two ways.

Try inverting through the incircle.

There are still degrees of freedom left. How might we handle them?

Find a hidden circle.

Try using Example 1.4.

Showthat HM - HP = HN - HQ.

Take perspectivity at C onto k.

Here is one finish: let 7 = AD N CE and send BT N AC to the center of I.
Complete the quadrilateral. (Trigonometry also works.)

Points M and N can be computed by normalizing coordinates and then using M=
2P — A

Add in the center O. Which quadrilateral is cyclic?

It suffices to show MN || AD.

The inverted image should be a rectangle.

Inversion around (D E F) once more. Use Lemma 8.11 again.

We do not know where O* goes, but we only care that the center of (A* B*C*) lies on
the Euler line of the contact triangle, since this center is collinear with I and O. Why
is this obvious?

Spiral similarities come in pairs.

Again, inversion to eliminate the strange angle condition.

Look for harmonic bundles involving 7" and lines XY and BC.

Reflect B over M in order.

Combine this with (d) to show that N is a midpoint.

Draw a good diagram. Something should appear readily.

Line through circumcenter and centroid of A/ B.

Complete the quadrilateral.

Now use Lemma 7.23.

Just consider (1 + x11)(1 + x2i) ... (1 4+ x,0).

Apply Brocard’s theorem repeatedly.

Whatis 2222455

You have a cyclic trapezoid; hence it is isosceles.

Which quadrilateral is cyclic?

The symmedian is isogonal to the midpoint.

Make ABC an equilateral triangle and with center P. Use Lemma 9.8.

How do we handle the bisector condition?

Which radical axis passes through A?

Without loss of generality, B, C lie on the same side of the line. Let M be the midpoint
of BC.

This is just a statement about distances to line O H; ignore the areas.
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How do we handle the reflection?

Observe that AB is a tangent to (P RS).

The desired concurrency point is the isogonal conjugate of the Nagel point. The
calculations can be made very clean.

Use the law of cosines.

Use the spiral similarity at X to handle the midpoints. Push N to M. Then angle chase
to compute L NMX.

The area of triangle BIC is lar.

Use the ratio 2 C‘ as a proxy.

Note ABCD i 1s a harmonic quadrilateral.

Compute |p — x| |p — y| directly. The answer is BC?.

You want PH to pass through the foot from I to EF. Several of the points are
extraneous now.

Lettingx = ID = BD = CD, whatis IE?

Again radical centers.

Isosceles triangles should appear.

We want to use the trigonometric form of Ceva’s theorem to show the conclusion,
since the intersection AD N BC seems fairly random.

Show that ABC D is cyclic.

Q is a Miquel point.

If O is the center of w, let O P meet w again at X. Power of a point now.

First getrid of S and T'.

Those squares inside the triangle are weird. Can we make them nicer?

What happens in the limiting case ZA + ZC O P = 90°? Do you notice anything?
The inverses of the sides of A A, A5 are the circles with diameter I D, TE, T F, where
D, E, F are the tangency points.

Put T = a’qr + b*rp + ¢ pq to simplify calculations.

This is asking for trigonometry. The extended law of sines is helpful because every-
thing is in a central circle, and right angles are everywhere. There are two degrees of
freedom

(2 3, 0), or equivalently (1 : 1 :0). The latter is usually easier to work with for
computations.

Just apply a couple homotheties now.

Consider the circle with diameter BC.

Try inverting around C.

Show that the quadrilateral formed by lines EF, GH, AB, CD is cyclic (power of a
point at AB N CD).

Prove a more general version of (b).

There are three circles with a useful radical center.

Prove that the center of the spiral similarity taking BD to CE is M.

Trignometric form of Ceva’s theorem.

Complete the Brocard configuration. Note OM L CD.

Spiral similarity at H.

Begin with Lemma 4.14 and Lemma 4.33.
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B. Hints

What is the conclusion equivalent to?

Note if you haven’t already that AP is a median, so we wish to show AQ is a
symmedian.

Can you find a way to use the isosceles triangles?

Invert around A.

Show that the nine-point center moves on a circle centered at A.

What is K?

Just use reference triangle P B D to handle the conjugates.

M is the reflection of B across CH.

Where has this point O come up before?

This is just column operations in the determinant.

ADAB = ADAC 4+ £CAB and {BCD = {BCA + LACD.

Begin by using part (d) of Lemma 4.40.

The condition /ZBAG = ZC AX just means the fixed point has the form (k : b : ¢?)
(symmedians). Use this to your advantage.

What happens under inversion at A?

It should be 1. Now show that (a — b)(c —e)(d — )+ (d —e)(f —b)la—c)=0.
A complex number 1 + i tan(f) has argument 6.

Pick a reference triangle that makes the circles nice.

All the points have decent closed forms. Just compute the determinant.

You are asked to show the fixed point has form (m : 1 : 1). Use this to your advantage
by computing m and showing it does not depend on u or v

What point has equal power to both circles?

Add in the circumcenter O.

The rest is computation. One working setupiso = ZCXY = LZAXB, B = ZBXY.
Let D =(0: u : v) with u + v = a and compute the circles directly.

Find some more bisected angles.

Which quadrilateral is cyclic?

Show that PEDQ, QFER, PF DR are all cyclic.

Simson lines from Y might help (but the problem can be solved without them). For
the other solution, begin by noting the desired angle is ZPQY + ZSRY — ZQYR.
Translate the condition MB - MD = MC>.

Nine-point circles.

Look for an angle bisector, and prove it using barycentrics. Finish from there.

Take a homothety which sends the square outside.

It is simply % (directed). This follows from % =1.

This problem is purely projective.

Compute ?:‘; = 5::.

Length chasing and similar triangles work.

After finding the cyclic quadrilateral, apply Lemma 1.18.

The centroid G is the weird guy. How do we handle it?

Recall Lemma 4.33. How is ZM related to the circles?

Do a negative inversion through H mapping the nine-point circle to the circumcircle.
Notice first that H BY C is a parallelogram (because of the midpoints).

After adding in the point diametrically opposite B, use Pascal’s theorem.
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Complement Lemma 4.33 by extending AO to meet I again.

Try to get parallel lines instead of tangency.

Just use the %ab sin C formula.

Inversion around B seems nicest (many lines through B).

Get another pair of similar triangles and then angle chase to finish.

Simson lines.

A certain configuration is quite helpful here.

Ceva’s theorem combined with Lemma 2.15.

You will need to halve angles. Do not use directed angles; the problem is false if A,
C, B, D lie in that order.

Let A, B;C; be the determined triangle, and let T be the tangency point. How might
you show tangency of two circles?

It suffices to show that this spiral similarity also sends X to P. Just show L M XY =
AMPB.

Midpoints and parallel lines!

Plugin A = (1,0, 0), to get u = 0, then do the same with B and C.

Let AD meet the incircle again at X. Can you find a harmonic quadrilateral?

Try to show that E lies on a circle with diameter DF.

Draw a good diagram. What is the relation of A,, B, C to (ABC)?

Steiner line of complete quadrilateral BEDC.

Let O be the circumcenter of ABD. Show that O DCF is a parallelogram. Then note
OA=0B=0D=1.

Show that when inverting with radius /BH - BE, P and Q are inverses.
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APPENDIX c

Selected Solutions

C.1 Solutions to Chapters 1-4
Solution 1.36

C D

Observe that Z/ZBAE =90° and ZBOE =90°. It follows that ABOE is cyclic.
So ZOAE = ZOBE =45° and /BAO = Z/BEQO =45°. 1t follows that ZOAE =
/BAO = 45°, as needed.

The condition that ABC DE is convex ensures that A lies on the opposite side of BE as
0, so there is no need to worry about configuration issues and it is fine to just use standard
angles.

Solution 1.39

241
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By Lemma 1.18, O lies on line AI. Now A/ is an angle bisector and AD = AE, so it
follows that AADO = ANAEO,so ZADO = ZAEO and hence /BDO = ZOEC.

Solution 1.43

Let M be the intersection point of BE and AC. We wish to show that OM L AC. Since
APBO = APDO =90°, points P, B, D, O are concyclic.
We claim that M lies on this circle too. Indeed, since DE || AC we have

ABMP = ABMA = ABED = £{PBD = £BDP.
Consequently, LOM P = £LOBP = 90° as desired.

Solution 1.46

D C

Let O’ be a point such that DAO’O is a parallelogram. Since OO’ = DA = BC and

all three lines are parallel, it follows that CBO’O is a parallelogram as well. Moreover,

we have ZAO'B = /DOC, since AO’ | DO and BO' || CO. Consequently, /AO'B +

Z/AOB = 180° and AO’B O is cyclic (note that O’ must lie outside the parallelogram since

O is given to lie inside it). Actually, one can even check that AO'AB = AOBC.
Consequently, ZCBO = Z0'OB = ZO’AB = Z0 DC as needed.
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Solution 1.48

The main observation is that all the altitudes produce cyclic quadrilaterals: P lies on the
circumcircle of all three triangles Y ZA, ZX B, and XY C. Hence we can directly compute

APYZ =APAZ =4APAB =APCB =APCX = LPYX.

This implies X, Y, Z are collinear.

Solution 1.50

Let P be the second intersection of w; and w,. By Lemma 1.27, we have that P also lies
on the circumcircle of triangle AM N. But recall by Lemma 1.14 that this is the circle with
diameter AH. It follows that /AP H = 90°.

Now, observe that ZX PW = 90° by construction. We find that X, H, P are collinear.
Similarly, Y, H, P are collinear. Therefore, X, Y, H are collinear.
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Solution 2.26

B A’ C

Let A’ be the foot of the altitude from A to BC, and notice that A’ lies on both the circles in
the problem. Now we can apply Theorem 2.9 directly. The radical center is the orthocenter
H of the triangle.

Solution 2.29

Let D, E, F be the centers of 'y, ', I'c.

We first show that B;, B, C;, C, are concyclic. By Theorem 2.9, it suffices to prove
that A lies on the radical axis of the circles I'g and I'c.

Let X be the second intersection of 'y and I'c. Clearly X H is perpendicular to the
line joining the centers of the circles, namely EF. But EF || BC, so XH 1 BC. Since
AH 1 BC as well, we find that A, X, H are collinear, as needed.

Thus, By, By, Cy, C, are concyclic. Now their circumcenter is the intersection of the
perpendicular bisectors of C,C, and B B,, which is none other than the circumcenter O of
ABC. Hence what we have proved is that OBy = OB, = OC; = OC,. Similarly we can
prove OA; = OA,; = OB; = O B; and the proof is complete.
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Solution 2.34

B

Since L/AWP = LAZP = 90°, we have that AW P Z is cyclic. Similarly, sois BW P X.
Hence,

LZWP = AZAP = {DAC = {DBC = {PBX = {PWX.

