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CHAPTER

I Sets and Logic

Exercises for Section 2.2

2.2.1 . The set 0 is the empty set, and it does not contain any elements. However, the set {#} contains one
element, namely the empty set. Hence, the two sets are not equal.

222
(a) . The number 3 is an element of {1, 3, 5, 9}.

(b) . Neither the order of the elements, nor the fact that an element appears twice in the list, is significant.
Elements can be listed in any order, and duplicate elements can be ignored.

(0) . The set {5} is not an element of {3,5,9}. Rather, the set {5} is a subset of {3, 5,9, and the number 5 is
an element of {3, 5, 9}.

(d) . The number 4 is not an element of {{4}}. Rather, the set {4} is an element of {{4}} (in fact, it’s the only
element).

(e) . The empty set is a proper subset of {1,2,9}. In fact, @ is a subset of any set, and is a proper subset of
any non-empty set.

H . The empty set is an element of {@, {1}, 82}.

(g) . The set {x | x is an even integer} is the set of even integers, so it is a subset of the set of integers.
Furthermore, not all integers are even, so it is a proper subset.

2.2.3 If x is an element of A, then x is an element of A. In other words, every element of Aisin A, so A C A.

2.24 If A C B, then every element in A is also in B. And if B C A, then every element in B is also in A. Therefore,
the sets A and B must contain the same elements, so A = B.

2.2.5 If A C B, then every element in A is an element of B. And if B C C, then every element in B is an element
of C. Therefore, every element in A is an element of C, which means that A C C. Hence, the subset relationship is
transitive.

If A c Band B c C, then by the same argument as above, A C C. Furthermore, since B is a proper subset of C,
there is an element x in C that is not in B, which means that x is not in A either. Therefore, A is a proper subset of
C, thatis, A c C. So the proper subset relationship is also transitive.

2.2.6 If B C 0, then every element in B is also an element of the empty set. However, the empty set contains no
elements, which means that B also contains no elements, so B must be the empty set.

2.2.7 If A C B, then every element in A is also an element of B, which means that the set B must contain at least
as many elements as A, so #(A) < #(B). In addition, if #(A) = #(B), then every element of B must also be an element
in A, so the sets A and B are equal, that is, A = B.




CHAPTER 2. SETS AND LOGIC

If A C B, then every element in A is also an element of B. However, since A is a proper subset of B, there is an
element of B that is not in A, so #(A) < #(B), or equivalently #(A) < #(B) — 1.

228 If A c Band B C A, then because the proper subset relationship is transitive, A ¢ A. However, A is not a
proper subset of itself because it is equal to itself, so it is impossible for two sets A and B to simultaneously satisfy
AcBand BcCA.

2.29 By definition, P(X) is the set of all subsets of X. The empty set has only one subset, namely itself, so
P(@) = {0}. Then the subsets of {0} are @ and {0}, so P(P(D)) = | {0, {0}} ;

2.2.10 If 5is the empty set, then #(S) = #(0) = 0, and P(S) = P(0) = {0}, so #(P(S)) = #({0}) = 1 = 2°. Hence, the
result is true when S is the empty set. Otherwise, S contains at least one element.

Let x be an element of S. Then for any subset of S, either x is in the subset, or x is not in the subset. Thus, we
can construct a subset of 5 as follows: For each of element of S, we choose whether to include the element in the
subset or not. So for each element, there are two possible choices, and there are # elements. Furthermore, each
combination of choices leads to a different subset, so the number of subsets of S is #(P(S5)) = 2".

Exercises for Section 2.3

2.3.1 Theset AU is the set of elements that are in either A or the empty set, and the set A N is the set of elements
that are in both A and the empty set. The empty set contains no elements, so | AUud=A | and | ANB=0 |

2.3.2 The set A U A is the set of elements that are either in either A or A, and the set A N A is the set of elements
that are in both A and A. The sets A and A contain the same elements, sc ANA=AUA = A.

2.3.3 The set S U {x} is the set of elements that are either in either S or {x}, and the set S N {x} is the set of elements
that are in both § and {x}. Since x is an element of 5, and x is the only element of {x}, we conclude that|S U {x} = §

and SN {x} = {x} |

234 Letxe AUBNCQC), soxisineither AorBNC. If xisin A, then x isinboth AUB and AUC, so xis in
(AUB)N(AUQ). If xisin BN C, then x is in both B and C, which means that x is in both AU B and A U C, so x is
in(AUB)N(AUC). Either way,x € (AUB)N(AUC).

Now, letx € (AUB)N(AUC),soxisinbothAUBand AUC. Ifxisin A, then xisin A U (BN C). If x is not in
A, then x must be in B (since x € AU B), and x must be in C (since x € A U C). Therefore, x is in B N C, which means
that xis in A U (B N C). Either way, x € AU (BN C).

Therefore, AU(BNC)=(AUB)N(AUC).
235

(a) The condition AU B = A implies that every element that is in either A or B is in A. Hence, B is a subset of A,

(b) The condition A N B = A implies that every element that is in both A and B is in A. Hence, A is a subset of B,

2.3.6 Suppose that A € P(S N T), which means that A C (S N T). Then every element of A is an elementof SN T,
which means that every element of A is an element of 5 and an element of T. This means that A C Sand A C T,
which means that A € $(S) and A € P(T). Therefore, A € (P(S) N P(T)).

The same argument runs in reverse. Suppose that A € (P(S) N P(T)). This means that A € P(S) and A € P(T),
which means that A C 5 and A C T. But then every element of A is an element of S and an element of T, which
means that every element of A is an element of S N T. Therefore, A € (S N T), which means that A € P(S N T).




Section 2.4

This shows that|P(S N T) = P(S) N P(T) |

This might lead you to conjecture that P(SU T) = P(S) U P(T). However, this is not true; for example, if S = {1}
and T = {2}, then P(SUT) = {0, {1}, {2}, {1, 2}}, whereas P(S) U P(T) = {0, {1}, {2}}. It is true that

(P(S) UP(T)) CP(SUT).

We will leave it as an exercise to prove this, and to determine the conditions for them to be equal.

Exercises for Section 2.4

241

(a) This is a statement. (It is a false statement, but it is
(b) This is a statement. (The fact that you probably do

a statement.)

n’t know whether it is true or false doesn’t mean that it’s

not a statement. As it turns out, it is a true statement.)

(c) This is an opinion, not a statement.
(d) This is a a statement.
(e) This is a question, not a statement.

(f) This is a mathematical expression, not a statement.

2.4.2 We construct the following truth table:

p | notp | p or (notp)

T| F T

2| T T

We see that the statement p or (not p) is always true.
2.4.3 We construct the following truth table:

Plalpag|-GArg|-p|-q]| PV (g
T|IT| T F F|F F
T\ F| F T F|T T
F|T| F T T |F T
F|F| F T T|T T

Hence, the statements —(p A g) and (—p) V (—q) are always either both true or both false.

2.4.4 We construct the following truth table:

Valp=g9 e ((=p) Vg

plalp=4q]|-r|(p
TIT[ T |F T
T|F| F | F F
FlT| T |T| T
FIE| T |T]| T

Hence, the statement (p = g) © ((-p) V q) is true for
245

-

all statements p and 4.

(a) The statement “If x = 3, then x + 2 = 5” is true. The converse is “If x + 2 = 5, then x = 3,” which is also true,
and the contrapositive is “If x + 2 # 5, then x # 3,” which is true.
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(b)

(©

(d)

(e)

2.4.6

(@)

(b)

The statement “If y* — 3y + 2 = 0, then y = 1" is false, because if y = 2, then > =3y +2 =22 -3-2+2 =0, but
y is not equal to 1. The converse is “If y = 1, then > — 3y + 2 = 0,” which is true, and the contrapositive is “If
y # 1, then > — 3y + 2 # 0,” which is false (again, because of the counterexample y = 2).

The statement “If A C B, then ANB = A” istrue. If x € AN B, thenx € A, and if x € A, then x € B (since
A CB),soxe AnB. Hence, ANB = A. The converseis “If ANB = A, then A C B,” which is true (see Exercise
2.3.5(b)), and the contrapositive is “If AN B # A, then A € B,” which is true.

The statement “If Paris is the capital of France and London is the capital of Japan, then Washington is the
capital of the United States” is true. London is not the capital of Japan, so the condition “Paris is the capital
of France and London is the capital of Japan” is false, and any statement follows from a false condition.

The converse is “If Washington is the capital of the United States, then Paris is the capital of France and
London is the capital of Japan,” which is false, and the contrapositive is “If Washington is not the capital of
the United States, then Paris is the not the capital of France and London is not the capital of Japan,” which is
true.

The statement “If WXY is an equilateral triangle, then WX = XY = YW” is true. The converse is “If
WX = XY = YW, then WXY is an equilateral triangle,” which is true, and the contrapositive is “If WX, XY,
and YW are not all equal, then WXY is not an equilateral triangle,” which is true.

We construct the following truth table:

-

qAT | pV(GAT) [ pVg|p pvaAlpvn | pVv@an) e ((pvaAlpVD)

o
mom o o s
mHET AT AT
s lile s e o e Blo s e s M o I |
R R R R
A A A<
oA

ool N R

el e N e R R R |

Hence, the statement (p V (g A 1)) © ((p V q) A (p V 1)) is always true.
We claim that (p A (g V1)) © ((p A gq) V (p A1)). To prove this, we construct the following truth table:

plglr|gvripa@vr)|paglpar|pAagVvpan | pa@vn)e((pAgVpAr))
T|T|T| T T T E T T
TITIF| T T T F T T
TIF|T| T T F T i T
T|F|F| F F F F F T
F|T|T| T F F F F T
F|IT|(F| T F F F F T
FIF|T| T F F F F T
F|F|F| F F F F F T

Hence,(pA(gV ) e ((pAg V(pAD).

2.4.7 Weclaim that (p T p) T (9 T 9) is equivalent to p V 4. To prove this, we construct the following truth table:

plalptp|ata| @t 1@Ty
TI|T F F T

T|F F T
F|T T F
F|F T T

el e |

Hence, (p Tp) T (g T q) is equivalenttop V gq.




Section 2.5

Exercises for Section 2.5

2.5.1 If p(x) is true for some x € §, then the first statement is true and the second statement is false. Otherwise,
p(x) is false for all x € S, which means that the first statement is false and the second statement is true.

2.5.2 One option is to choose a statement p(x, y) that does not depend on y at all. For instance, let p(x, i) denote
the statement “x > 0.” Then the first statement from the problem becomes “There exists an integer x such that for
all integers y, x > 0.” This statement is seen to be true by taking any integer x > 0. The second statement from the
problem becomes “For all integers x, there exists an integer y such that x > 0.” This statement is seen to be false
by taking any integer x < 0.

Another option is to choose a statement that can never be true except for a particular value of x. For instance,
let p(x, y) denote the statement (x — 1)(y — 0.5) = 0. Then the first quantified statement is true, since for x = 1,
the statement is true for any integer y. On the other hand, the second quantified statement is false, since for an
arbitrary integer x with x # 1, there is no integer y making the product zero.

Review Problems

2.8
(a)

D ={{9,19,29)
P=({2,3,57,11,13,17,19,23,29}]
u=|{1,5,9,13,17,21,25,29} |
V=
W

=[13,7,11,15,19,23,27}]
=[{2,6,10,14,18,22,26,30} ]

PnW=|{2}

S\P= I {1,4,6,8,9,10,12,14,15,16,18,20,21, 22, 24,25, 26,27, 28, 30} l,
P\(DuV)=P\|{3,7,9,11,15,19,623,27,29)
=|{2,5,13,17} |

(b) We have that PN U = {5,13,17,29}, so#(PNU) = 4, and PNV = {3,7,11, 19,23}, so #(P N V) = 5. Hence,
#P NV)|is greater.