Therefore, P lies on the angle bisector of ZXWZ. Similarly, it also lies on the angle
bisectors of /ZWZY, /ZY X, and ZY XW. Hence the distance from P to each side of
W XY Z is the same, and we can draw a circle centered at P tangent to all four sides. The
conclusion of the problem then follows from Theorem 2.25.

Solution 2.36

Let H be the orthocenter of ABC. Let wy, wp, wc denote the circumcircles of triangles
AOD, BOE, COF,respectively. Let X be the second intersection of w4 and wp. Evidently
the radical axis of w, and wp is line X O.

By considering the circles with diameters BC, CA, AB, we find AH - HD = BH -
HE = CH - HF. So H has equal power with respect to all three circles. Since H and O
are distinct, that means H lies on line X O, It also implies that line H O is the radical axis
of wp and wc.
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Since X, O, H are collinear, we find X lies on the radical axis of wg and w¢. But X
has power zero with respect to wg. Hence it also has power zero with respect to w¢. So X
lies on wc¢ as well.

Solution 2.38

B H M H C

Let o denote the circumcircle of AAEF. Recall by Lemma 1.44 that TA, MF, ME
are all tangents to the circumcircle of w. Now consider the circle w as well as the circle
yo centered at M with radius zero. Notice that K lies on the radical axis of @ and yy,
since Pow,(K) = KE?> = KM? = Pow,, (K). Similarly, L lies on the radical axis as well.
Hence, K L is the radical axis of these two circles.

Then T A% = Pow,(T) = Pow,, (T) = TM?*, soTA=TM.

Solution 3.17
D
A
X
B C
)y\.»/
Y/

Let the reflections of X and Y over BC be X’ and Y'. As we have reflected the
orthocenters over the sides, by Lemma 1.17 we find that X’ and Y’ lie on the circumcircle
wof ABCD.

Thus we find that X'Y’ = XY. It is also clear that AX’ || DY’. Therefore, we have a
cyclic trapezoid AX'Y’'D, meaning X'Y’ = AD as well. Consequently, AD = XY.

Therefore, we have AX || DY and AD = XY. Hence AXY D is either a parallelogram
or a trapezoid. Actually, since ‘AD is the reflection of X,Y; across the diameter of w
parallel to ‘BC, while XY is the reflection of X,Y; over BC, it follows that we must be in
the parallelogram case.
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Solution 3.19

Let X denote the intersection of diagonals AC and BD. Let Y denote the intersection
of diagonals AD and CE.

The given conditions imply that AABC ~ AACD ~ AADE.From this it follows that
quadrilaterals ABC D and AC DE are similar. In particular, we have that % = %.
Now letray AP meet CD at M. Then Ceva’s theorem applied to triangle AC D implies

that%~%~%:l,soCM:MD.

Solution 3.22

Let the centers of the circles be A, B, C and denote the radii by r,, r, r.. Let the
tangents for the circles centered at B and C meet at X. Define Y and Z analogously.

It is not hard to check that X lies outside BC. Consider the similar right triangles
exhibited below.
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We see that

XB _ rp

XC| re

Hence, in the notation of Menelaus’s theorem, we have

BX _ rp
XCc
Analogously, we have % = —and % = —:—:. So
BX CY AZ _
XC YA ZB
as needed.
Solution 3.23

Refer to Figure 3.7B. By the law of sines, we have

sin/BAD _ ZBsin/ADZ ZD YA
sin/CAD — Y2sin/ADY YD ZA

So by Ceva’s theorem in trigonometric form, it suffices to prove that

ZD YA\ (XE ZB\ (YF XC _
YD zZzAJ\zZE XxB)\XxF vcCc)

But this follows by noting that Ceva’s theorem on AXY Z and AABC gives us
ZD YF XE ZB YA XC

Solution 3.26

M

B C D

Let ray DA meet BE at M. Consider the triangle E B D. Since the point lies on median
EC,and EA = 2AC, it follows that A is the centroid of AEBD. So M is the midpoint of
‘BE.Moreover MA = %AD = %BE; soMA = MB = ME and hence AABE isinscribed
in a circle with diameter BE. Thus ZBAE = 90°,so ZBAC = 90°.
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Solution 3.29

The main point of the problem is actually to prove that M, N, P, Q are concyclic. Then
we can apply radical axis to the circles (AMN), (ABC), and (M N P Q) to deduce that their
radical center is the point R described in the problem (not shown in the figure).

Suppose the homothety taking the nine-point circle of ABC to the circumcircle of
ABC itself sends M and N to points X and Y on the circumcircle of ABC. Put another
way, let X and Y denote the reflections of H over M and N. By power of a point, we
know that XH - HP = YH - HQ. Since MH = ;XH and NH = Y H, it follows that
MH -HP = NH - HQ, and the problem is solved.

Solution 4.42

Let w be the circumcircle of ABC. By Lemma 1.18, the circumcenter of A/ AB lies on w.
So do the circumcenters of A/ BC and AICA. Hence w is the requested circle.

Solution 4.44

We claim the fixed point is the orthocenter H of AABC.
We know that BH || X P. Moreover, R P bisects X H by Lemma 4.4. This is enough to
deduce that H RX P is a parallelogram. Hence £ is precisely line P H, as needed.
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Solution 4.45

>\ F
B D c
The answer is 1; we prove H is the midpoint of QR. By Lemma 4.6, H is the incenter
of ADEF and A is the D-excenter. Hence by applying Lemma 4.9 we are done.

Solution 4.50

Let 14, I, Ic denote the excenters. By Lemma 4.14, line Ay D is justline 14 D, and similarly
for the others.

>

Hence there is a homothety taking ADE F to Al Iglc. This implies already that lines
AoD, ByE, CyoF concur at some point X.

Let O’ be the circumcenter of triangle 145 I. Because I O is the Euler line of I4IgI¢
(with nine-point center O), it passes through O’. The homothety maps the circumcircle /
of ADEF to the circumcenter O’ of Al,Iglc. It follows that X lies on 10/, so we are
done.
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Solution 4.52
- A

, s /NS .
/ \
/ - \\

I
\ l

“\.v /
B - 7D'C

ho
F

We claim that AF is a symmedian, from which everything else follows. Let L be
the reflection of H over M; by Lemma 1.17, we obtain /Z/MEA = ZLEA = 90°. Hence
M DEA is cyclic.

Now, we compute

AMAC + LCAE = AMAE = AMDE = {BDE
but
ABDE = {BED + ABDE = {BEF + {CBE = {BAF + LCAE

hence { BAF = AMAC as required.

C.2 Solutions to Chapters 5-7
Solution 5.16

By the law of sines on AA; A; 41 X3, we find that

AiXiyz  sinZAiAi1Xiys
Aip1Xips  SInZAj11AiXiys
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But we have ZA; (1A; X;13 = ZA;_1A; X;12, so in fact
AiXiy3 sin ZA;Aiy1Xi43

Aiy1Xiss  sinZA; 1A Xi

Hence we obtain
5 5.
l—[ AiXiys l—[ sinZA; Ai1Xip3 !
Aiv1Xiys sin ZA;_1A; X2

i=1 i=1

which is what we wanted to prove.

Solution 5.21

The answer is no. We prove that it is not even possible that AB, AC, C1, I B are all integers.
B
F
A D C

It is easy to see, say by Example 1.4, that ZBIC = 135°. Thus
BC? = BI*+CI*—2BI -Clcos ZBIC
=BI>+CI>-BI-CI-V2
by the law of cosines. Yet BC? = AB? + AC?. So we derive

BI?>+CI*> — AB> — AC?
Va=21F
BI -CI

Since v/2 is irrational, it is impossible that BI, CI, AB, AC are all integers.

Solution 5.22
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Let x = DB = DI = DC (again using Lemma 1.18). In that case, since ZIDE =
ZADB = ZACB we have

[E=1IDsinZIDE = xsinC = x - —.
2R
Similarly, IF = x - %. On the other hand, AD - a = x - (b 4 ¢) by Ptolemy’s theorem on
ABDC,so AD = @. Putting this all together, we find that

lx(b +¢)

X
—IE+IF=-"—(b+o).
2 4 + RO T

Consequently we find a = R.

a 1

Therefore, sin A = 55 = 5 is necessary and sufficient. So the acceptable values are

ZA =30°and LA = 150°.

Solution 5.27
Let M be the midpoint of BC.

First, we are going to prove that /A < 60°. Let« = ZA. Then
/BOC =2/BAC = 2a.
Also,

ZB'OC' = = (360° — ZB'LC)

R =

=180° — % (180° — ZB'AC’)

1
= 90O + 50[.

We know ZB’OC’ > ZBOC; therefore 90° + %oz > 2, which implies o < 60° as
needed.
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Now for the finish. It suffices to prove that OL > %R, where R is the circumradius of
ABC. But

1
OL > OM = R - cos(ax) > R cos(60°) = ER

and we are done.

Solution 5.29

The answer is /B = 80° and ZC =40°. Set x = ZABQ = ZQBC, so that ZQCB =
120° — 2x. We observe ZAQB = 120° — x and ZAPB = 150° — 2x.

A

B*

4
Q

Now by the law of sines, we may compute

sin 30°
BP=AB - ———
sin(150° — 2x)
sin x
AQ=AB - ——
sin(120° — x)
sin 60°
OB = AB

Csin(120° — x)
So, the relation AB + BP = AQ + QB is exactly

sin 30° . sin x + sin 60°
sin(150° — 2x)  sin(120° —x)

At this point, we have completely transformed our geometry problem into a direct algebra
equation, hardly worthy of its place as Problem 5 at the IMO. Many solutions are possible
at this point, and we present only one of them.

First of all, we can write

1 1
sinx + sin 60° = 2 sin <E(X + 6OO)> cos (E(x — 60")) .
On the other hand, sin(120° — x) = sin(x + 60°) and

sin(x 4+ 60°) = 2 sin (%(x + 600)> cos (%(x + 60°)>
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)
sin x + sin 60° _cos (%x — 300)
sin(120° —x) ~ cos (3x +30°)°

Lety = %x for brevity now. Then

cos(y — 30°) 1= cos(y — 30°) — cos(y + 30°)
cos(y + 30°) cos(y + 30°)
2 sin(30°) sin y
- cos(y + 30°)
sin y
cos(y + 30°)

Hence the problem is just
sin 30° . siny
sin(150° — 4y) — cos(y + 30°)

Equivalently,

cos(y 4+ 30°) = 2sin y sin(150° — 4y)
cos(5y — 150°) — cos(150° — 3y)

= —cos(5y + 30°) + cos(3y + 30°).

Now we are home free, because 3y + 30° is the average of y + 30° and 5y + 30°. That
means we can write
cos(y + 30°) 4 cos(5y + 30°)
2

= cos(3y + 30°) cos(2y).
Hence
cos(3y + 30°) (2cos(2y) — 1) = 0.

Recall that

11 1
—Zx=—-/B <~ (180° — ZA) = 30°.
y=ox=g4B8 <0 )

Hence it is not possible that cos(2y) = %, since the smallest positive value of y that satisfies
this is y = 30°. So cos(3y 4 30°) = 0. The only permissible value of y is then y = 20°,
giving ZB = 80° and ZC = 40°.

Solution 5.30

The problem condition is equivalent to
ac+bd = (b +d)* — (a — c)?

or

a’—ac+c* =b>+bd +d>.



This document was prepared on 2016-12-29 for the exclusive use of Aniket Akhade. Unauthorized distribution is strictly prohibited.

256 C. Selected Solutions

Letus construct a quadrilateral W XY Z suchthat WX = a, XY =c¢,YZ =b,ZW =d,
and

WY:x/az—ac—l-cZ:\/bz—i—bd—i-dz.

Then by the law of cosines, we obtain ZWXY = 60° and ZWZY = 120°. Hence this
quadrilateral is cyclic.

X

a? — ac + c?
=V b% +bd + d?

d b

By Theorem 5.10, we find that

_ (ab+cd)(ad + bc)
N ac + bd '

Now assume for contradiction that that ab 4 cd is a prime p. Recall that we assumed
a > b > ¢ > d. It follows, e.g. by the so-called rearrangement inequality, that

wy?

p=ab+cd > ac+bd > ad + bc.

Let y = ac + bd and x = ad + bc now. The point is that
x

p._
y

can never be an integer if p is prime and x < y < p (why?). But WY? =a
clearly an integer, and this is a contradiction.
Hence ab + cd cannot be prime.

2 _ac+ctis

Solution 6.30

We have that P lies on AB if and only if

p—a (p—a
p—b \p—-0b)

the right-hand side equals

Because a = % and b = %,

Q=

p-a_ P-

|
S}
~|
S =
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Clearing the denominators, we find that the condition is equivalent to

1 1
0=(P—a)<ﬁ—z)—(p—b)<ﬁ—g)

b-ap—(L-L)psd b
= —a —_ _——— _———
P b a P b a

a—>b +a2—b2
ab P ab

=2 abp+p—(a+b)).
ab

Since a # b, we find the condition is exactly abp + p — (a + b) = 0, which is what we
wanted to prove.

Solution 6.32

Let W, X, Y, Z denote the tangency points of the incircle of ABC D to the sides AB, BC,
CD, DA. Let M be the midpoint of AC and N the midpoint of BD.

We apply complex numbers with the circumcircle of W XY Z as the unit circle; our free
variables will be w, x, y, z. Using Lemma 6.19, we find

= R = , €= R = .
z4+w w+ X x+y y+z

2zw 2wx 2xy Je 2yz
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_ zw(x +y) + xy(z + w)

2xy
x+y

)

z+w)(x+y)
wxy + xyz + yzw + Zwx

z+w)(x+y)

Thus

a-+c

m —=
2
1 ( 2zw
== +

2\z+w

Similarly,

_b+d  wxy+xyz+zyw+zwx

2

(w~+x)(y+2)

C. Selected Solutions

To show that these are collinear with the incenter /, which has coordinate 0, we only have

to show that the quotient 2=2
n—0

m  (w+x)(y+2)

n Z+wE+y)

Its conjugate is

. y+z
¥z

is a real number. But the quotient is just

(w+x)(y+2)

GG+
G) G+ (i+s)

n

zhw | xty T
xy

Z+w(x+y)

Hence ** is equal to its conjugate, so it is real. Therefore we are done.

Solution 6.35

Toss on the complex unit circle witha = -1, b =1, z = —%. Let s and ¢ be on the unit

circle. We claim Z is the center.
P
‘
Q

By, Lemma 6.11

1
:E(s—i—t—]—f—s/t).

Then

11
4Rex+2=s+t+—+;+§+
N
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depends only on P and Q, and not on X. But

2

t
St =|s+t+1°>=3+@Rex+2)

2

4

—

which implies that %(s + t) has a fixed distance from z, as desired.

Solution 6.36

We of course set (ABC) as the unit circle, but moreover, by a suitable rotation we let AD,
BE, CF lie perpendicular to the real axis. This will cause d = @ and so on.

U -~
..
7 N

By Lemma 6.11, it is easy to see that
s=b+c—bcd =b+c—abc.
Similarly,
t=c+a—abc and u=a+b—abc.

We now wish to apply Theorem 6.15 to deduce the points S, T, U, H are concyclic.
Compute

u—h u—s —c—abc a—c cla—Db)ab—1)

t—h t—s —b—abc a—b bla—c)ac—1)
We are done once we check that this expression is a real number. The conjugate of this
expression is

c(b —a)(l —ab)
b(c —a)(1 —ac)
_ c(a—b)ab—-1)
" bla —c)ac—1)

as needed.
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Solution 6.38

We apply complex numbers with (ABC) the unit circle. Observe that x + y = 0 and
xy 4+ bc = 0 (one way to see the latter expression is by Example 6.10). Moreover, the
condition ADPO ~ APEO is just

d—p p—e
p—0 ¢e—0

& p?— pe=de — pe & p* = de.

Now we can compute
(PX-PYY =|p—xIlp—yI
=(p-0)@-X(@P-=-FP-Y)
=P’ -@+p+x) (P -E+NP+ W)
=’ +x) (P +77)
= (de — bc) (de — be)
= |de — bc|?.

Thus PX - PY = |de — bc|. Now we can also compute, using Lemma 6.11, that d =

a+c_%andg=a+b—“£—{’.Therefore,

de:(a—}—c—%) (a—l—b—%)

2 2b
:czz—i—ab—}—ac—l—bc—ab—c—ac—a——ab—}—a2
c

Hence

g2 a*c  a®*b
= a — — — —
b c
2
a
= | b—0)
2
= || b=l
= BC>.

Fromtan A = % we can derive cos A = ‘5—‘, so the law of cosines gives

2 _ 2 2 _ i_
BC?=13"+25"-2.13.25. - =274

which is the final answer.
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Solution 6.39

First, observe that in general, if z = a + bi, then tan(arg z) = Z’ with the quantity being
undefined when a = 0. This just follows from the geometric interpretation of complex
numbers.

Leto =1+xi,p=1+4+yi,y =1+ zi.Thenargae = A,arg 8 = B,argy = C.Thus
arg (¢fy) equals A + B + C (again all arguments are taken modulo 360°). But you can
check that

afy =14+ (x 4+ y+2)i + (xy + yz + zx)i%> + xyzi®
=1-xy+yz+zx)+x+y+z—xyz2)i.

Hence
X+y+z—xyz
I —(xy+yz+2zx)

=tanarg («¢By) =tan(A + B 4+ C)

as required.
By generalizing to multiple variables and repeating the same calculation, one can obtain
the following: given x; = tan6; fori = 1,2, ..., n, we have

an(@ +---4+0,)= LBt
l—ertes—es+...

where e, is the sum of the (Z) possible products of m of the x;. The above result was the
special case n = 3.

Solution 6.42
Let BE and CF be altitudes of AABC.

A

First, we claim that M is the reflection of B over F'. Indeed, we have that
ABMH = {AMH = {ACH = {ECF = {EBF = {HBM

implying that AM H B is isosceles. As HF | M B, the conclusion follows. Similarly, we
can see that N is the reflection of C over E.
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Now we can apply complex numbers with (ABC) as the unit circle. Hence we have
f= %(a + b + ¢ — abc) (via Lemma 6.11), and hence

m=2f—b=a+c—abc.
Similarly,
n=a+b—acbh.

Now we wish to compute the circumcenter X of AHMN, where h =a + b+ c. Let
M’ be the point corresponding to m — h = —b — abc and N’ be the point corresponding
to n —h = —c — ach, noting that O corresponds to & — h = 0. Then the circumcenter
of AM'N'O corresponds to the point x — h. But we can compute the circumcenter of
AM'N’O using Lemma 6.24; it is

h_(m—h)(n—h)((m—h)—(n—h))
~ (m—h)n—h) —(m — h)n — h)

Multiplying the numerator and denominator by ab?c?,

h— bc(a+ b)(a + c)(c(a + ¢) — b(a + b))
" 3a+b)a+c)—b¥a+b)a+c)
bc (62 —b2+alc —b))
= 3 _p3
_be(c—=Db)a+b+c)
"~ (c = b)(b2 + bc + c?)

__bela+b+0)
T b2+ be+ct
So
b b b
copybatbro b be ]
b% + bc + ¢? b% + bc + ¢?
Finally, to show X, H, O are collinear, we only need to prove % = bHZﬁ + lisreal. It

is equivalent to show is real, but its conjugate is

bc
b2+bc+c?

bc . blc _ bc
P+be+c?) L4+l L T p2+be+c?

and the proof is complete.
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Solution 6.44

We apply complex numbers with (A BC D) as the unit circle. The problem is equivalent to
proving that

First, we compute

3P =501 4+03)  3p—3(02+04)
3P 3@ +3) 3P - 3@+
a a§ 1 a ? 1
or=|b bb 1|+|b b 1
p rp 1l [p P 1
a 1 1] |a 11
=6 1 1|=|b ; 1
p pp 1 p 1
a 0 1| |a 11
=b 0 1|+[b 1 1
p pp=1 1] |p p 1
_ (pp—1Db—a)
F—e+pG -+l -a
__rp=l
A

The conjugate of this expression is easier to work with; we have

01

Similarly,

QS

3 =

pp—1

T abp+p—(a+h)

pp —1

cdp+p—(c+d)

263

In what follows, we let sy =a+b+c+d, sp=ab+bc+cd+da+ac+bd, s3 =
abc + bed + cda + dab, and s4 = abcd for brevity. Then,

o1 +03—p

1

=(pﬁ—1)<

(pp—1D@2p +(ab+cd)p —51)

— + —
abp+p—(a+b) cdp+p—(c+d

T WP+ p—(atbydptp—(c+dy P

>_

r

Consider the fraction in the above expansion. One can check that the denominator expands

as

D = s4p* + (ab + cd) pp + p* — 5359 — s1p + (ac + ad + be + bd).
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On the other hand, the numerator is equal to
N =Qp—s)(pp—1)+ @b+ cd)p(pp — 1).