29

(@) The set {x? | x € T} is the set of elements obtained by squaring the elements in T, so

(| xeT)=|{0,1,4,9,16,25) |

(b) The set {x € Z | x* € T) is the set of integers that, when squared, become an element in T, so

ezi en=[Z1017)
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210 The answer is[no]. For example, let A = {1,2}, B = {3,4},and C = {1,2}. Then ANB=BNC=0,butA =C,
so ANC =A ={1,2}. So it is not necessarily true that A N C = 0. In fact, we cannot say anything definitive about
Aand C.

2.11 The answer to both questions is :

(a) The condition AU B = B implies that every element that is in either A or B is in B. Hence, A is a subset of B,
or A C B. The statement is .

(b) The condition A N B = A implies that every element that is in both A and B is in A. Hence, A is a subset of B,
or A C B. The statement is | true |

2,12 The set A \ B is obtained by starting with the set A and taking away all the elements that are in both A and
B. Hence, if A \ B = A, then it means that A and B have no elements in common, thatis, AN B = 0.

213 Letn =#(A\B) =#B\A), and let m = #(A N B). The set A \ B is obtained by starting with the set A and
taking away all the elements that are in both A and B, so n = #(A) — m, which implies that #(A) = m + n. Similarly,
#(B) = m + n, so #(A) = #(B).

2.14 We construct the following truth table:

plalr|p=q|q=2r|p=29Ag=2n)|p=21 | (@=290AG=21)=2@=1)
T[T[T| T T T T i
T|T|F| T F F F T
T|E|T| F T F T iy
T|F|F| F T F F T
F|T|T| T ‘& B T T
F|T|F| T F F T T
F|F|T| T T i T T
F|F|F| T T ji T T

Hence, the statement ((p = g) A (g = 1)) = (p = r) is always true.
2.15 For all of these parts, slightly different phrases are possible.

(a) Noteveryone is a snob. (Note the “C” notation, as opposed to “C.”)
(b) Every mathematician is a scientist.

(c) Every mathematician who has been to Mars has drunk a coffee.

(d) Every person is either a scientist or has drunk a coffee.

(e) All people who have taken a photo of themselves are snobs.

(f) Every scientist has taken a photo of someone who has drunk a coffee.

(g) There is a person who has drunk a coffee, such that every scientist has taken a photo of this person. (Note
that this is different from the previous answer, because in this answer, the coffee drinker is the same for all
scientists. Thus, the order of the universal quantifier and the existential quantifier makes a difference.)

2.16 For all of these parts, other equivalent answers are possible.
(a) ECB.

(b) C\ B # 0. Another possible answer is Ix € C, =(x € B).

(c) ANE # 0. Another possible answeris dx € A, x € E.

(d) (D=U)=(CCE).

(e) VxeA, yeB, plxy).

) DcBUCHADNBNC=0).




Challenge Problems

(g) VxelU,(VyeE, px,y)=x€C).
217

(a) Since the empty set contains no elements, the quantifier Yx € 0 is not satisfied for any x. Therefore the
statement “Vx € @, p(x)” is always since there is nothing to check (in other words, we don't have to
plug x into p(x), since there aren’t any).

(b) Since the empty set contains no elements, the quantifier 3x € @ can never be satisfied. Therefore the statement
“Jx € 0, p(x)” is always since we can never find an x to satisfy p(x).

Challenge Problems

o3

2.18 We can intuitively see what’s going on via a Venn Diagram. The top diagram at A
right shows (A N B) U C, and the bottom diagram shows A N (B U C). We can see that
these are equal if and only if the part of the first diagram that’s in C but not in A is
empty; thatis, if and only if C C A.

But to prove this formally, we will use a set theory and logic argument. First, we
assume that C € A. We want to show that the sets (ANB)UC and AN(BUC) are equal.

Letx e (ANB)UC,soxe ANBorxeC. Ifxe AnB,thenx € Aand x € B, so
x€BUC, and it follows that x e AN (BUC). Ifxe C,thenx e BUC,and alsox € A
(since C C A), so it follows that x € AN (B U C). Either way,x € AN (BU C).

Now, letx€ AN(BUC),sox € Aand x € BU C, which implies thatx e Bor x € C.
IfxeB,thenxe ANB,soxe (ANB)UC. Ifx € C, then x € (AN B) U C. Either way,
xe(AnBYUC.

We conclude thatif CC A, then(ANB)UC=AN(BUC).
Now, assume that (A N B) UC = AN (B U C). We want to show that C C A.

Letx € C. Thenx e (ANB)UC,sox € AN (BUC). It follows that x € A. In other
words, every element in C is also in A, so C C A.

2.19

(a) The union of two intervals is not always an interval. For example, the union of the intervals [0,1] and [2,3] is
clearly not an interval.

(b) The intersection of two intervals is always an interval. (In particular, the empty set is also an interval, so two
intervals that do not intersect still have that their intersection, 0, is an interval.)

To prove this, instead of trying to deal with the endpoints, it will be easier to work directly with the
definition of an interval. Let I; and I; be two intervals, and let I = ; N I,. Let x, y, and z be real numbers,
suchthatx<y<zandxelandz €l SincelI=I1 N, x€ljandx €, andz €], and z € . Since I is an
interval and x < y < z, y € I;. Similarly, I; is an interval, so y € I,. Therefore, y € I NI; = I, which means that
[ is also an interval.
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2.20

(a) We construct the following truth table:

plglr|peq|(peqer|qer | pe(ger)
T|T|T| F T F T
T\ T|F| F F T F
TIF|T| T F T F
T|F|EF| T T F i
FIT|T| T F F F
F|IT|F| T T T T
F|F|T| F T T T
F|F|F| F F F F
Hence, the statements (p ® q) ® r and p ® (7 @ r) are equivalent.
(b) We construct the following truth table:
pPla|r|q®r|pA@®r) [pAg|pAr|(pAS[EAT)
T|T|T| F F T T F
TIT|F| T T T F s )
TIF|T| T T F T T
T|F|F| F E F F F
F|T|T| F F F F F
F|T|F| T F F F F
FI|F|T| T F F F F
F|F|F| F F F F F

Hence, the statements p A (@) and (p A q) ® (p A r) are equivalent.