Thus,
N —DpD

o
We claim that the expression A" — pD is symmetric in a, b, ¢, d. To see this, we need
only look at the terms of N and D that are not symmetric in a, b, ¢, d. These are
(ab + cd)p(pp — 1) and (ab + cd)pp + (ac + ad + bd + bc), respectively. Subtracting

7 times the latter from the former yields —s,p. Hence N' — pD is symmetric in a, b, ¢, d,
as claimed.* Now we may set S = N — pD.

o407 —P =

Thus
01-1-03—19_3/5
or+os—p S/D
S D
S D
_§(abﬁ+p—(a+b))(cdﬁ+p—(c+d))
S (abP+P—‘_ )(CdP+P_‘— )
S
=goabcd.
Hence, we deduce
o,+o3—p
o +o03—p

h 02+04—p
02

is in fact symmetric in a, b, ¢, d. Hence if we repeat the same calculation wit s

must obtain exactly the same result. This completes the solution.

we

Solution 6.45

We use complex numbers, since the condition in its given form is an abomination. Let a
denote the number in the complex plane corresponding to A, et cetera, and consider the
quantity

b—a d—c f-—e

f—a b—c d—e
By the first condition, the argument of this complex number is 360°, which means it is a
positive real. However, the second condition implies that it has norm 1. We deduce that it
is actually equal to 1.

So, we are given that

=(@—b)c—d)e— f)+b—c)d—e)f—a)

*In fact, if you really want to do the computation you can check that N' — pD = —S4ﬁ3 +p’D+ sgﬁz -
2P+ p+2p+s— 1. But we will not need to do anything with this expression other than notice that it is
symmetric.
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and wish to show that
l(a = b)(c —e)d — [l =(d —e)f —D)a—o)l.
But now observe that
(@ =b)c—d)e— f)+ (b —oc)d—e)f—a)
—[@—b)c—e)d— f)+(d—e)f —b)a—oc)]
=(c—d)e—f—(c—e)d— f)(a—Db)
+((b—o(f —a)—(f —b)a—0)(d—e)
=(f-od—-ea—-b+(f—-c)b—a)d—e)
=0.
Soin fact (@ — b)(c — e)(d — f) = —(d — e)(f — b)(a — ¢) and the result is obvious.

Solution 7.33

It is easy to see by similar triangles that we have P B = ¢?/a. Hence, P = (0, -5, Z—i)
Therefore, we derive

2¢% 22 2 ) 2 5
M=<—1,2—a—2,?)=(—a :2a° — 2c¢ :ZC).

Similarly, N = (—a?® : 2b* : 2a® — 2b?). Therefore, BM and C N meetat (—a?® : 2b% : 2¢?)
which clearly lies on the circumcircle.

Solution 7.34

It is easy to compute D = (0, —1,2) and E = (3, 0, —2). Hence
— —
AD =(-1,-1,2) and BE =(@3,-1,-2).
Applying the distance formula, the condition AD = BE become
—a* (1)) = *)(—1) — A(=1)(=1)
=—a’(—1)(-2) — b*(-2)(3) — FB3)(—1)
which is
2a% 4 2b% — ? = —2a® + 6b* + 3.

Rearranging gives a®> = b* + ¢, as needed.
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Solution 7.36

As usual we use reference triangle A BC, and remind the reader that s = %(a +b+ o).

Since AK = s gives BK =s —c,wehave K = (—(s —¢):s5:0). Also,J =(—a:b:
c)and M =0:s—b:s—c). ThepointGliesona, soweput G =(—a:b:t)and
compute the determinant indicating that G, M, K are collinear, namely

—a b t
0=| O s—b s—cl.
c—s K 0

Expanding the determinant yields
0=—a(—s(s —c))— (s —c)b(s —c) —t(s — b))
from which it follows that r = W. Consequently,
G =(—a(s —b):b(s —b):b(s —c)—as).
So
T=:b(s—=>b):b(s—c)—as).

But b(s — b) + b(s — ¢) — as = ba — as = —a(s — b), so we realize that

b b
Tz(o,__,1+_).
a a
Hence CT = b.

Similarly, BS = c. From here it is trivial to check that MT = M S.

Solution 7.38

Let P = (0, s, t) where s +t = 1. One can check that Q = (s, 0, ¢). Indeed, the normal-
ized z-coordinates must coincide since [AQ B] = [A P B]. Similarly, R = (¢, s, 0). So the
circumcircle of AAQR is given by

—a’yz —b*zx — Pxy + (x + y 4+ 2)ux + vy + wz) =0

where u, v, w are some real numbers. Plugging in the point A gives u = 0. Plugging in the
point Q gives wt = b’st, so w = b%s. Plugging in the point R gives vs = ¢?st,s0 v = ¢t
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B P C

Thus the circumcircle has equation
—a’yz —b’zx —Fxy+ (x+y+2) (czty + bzsz) =0.

Now let us consider the intersection of the A-symmedian with this circumcircle. Let
the intersection be X = (k : b* : ¢2). We aim to show the value of k does not depend on s
or ¢. But this is obvious, as substitution gives

—a’b*c? = 20°CPk + (k + b* + H(B* ) (s +1) = 0.

Since s + ¢ = 1 and the equation is linear in k, we have exactly one solution for k. The
proof ends here; there is no need to compute the value of k explicitly. (For the curious, the
actual value of k is k = —a? + b* + ¢2)

Solution 7.42

Let X 4 be the contact point of the A-excircle with BC.Then X, =(0:s—b:s—c)and
Lemma 4.40 implies that AX 4 and AT, are isogonal. Since AX 4, BXp, C X¢ concur at
the Nagel point (s —a : s — b : s — ¢), the cevians AT, BT, CT¢ concur at the isogonal

conjugate of the Nagel point with coordinates (% : thb : %)
We wish to show that this point lies on line /0. Using I = (a : b : ¢) and O = (a>Sy :
b*Sg : ¢*S¢) it is equivalent to show that

a® b? 32

s—a s—b s—c
O= azSA bZSB CZSC .
a b c

Directly expanding this looks quite painful. Instead, we can factor it as

bep |6 D=0 5= —a) s —a)s —b)

K25 SlA SlB Sf
a b c
or
abe 4 —b)s —c) 4s—c)s—a) 4(s—a)s—Db)

ZSA 253 2SC

2
16K*/s 2be 2ca 2ab
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where K2 /s abbreviates (s — a)(s — b)(s — c¢). Now
(s —b)s — ) =a* — (b —¢)* = a® +2bc — b* — ¢* =28, + 2be.

So it immediately follows that the determinant is zero (as the first row is the sum of the
other two) and we are done.

Solution 7.44

We use barycentric coordinates. Let A = (1,0, 0), B = (0, 1, 0), and C = (0, 0, 1). Denote
a=BC,b=CA, and c = AB. We claim that the common point is

K:(az—b2+c2:b2—a2+c2:—c2).

Let C; = (u:v:0). Let Ay be the intersection of C;B; and BC, and observe that
ACAyC is cyclic. Define By analogously.

By power of a point, we observe that BA¢ = %-. Therefore, we obtain that
Aoz(O:a—%:uc):(O:az—uc:uc).
Combining with C; = (u : v : 0) we therefore observe that
B, = ACNC Ay = (a®> —uc:0: —vc).
Similarly,
Ay =(0:b* —vc: —uc).
Therefore,

C, = (u(a2 —uc): v(b2 —ve) —uvc).
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Now we show that Cy, C;, and K are collinear. Expand

1 u(a® — uc) v(b®> —vc) —uve
—_— u v 0
a?—b>+c* PP—a?+ 2 =
a* —uc b? —ve 1
= 1 1 0

v@®—=b>+c*») ub®—a’>+c?) ¢
= (u(b® — a*> + ) —v(a> — b> + )
+ ¢ ((a* = ue) = (0> — vo))
= +v)b* —ad>)+ @ —v)?
+ c(@* = b*) — (u — v)c?
=0

which implies that C, C5, and K are collinear, as desired.

Solution 7.47

Let w; be the circle with center O; and radius r;. Set A; = (1,0,0), A, = (0, 1,0), A3 =
(0,0, 1), and as usual let a = A, A3 and so on. Let Ay = (p,q,r), where p+q +r = 1.
Let T = a’qr + b*rp + ¢ pq for brevity.

The circumcircle of AA;A3A4 can be seen to have equation

T
—a’yz —b*zx —Pxy+ (x+y+2) (;x) =0.

By Lemma 7.23, we thus have that

2o r,_r
01A> =12 =(140+0)-—-1=—.
p P

Similarly,
T T
0,A3 —r3 = —and 0345 —r; = —.
q r
Finally, we obtain O4A3 — r} by plugging in A4 into (A;A,A3), which gives a value of

—T. Hence the left-hand side of our expression is

p q r 1
a1, __ 0
T+T+T T

sincep+q+r=1.
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Solution 7.49

Supposethat D =(0:1:¢)and E = (0: ¢ : 1). Let Q be the isogonal conjugate of P;
evidently Q lies on AE, so Q = (k:t:1)for some k. Moreover, P = (‘2—2 : I’t—z : cz). So
the condition that PD || AE implies that P and D are collinear with the point at infinity
(—(1+1):¢:1)alongline AE, so we find

a’/k b/t
0= 0 1 t
(141 t 1

which can be rewritten as

a’/k b*/t c? a’/k b/t c?
0 = det 0 1 t =1+l 0 1 t
-+t 14t 141t -1 1 1

Expanding the determinant, we derive that
0=2a*(1—1)+k(c*> = b%

and applying Lemma 7.19 we derive that BQ = QC. So ZQBC = ZQCB, implying
ZPBA = ZPCA.

Solution 7.52

We are going to use barycentric coordinates on APBD. Let P = (1,0,0), B = (0, 1, 0),
D =(0,0,1). Let A = (au : bv : cw). Since C is the isogonal conjugate of A with respect
to AP B D by the angle condition, it follows that C = (% : % : %)

For brevity, we now let S =au +bv+cw and T = au' +bw=' + ¢! This way,

_ f(au bv cw _ (au' bv' cw™!
A= (% 5 ) andC_< B, ).Therefore,wehave

ﬁ»=<1_ﬂ _bv _ﬂ)=<bv+_cw _bv _ﬂ>

s’ s’ S s 7 s s
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and thus one can compute

PA? = % (—a*(bv)(cw) + b*(cw)(bv + cw) + *(bv)(bv + cw))

b
= S—i [—asz + (bw + cv)(bv + cw)] .

Performing similar calculations with C gives

PC? = % [—c12(1111))_1 (bw_l + cv_l) (bv_1 + cw_l)]
bc 2
= Twp [—a’vw + (bw + cv)(bv + cw)].

We would like to cancel the factor of —a>vw + (bw + cv)(bv + cw) from both sides
of PA%Z = PC?, but we have to check first that this factor is not zero. This follows from
the fact that PA # 0 and PC # 0, since P lies in the interior of ABC D. Thus the division
is safe, and hence PA? = PC? holds if and only if $*> = T?(vw)>.

On the other hand, the quadrilateral ABC D is cyclic if and only if there is some y such
that

—a’yz —b*zx — Pxy + (x +y + 2)(yx) =0

passes through both A and C (indeed, this is the family of circles passing through B and
D). Substituting the values of A = (au : bv : cw) and C = (au~' : bv ! cw™h), we see
that the condition is equivalent to

—a*(bv)(cw) — b*(cw)(au) — c(au)(bv)

au - S
_ —a*(bv ™ H(cw™) — b (cw Y au™") — lau="H(bv™h)
o au=T '
This can be rewritten as
uvwT wow)~'S
—abc = —abc- ———
au au—'T

which is clearly equivalent to §? = T?(vw)>.
Hence PA = PC if and only if ABCD is cyclic.
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C.3 Solutions to Chapters 8-10
Solution 8.24

Consider an inversion around the point A. We wish to show that B*, C*, D* are collinear.
Our inversion gives the following image, consisting of two parallel lines and two tangent
circles.

Let O,, O, be the centers of the two circles in the image, such that B* lies on the
circle with center O; and D* lies on the circle with center O,. We know that O;, C*,
0O, are collinear. Moreover, we have B*O; = C*0O; and D* 0, = C*0,. Finally, since
‘B*0, | D*O, we have that Z/B*0,C* = ZC*0,D*. Therefore, triangles B*O;C* and
C*0,D* are similar. It follows that B*, C*, D* are collinear, as desired.

Solution 8.27

Let us consider the inversion around the semicircle. It fixes the points A, B, C, D.
Moreover, the image K* is the intersection of lines AC and BD. Finally, the image
M* is the intersection of AB with the circumcircle of triangle OCD. We wish to prove
ZK*M*0O = 90°. This follows from the fact that the circumcircle of triangle OCD is in
fact the nine-point circle of triangle K*AB.
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Solution 8.30

Let ray Q P meet the circumcircle again at X. We have £IXA = L{QXA = 90° so it
follows that X lies on the circumcircle of quadrilateral AFIE.

Consider an inversion through the incircle. Then A*, B*, C* are the midpoints of the
sides of the contact triangle, and their circumcircle is the nine-point circle of triangle DEF'.
Moreover, since X* lies on lines EF and X1, we derive that P = X*, so P lies on the
nine-point circle (A* B*C*) as well. Thus P is the foot of the D-altitude as required.

Solution 8.31

@1

I

First, let us extend AQ to meet BC at Q,. By homothety, we see that Q; is just the
contact point of the A-excircle with BC.

Now let us perform an inversion around A with radius ~/AB - AC followed by an
reflection around the angle bisector; call this map W. By Lemma 8.16, ¥ fixes B and
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C. Moreover it swaps BC and (ABC). Hence, this map swaps the A-excircle with the
A-mixtilinear incircle w. Hence W swaps P and Q). It follows that AP and AQ; are
isogonal with respect to ZBAC, meaning ZBAP = ZCAQ,. Since ZCAQ = LCAQ,
we are done.

Solution 8.36

Let N and 7 be midpoints of HQ and AH, and call O the center of I'. Let L be on
the nine-point circle with ZHM L = 90°. The negative inversion at H swapping I" and
nine-point circle maps A to F, K to L, and Q to M. As LM || AQ we just need to prove
LA = LQ.But MT is a diameter, hence LT N M is a rectangle, so LT passes through O
(because the nine-point center is the midpoint of O H).

Solution 8.37

Let P denote the center of w,. We are going to show that ZOFB = ZOGB = 90°.
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First, consider an inversion around w; sending F to F* and G to G*. As this inversion
fixes w,, we find that AF* and AG* are now the tangents to w,. Now it suffices to prove B
lies on F*G*, as it will then follow that /O BF* = /0 BG* = 90°.

Because w is orthogonal to w,, it follows B and A are inverses under a second inversion
around w;. Since A is the intersection of the tangents at F'* and G*, we also know the image
of A under this second inversion is the midpoint of F*G*. Thus it follows that B is the
midpoint of F*G* as desired.

Solution 9.40

Let X denote the second intersection of A D with the incircle.

B D c

Since AF and AE are tangents to the incircle, we discover that X F D E is a harmonic
quadrilateral (by Lemma 9.9). Now K is the intersection of line EF and the tangent to
D, so the fact that X F DE is harmonic implies that K X is tangent to the incircle as well.
Consequently K1 L X D; in fact, K is the pole of line X D.

Solution 9.44

Let line £ F meet BC again at X. Moreover, let line AH meet line EF atY.

A

B D Pe.

By Lemma9.11 on AABC, we derive that (X, D; B, C) = —1; perspectivity at A gives
(X,Y; E, F) = —1. (Alternatively, apply Lemma 9.11 on AAEF.) In any case, since we
know ZX DY = 90°, applying Lemma 9.18 shows that D H bisects ZF DE.
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Solution 9.46

This is just an extension of Lemma 9.40. Again denote by K the intersection of ray I P
with BC.

In Lemma 9.40 we showed that (K, D; B, C) = —1 (this also follows from directly
applying Lemma 9.11 to the cevians AD, BE, CF, where E and F are the tangency points
of the incircle to the opposite sides). Now observe that /K PD = 90°, so Lemma 9.18
implies that P D bisects ZBPC.

Solution 9.47

Let BM intersect the circumcircle again at X.
A §
N M

The angle conditions imply that the tangent to (ABC) at B is parallel to AP. Let Py,
be the point at infinity along line AP. Then

—1=(A,M;P, Py) 2 (A, X;B,C).

Similarly, if C N meets the circumcircle at ¥ then (A, Y; B, C) = —1 aswell. Hence X = Y,
which implies the problem condition.
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Solution 9.49

Let M be the midpoint of AB. Let Z be the foot of the perpendicular from I to CM, and
note that the points C, B’, I, Z, A’ all lie on a circle with diameter CI. Let K’ be on line
A’B’ so that K'C || AB. We prove that /K’ ZL is right, because this implies K’ = K.

C K’

B

Notice that (A, B; M, Py,) is harmonic, where P, is the point at infinity along AB.
Taking perspectivity from C onto line A’B’ we observe that (B’, A’; L, K') is harmonic.

Now consider point Z. We know that {CZB' = LCIB' = LA'IC = LA'ZC, so ZC
bisects ZA’ZB’. Thus Lemma 9.18 applies and we conclude Z/LZ K’ = 90° as needed.

Solution 9.50

Refer to Figure 9.9A. Pascal’s theorem on AG E E BC shows that BC N GE lies on d. Let
G’ be the reflection of G over AB. Then applying Pascal’s theorem to CG'G E BB forces
CG N BE to lie on d, so the intersection must be the point F.

Solution 9.54

Set T=ADNCE, O =BT NAC, and K = LHNGM. We are going to ignore the
condition that A, D, E, C is cyclic.

Now we can take a projective transformation that preserves the circumcircle of ABC
and sends O to the center of the circle. In that case, AC is a diameter, and moreover T lies
on the B-median of AABC, meaning that DE || AC.
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From this we deduce that ALMC is a rectangle. Now we see that ALHE and DGMC
are cyclic. From this we can use angle chasing to compute £ H K G as

AHKG = ALKM = —AKML — LMLK
=—4AGMD — LELH
= —4AGCD — {EAH = —{GCB — {BAH
= —4AGAB — {BAH = —{GAH = —4{GBH
= {HBG.

Hence H, B, K, G are concyclic and we are done.

Solution 9.56

Let K be the radical center of w, w;, w,, so that K is the intersection of AG, CH, and
EF.Let R = AC N GH. The problem is to prove that R lies on BD. Hence by Brocard’s
theorem on ABC D, it suffices to check that the polar of R is line EF.

By applying Brocard’s theorem on quadrilateral ACG H, we find that the polar of R is a
line passing through the pole of AC and the point K = AG N C H. But the pole of AC lies
on EF by Brocard’s theorem on ABC D. Moreover, so does the point K by construction.
Thus the pole of AC and the point K both lie on E F. Hence the polar of R really is EF,
and we are done.

Solution 10.19

Consider the circle w; with diameter AB and the circle w, with diameter C D. Moreover,
let w be the circumcircle of ABC D.

We saw already in the proof of Theorem 10.5 that the two orthocenters lie on the radical
axis of w; and w, (i.e., the Steiner line of AD BC). Hence the problem is solved if we can
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prove that F also lies on this radical axis. But this follows from the fact that F is actually
the radical center of circles w;, w,; and w.

Solution 10.20

Let Y’ be the second intersection of ray QX with w;. We prove that PY’ || BD, which
implies that Q, X, Y are collinear. (The point Z is handled similarly.)

The given conditions imply that Q is the Miquel point of complete quadrilateral DX A P.
Hence quadrilaterals CQ DX and BQ X A are cyclic. Therefore,

LQY'P=4KQCP=4£0CD=4£0XD=4£QXB

which implies PY’ || BX.
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Solution 10.22

Let K denote the intersection of BB; and CC). By angle chasing, we can check that
1
ZBKC = 3 (180° — LBTC) = LBAC.

So B, K, A, C are concyclic.
Consider Theorem 10.12 on quadrilateral By BCC;. We know that

* Alieson (KBC)
e L/TAS =90°
* /BAC < 90° since AABC is given to be acute, so A lies outside of BjBCC].

If we fix BjBCC], it is easy to see that these conditions uniquely determine the point A.
But the Miquel point of B; BCC also satisfies all three conditions. It follows that A must
be the Miquel point, and it is now immediate that triangles ABC and AB;C) are similar.

Solution 10.23

Let M be the Miquel point of complete quadrilateral AD BC; in other words, let M be the
second intersection point of the circumcircles of AAPD and ABPC.

T S ¢

Since % = g—g, M is also the center of a spiral similarity which takes FA to EC,

thus it is the Miquel point of complete quadrilateral FACE. As R = FE N AC we deduce
FARM is a cyclic quadrilateral.
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Now look at complete quadrilateral AF Q P. Since M lies on (DF Q) and (RAF), it
follows that M is in fact the Miquel point of AF Q P as well. So M lies on (P OR).
Thus M is the fixed point that we wanted.

Solution 10.26

The main point of the problem is to prove that MN || AD. First, denote by X the point
diametrically opposite L on (ABC).

Since L XAD = £ XM D = 90°, it follows that A, M, D, X are concyclic. Thus X is
the Miquel point of complete quadrilateral P Q BC, and the center of the spiral similarity
taking QP to BC. Thus it is also the center of the spiral similarity taking NP to MC.
Equivalently, X is the center of the spiral similarity taking NM to PC.