2.21 First, to make the problem easier to understand, let's write the statement “¥Yx € S, 3y € T, p(x, y)” in plain
English. This statement becomes “For all x € S, there is a y € T such that p(x, y).”

We want to take the negative of this statement, which is “It is not true that for all x € S, there is a y € T such
that p(x, ).” (In general, putting the clause “It is not true that” before a statement is a useful way of taking its
negative.) The rest of the problem is unwinding the logic of this statement.

If it is not true that for all x € S, there is a y € T such that p(x, y), then there exists an x € S that violates the
condition. In other words, there is an x € S such that it is not true that there is a y € T such that p(x, y). This is
statement (iv).

For this particular x € S, it must be the case that for all y € T, p(x, y) is not true. This is statement (ii).

Hence, statements | (ii) and (iv) | are equivalent to the given statement.

222
(a)
A S B= {1/3151 8,9, 10];
(AeB)eC={1,5,6,7,10},

Be(C=1{23,45,6,8,10},
As(Bel)=11,56710}.

(b) Ingeneral, x € A© B if and only if x is in exactly one of the sets A and B. In other words, x is in A or x is in B,
but not both. This is precisely the same way that the “exclusive or” operation works.




Challenge Problems

For an element x, let p(x) denote the statement “x € A,” let g(x) denote the statement “x € B,” and let
r(x) denote the statement “x € C.” Then x € A © B if and only if the statement p(x) @ g(x) is true, and then
xe€(AeB)eCifand only if the statement (p(x) @ g(x)) @ r(x) is true.

Similarly, x € Be C if and only if the statement g(x) & r(x) is true, and then x € A © (Be () if and only if
the statement p(x) ® (g(x) ® r(x)) is true.

However, by part (a) of Problem 2.20, the statements (p(x)®q(x))®7(x) and p(x)®(g(x)®r(x)) are equivalent.
Hence, x (AeB)eCifandonlyifxEA6(BeC),whimmeansthat(AeB)eC =Ae(Bel).

The statement p(x) A (g(x)®r(x)) is true if and only if x € AN(BeC), and the statement (P(x) Ag(x) & (p(x) Ar(x))
is true if and only if x € (AN B)e(ANC). Since the statements p(x) A (q(x) ® r(x)) and (p(x) A 9(x)) @ (p(x) A r(x))
are equivalent, we conclude that An (Be O=((ANB)e(ANC)forall sets A, B, and C.
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CHAPTER

I A Piece of PIE

Exercises for Section 3.2

3.2.1 Let x be the number of dogs that are both big and very hairy. Then by PIE, the number of dogs that are
either big or very hairy is 30 + 42 —x = 47,s0 x = .

3.2.2 First, we count the number of 10-digit binary numbers that start with two ones. The first two digits are
determined, and then each of the remaining 8 digits can be 0 or 1, so there are 2% such binary numbers.

Next, we count the number of 10-digit binary numbers that end with two ones. The last two digits are
determined. The first digit must be a 1, otherwise the number would not have 10 digits. Each of the remaining 7
digits can be 0 or 1, so there are 27 such binary numbers.

Finally, we count the number of 10-digit binary numbers that both start with two ones and end with two ones.
The first two digits and the last two digits are determined, and then each of the remaining 6 digits can be 0 or 1,
so there are 2° such binary numbers.

Therefore, by PIE, there are 28 + 27 — 26 = 10-digit binary numbers that either start with two ones or end
with two ones.

3.2.3 Let x% be the percentage of U.S. households that own both a DVD player and a computer. Then the
percentage of U.S. households that own a DVD player but not a computer is (80 — x)%, and the percentage of
U.S. households that own a computer but not a DVD player is (70 — x)%. Then by PIE, the percentage of U.S.
households that own either a DVD player or a computer is (80 — x)% + (70 — x)% + x% = (150 — x)%.

Each of these percentages must be between 0% and 100%, giving us the ranges:

0<x<100 = 0<x<100
0<80-x<100 = -20<x<80
0<70-x<100 = -30<x<70
0<150-x<100 = 50<x<150

S0 50 < x < 70. Therefore, the range of possible percentages of U.S. households that own both a DVD player and
a computer is | between 50% and 70% |

Intuitively, we can see that this answer makes sense. Clearly not more than 70% of households can own both,
since only 70% own a computer. If everyone who owns a computer also owns a DVD player, then the 70% of
households who own a computer will own both. On the other hand, if the 20% who do not own a DVD player
and the 30% who do not own a computer are disjoint sets, then the remaining 50% of people will own both. There
is no way fewer people can own both, because there is no way that more people cannot own one or the other.

3.24 Since 3167 = 99,856 and 3172 = 100,489, there are 316 positive integers less than 100,000 that are perfect
squares. Since 46% = 97,336 and 47° = 103, 823, there are 46 positive integers less than 100,000 that are perfect
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Therefore, by PIE, there are 316+ 46 — 6 = 356 positive integers less than 100,000 that are either a perfect square
or a perfect cube, which means there are 99,999 —356 =99, 643 positive integers less than 100,000 that are neither
a perfect square nor a perfect cube.

Let x be the number of teachers that have both a son and a daughter. Then by PIE, there are 50+45-x =60
teachers that have a son or a daughter, Therefore, x = .

3.2.6 The product of two integers is even if and only at least one of the two integers is even. Thus, we seek the
number of 9-digit numbers such that either the first digit is even or the last digit is even.

First, we count the number of 9-digit numbers such that the first digit is even. The possible first digits that are
evenare 2, 4, 6, and 8. (We do not count 0 since 0 cannot be the first digit of a number.) Each of the remaining 8
digits can be 10 possible values, so there are 4 - 108 such numbers.