That implies AXNM and AX PC are similar with the same orientation, whence

ANMX = LPCX = LACX = LALX

implying that MN || AL. Thus, {HMN = {HDL = £ HML and we win.

Solution 10.29

Let M be the midpoint of EF. Then M, G, H lie on the Gauss line of complete quadri-
lateral ADBC. Let P = ABNCD and let line EF meet AB and CD at X and Y,
respectively.
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We have harmonic bundles
X,Y;E,F)=(P,X;A,B)=(P,Y;D,C)=—1.
Using Lemma 9.17, we find
PX-PG=PA-PB=PD-PC=PY: PH.

Hence X, Y, G, H are concyclic.
Now, using Lemma 9.17 again on (P, E; X, Y) = —1 gives

ME*=MX -MY = MG -MH

which gives the desired conclusion.

Solution 10.30
We are going to prove that
£AC3B; = LA;BC.
This solves the problem, because the analogous calculation £ BC3A3; = £ B, AC implies

ALA3C3B3 = LA3C3A + LAC3B; = £LA3C3B + LAC3B;, which gives {CAB, +
LABC = LA,C,C + £CCyBy = LA>CyBs.
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By spiral similarity at A,, we deduce that AA,C1B ~ AA,;B;C. Hence
A2B A Gy B AG
A,C  AB;  B,C AB;’
Moreover, L BA,C = LBAC = £C3AB3. We can check that A, lies on the same side
of A as BC since B; and C; are constrained to lie on the sides of the triangle. So we

can deduce ZC3AB; = ZBA,C. That implies AA;BC ~ AAC3B;. Thus LAC3B3 =
A Ay BC, completing the proof.

C.4 Solutions to Chapter 11
Solution 11.0

Have fun!

Solution 11.1
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Let P=ADNBC, Q=ABNCD. Now 2/ADB = /CBD = /BPD + /PDB,
meaning ZBPD = ZBDP and BP = BD. Similarly, BO = BD. Now BP = BQ and
BC = BA give AQBC = AP BA; from here the solution follows readily.

Solution 11.2

M — C
First, note LEDF = 180° — £ABOC = 180° —2A, so £LFDE =2A. Observe that
AFKE = 2A as well; hence K FDE is cyclic. Hence
AKDB = A{KDF + £FDB
=AKEF +(90° — LDBO)
= (90° — A) 4 (90° — (90° — A))
=90°.

and the proof ends here.

Solution 11.3
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Solution 1. Angle chasing reveals /ZDCA = ZACE = /DBA = ZABE.

First, we claim that BE = BR = BC. Indeed, construct a circle with radius BE = BR
centered at B, and notice that ZECR = %ZE BR, implying that it lies on the circle.

Now, C A bisects ZEC D and DB bisects ZE DC, so R is the incenter of ACDE. Then,
K is the incenter of ALE D, so

1 ED
ZELK = EAELD = —

Solution 2. Because
LAEBA =AECA = ASCR = L{SBR = {ABR,
BA bisects ZEBR. Then by symmetry /BEA = Z/BRA, so
ABCR =4BCA =4BEA=—-4BRA=—4BRC

and hence it follows that BE = BR = BC. Now we proceed as in the first solution.

Solution 11.4
A
//
7/
2 d
7/
7/
A, ) NM
\\\ s/ CQ
\\//
7
// \\
7 N
// \\
B Cy ¢

Because MA = MB = MC, A; and C; are merely the midpoints of AB and BC; in
particular, A|C; || AC. Moreover, ZAA A, = ZAAA| = ZC A A, and s0 A| A, is the
external angle bisector of ZA; in triangle A; BC;. Similarly, C,C, is the external angle
bisector of ZC,. Hence they intersect at the excenter, which lies on the B-bisector of this
triangle.
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Solution 11.5

The following diagram is not drawn to scale.

Let I denote the incenter of AABD. Then quadrilateral / BC D is cyclic since ZDIB =
90° + %ADAB = 145°. Hence weobtain ZIBD = ZICD = 180° — (55° + 105°) = 20°
and ZABD = 40°.

Solution 11.6

Of course H lies on y (for example, by Lemma 1.17). Now consider an inversion at B with
power BH - BE = +/BF - BA = +/BD - BC. It swaps the three pairs F and A, D and
C, and H and E. That means it swaps the circle y with the line EF and the circle w with
line DF. It follows that P and Q map to each other and we are done.
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Solution 11.7

Let K be the midpoint of BC and let A; be the reflection of A over K. Because F is the
reflection of D over the perpendicular bisector of BC, we find that D FA| A is an isosceles
trapezoid. Then,

AMED = ATED = £ TFD = LAFD = LAA|D = {MA,D.
Therefore, M DA E is cyclic. Now, by power of a point, we see that
AD-AE =AM -AA, =2AM - AK = AN - AK.

Therefore, DK E N is cyclic, as desired.

Solution 11.8

Let M denote the midpoint of BC.

PN B D M C

By Lemma 1.44, ME and M F are tangents to w (and hence to w;, w;), so M is the radical
center of w, w;, w,. Now consider the radical axis of @; and w,. It passes through D and
M, so it is line BC, and we are done.
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Solution 11.9

KM

D \C

Let AB = 2x, CD = 2y, and assume without loss of generality that x < y. Let L be the
midpoint of BC and denote BC = 2¢. Let P be the midpoint of QR. Let T be the foot of
B on DC.
Since N is the midpoint of the hypotenuse of AAB D, it follows that AN = BN. Since
MN || AB, we see that M N is tangent to (ABN). Similarly, it is tangent to (BC M).
Noting that LM = %AB via AABC, we obtain

1 2 2
LR-LC=LM*= (EAB) =x’= LR = %
Similarly, LQ = )72 Then,
LO— LR 2 x? ML+ NL
PL = Q R andKLz;zx—i—y.
2 20
But then we find that

yz_xz
KL_ 5 _y—x_TC
PL x+y 2¢  BC’

Combined with ZKLP = ZBCT, we find that AKLP ~ ABCT. Therefore, /K PL =
ZBTC = 90°. But P is the midpoint of OR, so KQ = KR.

Solution 11.10

Construct parallelograms XCAB,Y ABC,and ZBC A. By Ceva’s theorem in trigonometric
form on triangle ABC and point P, we know that

sin/BAP sin/CBP sinZ/ACP .
sin /PAC sin/PBAsin/PCB ~—
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But /PAC = ZA|AC = ZCXA,, since minor arcs A;C and A,C are identical. So the
above rewrites as

sinZ/BXA; sinZCY B, sinZAZC,

sin /CXA, sin LAY B, sin /BZC,

So rays XA,, Y B,, ZC; concur at some point, say Q.

Let H be the orthocenter of triangle ABC. We claim that H is the fixed point, and that
in fact, the three points lie on a circle with diameter H_Q Indeed, note that A, lies on the
reflection of (ABC) over ‘BC, which is a circle with diameter H X, whence

LHAX = LHA,Q = 90°

as desired.

Solution 11.11

Easy angle chasing gives
£LByACr = LABA, + ZBAA, = ZBAC.

Similar calculations yield that AA;B;C; ~ AA;B,Cy ~ AABC.

Now, let O be the circumcenter of AABC. Then O lies on the angle bisector of the
angle formed by lines B,C» and B;C,; namely, the line through O perpendicular to BC.
(Note that Z/B{BC = ZC,C B, giving an isosceles triangle.) Let d, denote the common
distance from O to lines B,C, and B;C;. Define d;, and d, analogously.
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sy
S
Q

Then, since AA;BC; is similar to AA,B,C,, we observe that O must have the same
barycentric coordinates with respect to AA| B, C; and AA;, B,C5, namely

(da . B]C1 Zdh . C]A] ch . A]B])
:(da . BzCz : db . C2A2 : dc . Asz).

So O corresponds to the same point in both triangles. The congruence of the pedal
triangles is then enough to deduce that AA; B|C| is congruent to AA; B,C.

Solution 11.12

Assume without loss of generality that AB < AC.
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Let B, be the reflection of B over M (whichis on AC) and let P, be the point at infinity
along BM || CN. Evidently

—1=(B1,B;M, Py) < (A,D;M,N).
ButZMYN = ZM XN = 90°,soby Lemma 9.18, we find that M is the incenter of AAXY;
hence /XAM = LY AM, and hence /BAX = ZCAY as desired.

Solution 11.13
Assume without loss of generality that AB < AC. We show that in this case, ZP QE = 90°.

A

R

First, we claim that D, P, E are collinear. Let N be the midpoint of AB. Let P’ be the
intersection of the M N, DE, and ray AI, as in Lemma 1.45. Then P’ lies inside AABC
and moreover ADP'M ~ ADEC, so MP' = M D. This is enough to imply that P’ = P,
proving the claim.

Let S be the point diametrically opposite D on the incircle, which is also the second
intersection of A Q with the incircle. Let T = AQ N BC. Then T is the contact point of the
A-excircle (Lemma 4.9); consequently, MD = M P = MT, and we obtain a circle with
diameter DT . Since £DQT = £DQS = 90° we have Q on this circle as well.

As SD is tangent to the circle with diameter DT, we obtain {PQD = APDS =
£LEDS = LEQS. Since ADQS =90°, £PQE = 90° too.

Solution 11.14

Evidently D and E are the reflections of C and B over BI and C1, respectively. Denote
by X and Y the midpoints of BD and CE, and let P be the midpoint of BC. Because of
the reflections, we have that /X = IP = 1Y.

Next, consider the second intersection 7 of (ABC) and (ADE). It is the center of the
spiral similarity that maps BD to CE. But then the map must actually be a congruence
as BD =CE,so TB =TC. Since T is on (ABC), and because we require AT BD and
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N M
D
H
F
X Y
I\
\
\
¥
B P C

AT CE to be similarly oriented, this implies T = M. Hence M X = MY ; therefore MI is
the perpendicular bisector of XY

Now X7 is the Gauss line of complete quadrilateral BEDC. Since I is the orthocen-
ter of triangle FBC, line M1 is the Steiner line (since the Steiner and Gauss lines are
perpendicular), which by definition passes through H.

Solution 11.15

Let M’ be the midpoint of AC and let O’ be the circumcenter of AABC. Then
KMLM' is cyclic (nine-point circle), as is AMO'M’ (since ZMOA = /MM’ A = 45°).
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Also, ZBO'A = 90°, so O’ lies on the circle with diameter AB. Then N is the radical
center of these three circles; hence A, N, O are collinear.

Now applying Brocard’s theorem to quadrilateral BLAO’, we find that M is the ortho-
center of the OPH’, where H = LA N BO’. Hence H’ is the orthocenter of AMOP,
whence H = H' = ACNBO'.