Next, we count the number of 9-digit numbers such that the last digit is even. The possible last digits that
are even are 0, 2, 4, 6, and 8. The first digit has nine possible values (again, we do not count 0), and each of the
remaining 7 digits can be 10 possible values, so there are 5.9 . 107 such numbers,

Finally, we count the number of 9-digit numbers such that both the first digit and the last digit are even. The
possible first digits that are even are 2,4, 6, and 8, and the possible last digits that are even are 0, 2, 4, 6, and 8.
Each of the remaining 7 digits can be 10 possible values, so there are 4 -5 - 107 such numbers,

Therefore, by PIE, there are 4108 + 5.9. 107~ 4-5-107 = 650,000,000 9-digit numbers such that the product
of the first digit and last digit is even,

3.2.7 We begin by assigning variables, Let f+s,and x be the number of students in French class, in Spanish Class,
and in both classes, respectively. By PIE, there are f +5— x students in either class, which means that there are

There are twice as many students in the French class as in the Spanish class, so
f=2s
There are three times as many students in both classes as in neither class, so
x*=3(100 - f -5 + x).
Substituting the first equation into the second, we getx = 3(100 - 3s + x), so
2x + 300

§= —,

9

Since the number of students in neither class is less than 10, and x is 3 times the number of students in neither
class, we have x < 3-10 = 30, Checking the range of integers 0 < x < 30, the only values of x that produce an
integer value of s are x = 3, 12, and 21. Finally, we are given that the number of students in both classes (that is, x)

is even, so we must have x = 12, and the number of students taking Spanish is s = (2x +300)/9 = 324/9 = .

11
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Exercises for Section 3.3

3.3.1 LetB, G,and Wbe the sets of dogs that have won a blue ribbon, green ribbon, and white ribbon, respectively.
Then by PIE, the number of dogs that have learned at least one trick is

#BUGUW) =#B) +#(G) + #(W) —#BNG) —4BNW) - #GNW) +#BNGN W)
=73+39+62-21—41-28+14
=98.

Therefore, there are 100 — 98 =| 2 | dogs that have not learned any tricks.

3.3.2 Let Wy, W, and W3 be the sets of three-letter words, such that the first letter, second letter, and third letter
is an A, respectively. Then by PIE, the number of three-letter words that have at least one A is

#(W1 U Wa U W) = #(W1) + #(Wa) + #H(W3) — #H(W1 N W) — #(Wp N W3) — #(Wa N W3) + #(Wy N W N V).

First we count #(W,), the number of three-letter words where the first letter is an A. The second and third letter
can be any letters, so #(W;) = 262. Similarly, #(W,) = #(W3) = 262.

Next we count #{W; N W), the number of three-letter words where the first and second letters are A’s. The
third letter can be any letter, so #(W; N W,) = 26. Similarly, # W1 N W3) = #(W, N W3) = 26.

Finally, a word is in Wy N Wy N W3 if and only if all three letters are A’s, so #(W; N W, N Ws) = 1. Therefore, the
number of three-letter words that have at least one A is

#W1 UW, UW;) =3-26%—3-26+1=|1951|

Alternatively, we could have found the answer by using complementary counting. If a word does not have at
least one A, then it does not have any As. The number of three-letter words that do not have any A's is 25°, so the
number of three-letter words that have at least one A is 26% — 25% = 1951.

3.3.3 Let F, B, and L be the sets of seniors who are on the football team, baseball team, and lacrosse team,
respectively. Let x be the number of seniors on all three teams. Then the number of students on the lacrosse team
is 2x.

By PIE,
#FUBUL) = #(F) + #(B) + #(L) —#F NB)—#ENL)—#BNL) +#ENBNL).

Substituting, we get 85 =74 + 26 +2x - 18 - 17 - 13+ x,s03x =33, 0orx = .

3.34 Let A, B, and C be the outcomes in which the first two coins, middle two coins, and last two coins
(respectively) come up tails. Note that #(A) = #(B) = #(C) = 4, since for each of these outcomes, we have 2
possibilities for the other two flips.

Outcomes in A N B have the first three flips come up tails, so there are 2 such outcomes (depending on whether
the 4% flip is heads or tails). Similarly, outcomes in B N C have the last three flips come up tails, so there are 2 such
outcomes. However, outcomes in A N C have all four flips come up tails, so there is only 1 such outcome. Lastly,
outcomes in A N B N C also have all four flips tails, so there is only 1 such outcome.

Therefore, by PIE, we have that the number of outcomes in A U BU C (that is, the number of outcomes in which
at least one pair of coins comes up tails)is 4 +4+4—-2-2-1+1 = 8. Since there are 2* = 16 total possible

outcomes for the four flips, the probability of getting two consecutive tails is & = E

Note that we can use PIE and symmetry to check our answer. We computed 8 outcomes with two consecutive
tails. By symmetry, there should be 8 outcomes with two consecutive heads. We also know that there are 2

12
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outcomes with both consecutive heads and consecutive tails (namely, HHTT and TTHH). So, by PIE, there are
8 +8 — 2 = 14 outcomes with consecutive heads or consecutive tails. And, indeed, there are only 16 — 14 = 2
outcomes with no consecutive heads nor consecutive tails, namely HTHT and THTH.

3.3.5 LetB, G,and W be the sets of dogs that have won a blue ribbon, green ribbon, and white ribbon, respectively.
Let x = #(B) = #(G) = #(W) and Yy=#BNG)=#BNW)=#Gn W).

We can use PIE to count the number of dogs with at least one ribbon, which we know to be 180 (since every
dog in the school has at least one ribbon). We get that

180=(x+x+x)—(y+y+y)+15=3x—3y+15,
sox—y =55

On the other hand, we can also count the number of dogs that have more than one ribbon. Each such dog has
two or three ribbons. If we take the sum #(B N G) +#(BN W) +#(G N W), then we have counted each dog with two
ribbons exactly once, but we have counted dogs with three ribbons three times, so the number of dogs with more
thanoneribbonisy+y+y-2-15=3y—-30.

Since each dog has at least one ribbon, the number of dogs with exactly one ribbon is 180 — (By—30) = 210-3y.

Therefore, 210 - 3y = 2(3y - 30), which means that y = 30. Combining this with x — y=55givesusx = dogs
with any one ribbon, in particular a blue ribbon.

This problem can perhaps be more easily solved using the Venn Diagramshownat B G
right. We can read off of the diagram that the total number of dogs is 3a+3b+15 = 180,
and that the relationship between dogs with 1 ribbon and dogs with 2 or more ribbons

is 3b = 2(3a + 15). This solves to give a = 15 and b = 40, and the answer is then
b +2a + 15 = 85, as before, A@A

3.3.6 LetS,, S5, and S; be the sets of 6-digit numbers that do not contain the digits
1,2, and 3, respectively. Then by PIE, the number of 6-digit numbers that are missing
at least one of the digits 1, 2, or 3 is

#S5,US, US;) = #(51) +#(5,) +#(S3) —#(5; NS)—#(51N S3)—#(S>n S3)+#(5; NS;NS3). w

First we count #(S;), the number of 6-digit numbers that do not contain the digit 1. The first digit has 8
possible values (2 through 9), and each of the remaining 5 digits has 9 possible values, so #(51) = 8- 9°. Similarly,
#(S2) = #(S3) = 8- 95,

Next we count #(S; N S5), the number of 6-digit numbers that do not contain the digit 1 or 2. The first digit
has 7 possible values (3 through 9), and each of the remaining 5 digits has 8 possible values, so #S1NSy)=7-8°,
Similarly, #S1NS3) = #(S2nS3) =785,

Finally, we count #(S1 N S; N S3), the number of 6-digit numbers that do not contain the digits 1, 2, or 3.
The first digit has 6 possible values (4 through 9), and each of the remaining 5 digits has 7 possible values, so
#S5 NS N S3)=6-7°,

Therefore, #(S; US; US3) =3-8.95—3.7.g5 +6-7° = 829,890. There are a total of 9 - 10% = 900,000 6-digit
numbers, so there are 900,000 — 829,890 =| 70,110 6-digit numbers that have at least one 1, one 2, and one 3.

Exercises for Section 3.4

34.1 Let W; and W, be the sets of arrangements of the letters of the word STRATA where the two As are
consecutive, and the two Ts are consecutive, respectively. Then by PIE, the number of arrangements where either
the two As are consecutive or the two Ts are consecutive is #(W; U W) = #(W;) + #(W2) — #(W1 N ).
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First we count #(W1), the number of arrangements where the two As are consecutive. We treat AA as a single
block, and the remaining letters are one R, one S, and two Ts, so
51

#(Wl) = E = 60.

Similarly, #(W>) = 60.

Next we count #(W; N W;), the number of arrangements where the two As are consecutive and the two Ts
are consecutive. We treat both AA and TT as single blocks, and the remaining letters are one R and one S, so
#(W1 N W,) = 4! = 24, Therefore, #(W; U W) = 60 + 60 — 24 = 96,

The word STRATA contains two As, one R, one S, and two Ts, so there are a total of

6!
a1 = 180

arrangements of the letters. Hence, there are 180 — 96 = arrangements where the two As are nonconsecutive
and the two Ts are nonconsecutive.

3.4.2 First, we factor 126 = 2- 3% - 7. Thus, a number is relatively prime to 126 if and only if it is not divisible by
2,3,0r7.

We can now follow the solution to Problem 3.8. There are 210 positive integers less than 211. Then by PIE, the
number of positive integers less than or equal to 210 that are divisible by at least one of 2, 3, or 7 is

20 210 210 210 210 210 210
2 3 7 2-3 27 3-7 2-3.7
=105+70+30-35-15-10+5

= 150,

which means that there are 210 — 150 = positive integers less than or equal to 210 that are relatively prime to
126.

3.4.3 Since 10 =2-5and 12 = 22- 3, a positive integer is relatively prime to both 10 and 12 if and only if it is not
divisible by any of 2, 3, or 5.

In general, for positive integers n and d, the number of positive integers from 1 to n that are multiples of d is
ln/d]. There are 999 positive integers less than 1000. Therefore, by PIE, the number of positive integers from 1 to
999 that are divisible by at least one of 2, 3, or 5 is

222 2 2
2 3 5 2-3 2-5 3-5 2:3-5
=499 + 333 + 199 — 166 — 99 — 66 + 33

= 733.

Hence, there are 999 - 733 = positive integers from 1 to 999 that are relatively prime to both 10 and 12.

3.4.4 Let the letters A, B, and C denote a fan from Austin High School, Butler High School, and Central High
School, respectively. Then we can think of a seating of the nine fans as an arrangement of the nine letters A, A, A,
B, B, B, C, C, and C. We want to count the number of arrangements where no three letters appear together.

Let S4, S, and Sc be the sets of arrangements where the three letters A, B, and C appear together, respectively.
Then by PIE, the number of arrangements where any of the three letters A, B, or C appear consecutively is

#(SAUSpUSc) =#(Sa) + #(Sp) + #(Sc) — #(54 N Sp) —#(54 N Sc) — #(Sg N Sc) +#(54 N S N Se).

14
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First we count #(S,), the number of arrangements where the As are consecutive. We consider the three letters
A as a single block. Then the number of arrangements of the single block AAA, three letter Bs, and three letter Cs
is
7!
T~ 0
Once the positions of the letters have been determined, the fans are distinguishable, so there are 3! ways to seat
the fans from each school. Therefore, #(54) = 140- 3! - 3! - 31 = 30,240. Similarly, #(5g) = #(Sc) = 30,240.

Next we count#(S4NSp), the number of arrangements where the A’s are consecutive and the B's are consecutive.,
We consider both the three letters A and the three letters B as a single block. Then the number of arrangements of
the single block AAA, the single block BBB, and three letter Cs is

5!
11113!
As before, there are 3! ways to seat the fans from each school, so #(S4 N Sp) = 20-3!-3!.3! = 4320. Similarly,
#(S4 N Sc) =#(Sp N S¢) = 4,320.

Finally, to count #(S4 N Sp N S¢), we consider the three letters A, the three letters B, and the three letters C each
as a single block. Then the number of arrangements is 3!, so #(S4 N Sp N S¢) = 3!-3!- 3! 31 = 1,296.

= 20.

Therefore,
#(54USpUSc)=3-30,240—3-4,320 + 1,296 = 79,056.