Now we know that

AH @ +b* -3
HC  a’(b*+ c? —a?)

where the ratio is directed as in Menelaus’s theorem. Cancelling a factor of 280> we can
compute:

AH  cXa®+b*—c»)  338(576 +98—338) 169
HC  a?>(b*>+c2—a?) 576098 +338 —576) 120

Therefore,

AC_1+AH_ 49
HC HC 120

120
= [HCl= - 1960+/2 = 4800+/2.
Now applying the law of cosines to AKCH with ZKCH = 135° yields
HK?=KC*+ CH* —2KC - CH - cos 135°

— 1960 + (4800«/5)2 — 2(1960) (4800«/5) <—%)

=407 (49° +2-120° +2- 49 - 120)
= 1600 - 42961
= 68737600.

Solution 11.16

It turns out we can compute P4 Q4 explicitly. Let us invert around A with radius s — a
(hence fixing the incircle) and then compose this with a reflection around the angle bisector
of ZBAC. We let this operation send a point X to X* then to X*. We overlay this inversion
with the original diagram.

Let P4 Q4 meet w4 again at P and S4 again at Q. Now observe that w is a line parallel
to S*; that is, it is perpendicular to @ Moreover, it is tangent to w* = w.

Now upon the reflection, we find that o™ = w* = w, but line P Q gets mapped to the
altitude from A to BC, since P Q originally contained the circumcenter O (isogonal to the
orthocenter). But this means that * is none other than the BC! Hence P is actually the
foot of the altitude from A onto BC.

By similar work, we find that Q7 is the point on AP+ such that Pt QT = 2r.
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Now we can compute all the lengths directly. We have that

1 (s —a)? 1 , 1
APy = —-AP = = (g — —
AT aapt 28T
and
1 (s—a} 1 5
Qu=3540="70r =20 ~9 —5,
where h, = ZTK is the length of the A-altitude, with K the area of ABC as usual. Now it
follows that
PO 1( )2 2r
= -5 —a —_— .
AXAT S ha(hy — 2r)
This can be simplified, as
2K 2K —
hy—2r =2 22 _og. 279
a s as

Hence

a’rs(s —a) _ a*(s —a)
4K2 4K

Hence, the problem is just asking us to show that

PrQy =

a’b*c?(s — a)(s — b)(s — ¢) < 8(RK)>.
Using abc = 4RK and (s —a)(s — b)(s —¢) = %Kz = rK, we find that this becomes

2(s —a)s —b) (s —c) < RK & 2r <R
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which follows immediately from Lemma 2.22. Alternatively, one may rewrite this as Schur’s
Inequality in the form

abc>(—a+b+c)a—b+c)a+b—oc).

Solution 11.17

Let the incircle touch BC at Ay. First, note that B; and C; lie on ByCo by Lemma 1.45.
Next, Q lies on (ABL), since BI is an internal angle bisector and we know that QA = QL
(this is Lemma 1.18). Similarly, P lies on (ACL).

We claim that AA¢ByCy and AL Q P are homothetic (where Ay is the tangency point
of the incircle on BC). Since ByCy and PQ are both perpendicular to AL, we have
ByCy || PQ. Also, ZCyA¢B = B%=2 and

180° — B

1 1
/PLB =/PAC =/ZPAL+ /ZLAC = EC + EA = >

which shows that CyAg || PL. Similarly, ByAq || LO.

Hence AAgByCy and ALQP are homothetic. Let K be the center of homothety;
because K € LAy = BC, ﬁ and BC are concurrent.

It remains to show K C; passes through O;. Let O be the intersection of E and C; K.
Then O is the image of C;. Since ByC| = A(C}, it follows that QO] = LO;. But PO
happens to be the perpendicular bisector of AL, so in fact /A = O/Q = O/ L. Hence
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O] is the circumcenter of (ABL); that is, O; = Oj. Similarly O, = O} and the proof is

complete.

Solution 11.18

5 .’-: Y D' i M, C

Mp\

N i
N\\\

\
M\
A

Let AX meet MgMc at D and let X reflected over the midpoint of MpM be X'. Let Y/,

Z', E, F be similarly defined.
By cevian nest (Theorem 3.23) it suffices to prove that M4, D, Mg E, M¢ F are concurrent.

Taking the isotomic conjugate and recalling that My MgAM;¢ is a parallelogram, we see
that it suffices to prove M4 X', MgY’, McZ' are concurrent.
We now use barycentric coordinates on AMsMpMc. Let

S=(a’Sa+1:b*Sg+1:c*Sc +1)

(possibly t = oo if S is the centroid). Let v = b?Sp + 1, w = ¢>S¢ + t. Hence

X = (—a*vw : (B*w + o) : (P*w + Fv)w).

Consequently,
X = (asz s —a*vw + (b*w + Fv)w : —atvw + V*w + czv)v) .

We can compute
b*w + c*v = (be)*(Sp + Sc) + (b* + At = (abe)* + 2t
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SO
—a*v + b*w + v = (b2 + cz) + (abc)2 — (ab)*Sp — a’t = Sa(ab +1).
Thus
X' = (asz  Sa(b*Sp + 1)ab + 1) : Sa(c*Se + 1)(ac + t)) .
Similarly,

Y' = (Sp(@®Sa + t)(ba + 1) : b*wu : Sg(c*Sc + t)(bc + 1))
Z' = (Sc(a*Sa + t)ca+1): Sc(b*Sg +1)(ch +1) : Puv).

Now we are done by Ceva’s theorem.

Solution 11.19

Let N be the midpoint of EF,andset By = EF N HC,C; = EF N HB. Focus on triangle
DB, C,.

C

By Lemma 1.45, AD BC; is the orthic triangle of A H BC. Moreover, N is the tangency
point of its incircle with B;C;. In addition, H is the D-excenter (via Lemma 4.6). Then
Lemma 4.14 implies P, N, and H are collinear.
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Solution 11.20

This is a hard problem with many beautiful solutions. The following solution is not very
beautiful but not too hard to find during an olympiad, as the only major insight it requires
is the construction of A,, B,, and C,.

We apply complex numbers with @ the unit circle and p = 1. Let A} = £ N £, and
let a; = a? (in other words, A, is the reflection of P across the diameter of  through A).
Define the points By, Cy, B,, C, similarly.

We claim that A} A,, By B;, C{C; concur at a point on I.

We begin by finding A;. If we reflect the points 1 4 and 1 — i over AB, then we get
two points Z;, Z, with

zi=a+b—ab(l —i)=a+b—ab+ abi
Z=a+b—ab(l+i)=a+b—ab— abi.

Therefore,

71 — 22 = 2abl

I 1
522—ZZ1=—2i(a+b+—+——2>_
a b
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Now £ is the line Z; Z,, so with the analogous equation £ we obtain (using the full
formula in Theorem 6.17):

—2i(a+b+1+4—2)Qaci)+2i(a+c+i+1—2)Qabi)
(=2i) Qaci) — (—2i) (2abi)
[c—b]az—i—[%—%—2c+2b]a+(c—b)
52
(c —b)[a® —2a + 1]
(c — b)(c + b)/bc

a) =

bc
= — 1)
a+b+c(a )

Then the second intersection of A; A, with w is given by

b 2 2

a, —ap atya—1)7—a
1 —aza 4 2. U=la?
20 l—a—a e

a+25(1—a)

— (0 —a)
_ab+bc+ca—abc
a+b+c—1

Thus, the claim is proved.

Finally, it suffices to show AB, Il ‘A, B,. Of course one can also do this with complex
numbers, but it is easier to just use directed angle chasing’ Let BC meet £ at K and B,C,
meet £ at L. Evidently

—&BLP = LLPB;+ APB,L
=24{KPB+ £PB,C;
=24{KPB+2£{PBC
= —2LPKB
= APKB,

as required.

 One can also compute this more robustly using the notation £(¢;, £,) to mean the directed angle £X; O X»,
where O is the intersection of lines £; and £, and X and X, are any other points on £, £,, respectively.
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Solution 11.21

M

We know from Lemma 4.40 that the line 7'/ passes through the midpoint of arc BC
containing A; call this point L.

Set DEF as the contact triangle of ABC. Let K; and K, be the contact points of the
tangents from M (so that X lies on MK, and X, lies on MK,) and perform an inversion
around the incircle. As usual we denote the inverse with a star. Now A*, B*, C* are
respectively the midpoints of EF, FD, DE, and as usual I'* = (A* B*C*) is the nine-point
circle of ADEF.

Clearly M* is an arbitrary point on I'*; moreover, it is the midpoint of K, K,. Now let
us determine the location of 7*. We see that L* is some point also on I'*. Moreover,

LIL*A" = —LTAL = 90°.
But because L, I, T are collinear it follows that L*, I*, T* are collinear, whence
ATL*A* = LI*L*A* = 90°

so T* is the point diametrically opposite A* on I'*. That means it is also the midpoint of
DH, where H is the orthocenter of triangle DEF.

It is now time to prove that M*, X7, X3, T* are concyclic. Dilating by a factor of 2 at
D, it is equivalent to prove that D', K, K,, and H are concyclic, where D’ is the reflection
of D over M*. Reflecting around M* it is equivalent to prove that D, K, K, and H' are
concyclic.
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But the circumcircle of D, K, and K is just I'* itself. Moreover our usual homothety
between the nine-point circle ['* and the incircle implies that H’ lies on I'* as well. So D,
K,, Ky, H' are concyclic on I'*. Thus M, Xy, X», and T are concyclic, which is what we
wanted to show.

Solution 11.22

Let D be the foot from 7 to BC. Let X and Y denote the feet from B and C to CI and BI.
By Lemma 1.45, points X and Y lie on line EF. Let M be the midpoint of BC, and w the
circumcircle of DM XY. By Lemma 9.27, the problem reduces to showing that 7" lies on
the polar of S to w.

T ¥ ..,Dl —— > >,

Let K = AM NEF. By Lemma 4.17, points K, I, D are collinear. Let N be the
midpoint of EF, and set L = KS N BC. From

—1=(A,I;N,S) £ (T,L; M, D)
and
—1=(T,D;B,C) = (T, K;Y, X)

we find that T = M D N Y X is the pole of K L with respect to w, completing the proof.
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APPENDIX D

List of Contests and Abbreviations

APMO Asian-Pacific Mathematical Olympiad. Started in 1989, the APMO is a regional
competition for countries in the Asian Pacific region, as well as the United States and
some other countries. The test consists of a single four-hour day with five problems.

BAMO Bay Area Mathematical Olympiad. The contest is taken by several hundred stu-
dents in the Bay Area annually. The format is identical to that of the APMO.

Canada Canadian Mathematical Olympiad, abbreviated CMO.

CGMO The China Girls Mathematical Olympiad. The contest began in 2002, and consists
of two days, each with four problems to be solved in four hours.

EGMO The European Girls’ Mathematical Olympiad, a new contest inspired by the
CGMO. The first EGMO was held in Cambridge in April 2012. Currently, the contest
format matches the IMO. Countries send teams of up to four female students to
compete at each event.

ELMO The ELMO is a contest held at MOP every year, produced by returning MOPpers
and taken by first-time MOPpers. In particular, all problems are created, compiled,
and selected by students.

The meaning of the acronym changes each year, originally standing for “Experimental
Lincoln Math Olympiad” but soon taking such names as “Exceeding Luck-Based Math
Olympiad”, “Ex-experimental Math Olympiad”, “¢'°¢ Math Olympiad”, “End Letter
Missing”, “Entirely Legitimate (Junior) Math Olympiad”, “Earn Lots of MOney”,
“Easy Little Math Olympiad”, “Every Little Mistake = 0”, “Everybody Lives at Most

Once”, and “English Language Master’s Open”.

ELMO Shortlist Like the IMO Shortlist, the ELMO Shortlist consists of problems pro-
posed for the ELMO.

IMO The International Mathematical Olympiad, the supreme high school mathematics
contest. Started in 1959, it is the oldest of the international science olympiads. The
IMO draws in over 100 countries every July, and each country sends at most six
students. On each of two days of the contest, contestants face three problem over 4.5
hours—problems are scored out of 7 points, so the maximum score is 42.
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IMO Shortlist The IMO Shortlist, consisting of problems proposed for the IMO. About
30 problems are selected from all proposals (usually more than 100) to form the IMO
shortlist. Team leaders from each country then vote a few days in advance on which
problems from the shortlist will be selected to appear on the IMO. The IMO Shortlist
of year N is not public until after the IMO of year N + 1, as many countries use
shortlist problems in their national team selection tests.

JMO Short for USAJIMO.

NIMO The National Internet Math Olympiad is an online contest written by a small
group of students. The winter olympiad (from which the problems here are taken) is
a one-hour exam for teams of up to four, and consists of eight problems.

OMO The Online Math Open. The Online Math Open is another online contest also
administered completely by some of the top students in the USA. Teams of up to four
students are given about a week to answer several short-answer problems, ranging
from very easy to extremely difficult.

MOP Mathematical Olympiad Summer Program. MOP is the training camp for the USA
team for the IMO; students are selected based on performance at the USA(J)MO. Until
2014, the camp was generally held in Lincoln, Nebraska during June for 3.5 weeks.
Four-hour tests are given regularly at MOP. Several problems from this text are taken
from such exams.

Sharygin The Russian Sharygin Geometry Olympiad is an international contest consisting
solely of geometry problems. All problems in this book are taken from the Sharygin
correspondence round, where students are given an extended period of time to submit
solutions to several problems. Winners of the correspondence round are invited to
Dubna, in Russia, for a final oral competition.

Shortlist See IMO Shortlist.

TST Abbreviation for Team Selection Test. Most countries use a TST as the final step in
the selection of their team for the IMO.

USAJMO The USA Junior Mathematical Olympiad. It is an easier contest given at the
same time as the USAMO for students in grades 10 and below. The format is identical
to the USAMO.

USAMO USA Mathematical Olympiad. The USAMO is given to approximately 250
students each year, and used as part of the selection process for the USA team at the
IMO, as well as for invitations to MOP. The format is identical to the IMO.

USA TST The Team Selection Test for the USA team. Up to 2011, the USA TST consisted
of three days, each matching a day of the IMO. Since 2011 the TST has become more
variable in its format, and is given only to the top eighteen students from the previous
year’s MOP.

USA TSTST The unfortunately-named “Team Selection Test for the Selection Team” is
given at the end of MOP. It selects 18 students (the “selection team”) to take further
tests throughout the upcoming school year. The TSTST consists of two or three days,
each matching the format of a day at the IMO.
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Index

altitude

midpoint of, 62, 143
altitudes, xiv
angle bisector theorem, 44
anticenter, see Euler point
Apollonian circle, 177
area

in barycentric coordinates, 119
areal coordinates, see barycentric coordinates
areas, 77
argument, 95
Aubert line, see Steiner line

barycentric coordinates, 119
area formula, 119
cevian, 122
circle formula, 127
circumcircle of a triangle, 128
collinearity, 123
concurrence, 125
distance, 126
homogenized, 121
isogonal conjugates, 122
isotomic conjugates, 122
perpendicularity, 127, 134
power of a point, 134
radical axis, 134
triangle centers, 122
unhomogenized, 121
Brianchon’s theorem, 192
Brocard’s theorem, 179
butterfly theorem, 185

Cartesian coordinates, 75
centroid, xiv, 48
in barycentrics, 122
in complex numbers, 102
lies on Euler line, 51
Ceva’s theorem, 44, 120
directed form, 48
trigonometric form, 45

via barycentric coordinates, 120
cevian, 44

in barycentrics, 122
cevian nest, 57
cevians

and harmonic bundles, 174
circle

in barycentrics, 127
circumcenter, xiv

in barycentrics, 122

in complex numbers, 102, 107

lies on Euler line, 51

under inversion, 153
circumcircle, xiv

in barycentrics, 128
circumradius, xiv, 36, 77
cline, 149
clines

under inversion, 152
coaxial circles, 30
collinearity, see Menelaus’s theorem

in barycentrics, 123

in complex numbers, 100

in directed angles, 12

under inversion, 152
complete quadrilateral, 195
complex conjugate, 96, 99
complex number

reflection, 98
complex numbers, 95

circumcenter, 107

collinearity, 100

concyclic points, 103

cross ratio, 103

foot of an altitude, 99, 101

incenter, 106

intersection of two lines, 104

perpendicularity, 100

rotation, 97

shoelace formula, 100

similar triangles, 104
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complex numbers (cont.)
translation, 97
triangle centers, 102
complex plane, 95
concurrence
in barycentrics, 125

of cevians, see Ceva’s theorem

concyclic points, 6
in complex numbers, 103
in directed angles, 12
under inversion, 152
conic, 183

conjugate, see complex conjugate

contact triangle, 32
Conway identities, 133
Conway’s formula, 133
Conway’s notation, 132
Cramer’s rule, 217
cross ratio, 170
in complex numbers, 103
of concyclic points, 172
of four collinear points, 170
of four concurrent lines, 171
curvilinear incircle, 67
cyclic quadrilateral, 6
cyclic sum notation, xv

degrees of freedom, 79
Desargues’ theorem, 190
determinant, 215
dilation, 49
directed angles, 11
collinearity, 12
concyclic points, 12
perpendicularity, 12
under inversion, 150
directed lengths, 46
directly similar, 23
displacement vector, 126, 133
distances
in barycentrics, 126
under inversion, 160
dot product, 219
duality, 179

Euclidean points, 170
Euler line, 51

via complex numbers, 102
Euler point, 113
Euler’s theorem, 36
excenter, 9, 32, 60

in barycentrics, 122
excircle, 32

tangents to, 33
exradius, 33

length of, 33
extended law of sines, 43, 79
external angle bisector, 32

Feuerbach point, 108
foot of an altitude
in complex numbers, 99, 101

Gauss line, 198
Gauss-Bodenmiller theorem, 199
generalized circle, see cline
Gergonne point, 56

harmonic, see harmonic bundle
harmonic bundle, 173

under inversion, 174
harmonic conjugate, 173
harmonic quadrilateral, 66, 173
Heron’s formula, 77
homogeneous coordinates, 137

homogenized barycentric coordinates, 122

homothety, 49

incenter, xiv, 31, 63

in barycentrics, 122

in complex numbers, 106

under inversion, 153
incircle, xiv, 63

polars on, 190

tangent to nine-point circle, 108

tangents to, 32
inradius, xiv, 36, 77
inscribed angle theorem, 4
intersection of two lines

in complex numbers, 104
inversion, 149

around a point, 151
inversion distance formula, 160
isogonal, 64
isogonal conjugate, 64
isogonal conjugates

in barycentrics, 122
isotomic conjugate, 64
isotomic conjugates

in barycentrics, 122

La Hire’s theorem, 179
law of cosines, 79

law of sines, 43

line at infinity, 170

magnitude, 95
matrix, 215
medial triangle, xiv, 48
medians, xiv
Menelaus’s theorem, 46
minors, 215
Miquel point, 13, 198

of a cyclic quadrilateral, 201
Miquel’s theorem, 197
mixtilinear incircle, 68, 144, 181
Monge’s theorem, 56
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Index

Nagel point, 143
Napoleon’s theorem, 116
negative homothety, 49
nine-point center, 51
in complex numbers, 103
nine-point circle, 50
in complex numbers, 103
tangent to incircle, 108
under inversion, 153

oppositely oriented, 23

oppositely similar, 23

orthic triangle, xiv, 7

orthocenter, xiv, 7, 60
in barycentrics, 122
in complex numbers, 102
lies on Euler line, 51
under inversion, 153

orthogonal circles, 156
under inversion, 156
via polars, 181

Pappus chain, 157
Pascal’s theorem, 181

via barycentric coordinates, 135

pencil
of coaxial circles, 30
of lines, 171
of parallel lines, 170
perpendicularity

in barycentrics, 127, 134
in complex numbers, 100
in directed angles, 12
perspective from a line, 190
perspective from a point, 190
perspectivity, 172
phantom point, 15
Pitot theorem, 39
point at infinity, 149, 170
point-line distance formula, 76
points at infinity, 124
polar, 178
polar form, 95
pole, 179
power of a point, 25
in barycentrics, 134
product-to-sum, 80

projective transformations, 183
Ptolemy’s theorem, 81

strong form, 83
pure imaginary, 99

radical axis, 26

in barycentrics, 134
radical center, 28
real part, 95
real projective plane, 170
reference triangle, 119

reverse reconstruction, see phantom point

rotation
in complex numbers, 97

scale factor, 49
Schiffler point, 117
segment, 66
self-polar, 179
semiperimeter, xv, 77
shoelace Formula

in complex numbers, 100
shoelace formula, 75
shoemaker’s knife, 157
signed areas, 76, 119
similar triangles, 23

in complex numbers, 104
similarly oriented, 23
Simson line, 20, 59

in complex numbers, 106
spiral similarity, 98, 196
Steiner line, 199
Stewart’s theorem, 83
symmedian, 64
symmedian point, 64

in barycentrics, 122

tangents, 15

in directed angles, 15

to excircles, 33

to the incircle, 32
translation

in complex numbers, 97

unit circle, 100

zero vector, 218
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