There are a total of 9! = 362,880 ways of seating the nine fans, which means that there are 362,880—-79,056 = | 283,824
ways of seating the nine fans so that no three fans of any high school are seated consecutively.

3.4.5 LetE, P, and S be the sets of enrollments where the economics class, psychology class, and sociology class
is empty, respectively. Then by PIE, the number of possible enrollments where at least one of the classes is empty
is

HEUPUS) =H#E)+#P)+#S)—#ENP)—#ENS)—#(P N S) +#ENPNS).

First we count #(E), the number of possible enrollments where the economics class is empty. This means each
of the 15 students is in psychology or sociology. Hence, #(E) = 215, Similarly, #(P) = #(S) = 215.

Next we count#(ENP), the number of possible enrollments where both the economics class and psychology class
is empty. This means all 15 students are in the sociology class. Hence, #( ENP) = 1. Similarly, #(ENS) = #PnS) = 1.

Finally, the set EN PN § is the set of enrollments where all three classes are empty. But every student is in some
class, so#(ENPNS) = 0.

Therefore, #HEUP U S) = 3-25 — 3 + 0. The total number of possible enrollments is 3!5, so there are
3% —3.2'5 +3 = 14,250,606 ’possible enrollments where no class is empty.

Exercises for Section 3.5

3.5.1 We know that a number is relatively prime to 462 if it has no prime factors in common with 462. Therefore
we start by determining the prime factorization of 462, which is 462 = 2 x 3 x 7 x 11. So we are looking for all of
the positive integers less than 529 that do not have any of 2, 3, 7, or 11 as factors.
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Thus our PIE expression is:

#s with a factor 0of 2,3, 7, 0or 11 = ’_T {ﬁJ + {@J + [528J

NEIRENE R TREANES
(2

1% )+ 5]+ Lzt
|5l

=(264+176+75+48) — (88 +37 +24+25+ 16 +6) + (12 +8+3+2) -1
=563 — 196 + 25— 1 = 391.

528 J
2

» +

ul
|8 2

+
+

Thus there are 528 — 391 = positive integers less than 529 that are relatively prime to 462.

3.5.2 Let Ay, A, A3, and A4 be the sets of deals where the first, second, third, and fourth player receives a pair,
respectively. Then by PIE, the number of hands where at least one player receives a pair is

#(A1 U Az U As U Ay) = #(A1) + #(A2) + #(As) + #(As)
— #(A1 N Az) — #(A1 N As) —#(A1 N Ag) — #(Az N Az) — #(Az N Ay) — #(A3 N Ag)
+#(A1 NA; NAz) + #(A1 N A N Ag) +#(A1 N A3 N Ay) +#(A; N Az N Ay)
—#(A1 N AN A3 N Ay).

First we count #(A,), the number of ways the first player can receive a pair. There are four possible pairs (one for
each denomination from 2 through 5), and the number of ways the remaining six cards can be dealt to the remaining
three players is (g)(g) = 90, because we have (g) choices for cards for the first remaining player, then (%) choices for
cards for the next remaining player. Therefore, #(A1) = 4-90 = 360. Similarly, #(A;) = #(Az) = #(A4) = 360.

Next we count #(A; N A;), the number of ways both the first player and second player can receive a pair. There
are four possible pairs for the first player, then three possible pairs for the second player. Then the number of ways
the remaining four cards can be dealt to the remaining two players is (3) = 6. Therefore, #(A; N Az) =4-3-6 = 72.
Similarly, #(A1 N Az) = #(A1 N Ay) = #(Az N Az) = #(Ax N Ag) = #(A3 N Ag) = 72.

Finally, if three players receive a pair, then the fourth remaining player must also receive a pair. This can occur in
4! = 24 ways. Therefore, #(A1NA2NA3) = #(A1NA2NAs) = #{A1NA3NAL) = #(A2NA3NAL) = #(A1NAINANA,) = 24.

So the number of hands where at least one player receives a pair is
#HA1UA UA3 UA,) =4-360-6-72+4-24 —24 = 1080.

The total number of possible hands is

8!
2m - 220
Hence, the probability that no player receives a pair is
AP0 .3, (2
2520 7 |7]

Seeing a simple answer might make us wonder if there’s a more direct solution, and there is. We will present
just the highlights of the solution, and let you fill in the details.

We see that player #1 does not get a pair with probability £ (since for any first card that player #1 receives, 6
of the 7 remaining cards do not match it). Suppose without loss of generality that player #1 receives a 2 and a 3,
and that a 4 is dealt to player #2. (Think about why we can make these assumptions.) The other 4 gets dealt to
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a different player with probability £, since there are 5 slots remaining for the 5 cards left in the deck. Now the
deck is left with a 2, and 3, and the pair of 5’s, and the ‘Probabi]ity that the pair doesn’t get dealt to the remaining
6 54

person is 2. Therefore, the probability of no pairis §- 2 -2 = 3.

3.53 LetA,C, S, and R be the sets of seatings where two Americans, Canadians, Spaniards, and Russians sit in

the same row, respectively. Then by PIE, the number of seatings where two people from at least one country sit in
the same row is

#AUCUSUR) = #(A) + #(C) + #(S) + #(R)
—#ANC)-#ANS)—#ANR) —#CNS) —#CNR)—#SNR)
+#ANCNS)+#HANCNR)+#ANSNR) +#CNSNR)
—#ANCNSNR).

We first count #(A), the number of seatings where two Americans sit in the same row. There are six rows to
choose from. Once the row is chosen, there are 3-2 = 6 ways to seat two Americans in that row. There are 10! ways to
seat the remaining 10 passengers. Hence, #(A) = 6-6-10! = 130, 636,800. Similarly, #(C) = #(5) = #(R) = 130,636,800.

Next, we count #(A N C), the number of seatings where two Americans sit in the same row and two Canadians
sit in the same row. Like before, there are six ways to choose the row for the two Americans, and 3-2 = 6
ways to seat two Americans in that row. There are then five ways to choose the row for the two Canadians, and
3-2 = 6 ways to seat the two Canadians in that row. There are 8! ways to seat the remaining 8 passengers. Hence,
#HANC)=6-6-5-6-8! =43,545,600. Similarly, #A N S) = #HA NR) =#C N S) = #C N R) =#(S N R) = 43,545,600.

Next, we count #(A N CN S), the number of seatings where two Americans, two Canadians, and two Spaniards
sit in the same row. There are six ways to choose the row for the two Americans, and 3 - 2 = 6 ways to seat two
Americans in that row. There are then five ways to choose the row for the two Canadians, and 3 -2 = 6 ways
to seat the two Canadians in that row, and then four ways to choose the row for the Spaniards, and 3-2 = 6
ways to seat the two Spaniards in that row. There are 6! ways to seat the remaining 6 passengers. Hence,
#HANCNS)=6-6-5-6-4-6-6! =18,662,400. Similarly, #ANCNR) =#ANSNR) =#CNSNR) = 18,662,400.

Finally, we count #ANCNSNR), the number of seatings where two Americans, two Canadians, two Spaniards,
and two Russians sit in the same row. Following the same technique as in the previous calculations, we find that
#HANCNSNR)=6-6-5-6-4-6-3-6-4! =11,197,440.

Therefore, the number of seatings where two people from at least one country sit in the same row is

4 4
#HAUCUSUR) = ( 1) - 130,636,800 — (;) - 43,545,600 + (

3) - 18,662,400 — 11,197,440 = 324,725,760.

The total number of seatings is 12! = 479,001,600. Hence, the number of seatings where no two people from the

same country sit in the same row is 479,001,600 — 324,725,760 = | 154,275,840 |.

3.5.4 There are four 2 X 2 squares, one for each corner. Let A;, A;, A3, and A4 be the sets of colorings with a
white 2 X 2 square in the upper-right, upper-left, lower-left, and lower-right corners, respectively. Then by PIE,
the number of colorings with a white 2 X 2 square in some corner is

#(A1 UA UAs U Ay) = #(A7) + #(A2) + #(A3) + #(A4)
—#(A1 N Az) — #(A1 N A3) — #(A1 N Ag) — #(A2 N A3) — #(A2 N Ag) — #(A3 N Ay)
+#A1 NANA3) +#(A1 NA N AL +H# AT N A3 N Ag) +#(Ax N A3 N Ag)
- #(/h NA; NAsN A4).

First we count #(A1), the number of colorings where every square in the upper-right 2 X2 square is white. There
are four squares that are already white, leaving five squares that can be colored arbitrarily, so #(4;) = 2° = 32,
Similarly, #(A;) = #(Aa) = #(A4) = 32.
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Next we count #(A; N Ay), the number of colorings where every square in the upper-right and upper-left 2 x 2
square is white. There are six squares that are already white, leaving three squares that can be colored arbitrarily,
so#(A1 NAy) = P =8 Simjlarly, #(A2NA3) =#(A3 NAy) =#(A1 N Ay = 8.

However, counting #(A N A3) must be treated differently, as the upper-right and lower-left corners are opposite
each other. In each of these colorings, there are seven squares that are already white, leaving two squares that can
be colored arbitrarily, so #(A; N A3) = 2% = 4, Similarly, #(A> N A4) = 4.

Next, we count #(A; N Az N As), the number of colorings where every square in the upper-right, upper-left,
and lower-left 2 X 2 square is white. For each one of these colorings, there are eight squares that are already
white, leaving one square that can be colored arbitrarily, so #(A; N Ay N A3) = 2. Similarly, #(A1 N Az N Ay) =
#HA1NA3NAy) =#A2NA3NAg) =2.

Finally, #(A; N A2 N A3 N Ag) = 1, because the only coloring in this set is the coloring where every square is
white.

Hence,
#ATUAZUA3UA) =4-32-(4-8+2-4)+4-2—-1=095.

This counts the number of colorings that contain a 2 x 2 white square. There are a total of 2° = 512 colorings.
Therefore, the probability that a coloring does not contain a 2 x 2 white square is

_55 _[a7
512 " | 512 |

Exercises for Section 3.6

3.6.1 First, 3150 factors as 2-3%-5% - 7. So if n has at least three different prime factors in common with 3150, then
n must be a multiple of 2-3-5=30,2-3-7=42,2-5-7=70,0r3-5-7 = 105.

There are 3150/30 = 105 multiples of 30 that are less than or equal to 3150. Similarly, there are 3150/42 = 75
multiples of 42, 3150/70 = 45 multiples of 70, and 3150/105 = 30 multiples of 105 that are less than or equal to
3150. However, every multiple of 2 - 3 -5 7 = 210 is counted in each of these four numbers, so we must subtract
3-3150/210 = 45.

Therefore, the number of positive integers that are less than or equal to 3150 that have at least three different
prime factors in common with 3150 is 105 + 75 + 45 + 30 — 45 = [ 210].

3.6.2

(a) To count the number of elements that belong to least two of the sets, we begin with the sum

#HANB)+#HANC)+#AND)+#BNC)+#HBND)+#CND).

This sum counts every element that appears in exactly two sets exactly once, but it also counts every
element that appears in exactly three sets three times. (For example, if x is in ANBNC, then xis alsoin AN B,
ANC,and BN C.) Hence, we subtract these elements twice to obtain the sum

HANB)+#ANC)+#AND)+#BNC)+#BND)+#CND)
—2MANBNC)+#ANBND)+#ANCND)+#BNCnN D).

Now, this sum counts every element that appears in all four sets 6 —2-4 = —2 times, so we must add these
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elements three times. Hence, the number of elements that appear in at least two sets is

#ANB)+#ANC) +#AND) +#BNC) +#B N D) +#CND)
—2[HANBNC)+#ANBND)+#ANCND)+#BNCND)]
+3#ANBNCND)
=166+100+71 +66+47 +28 —2(33+23+14+9) +3 -4

=[332}

(b) To count the number of elements that belong to exactly two of the sets, we again begin with the sum

#ANB)+#ANC)+#AND)+#BNC)+#BND)+#CND).

As in part (a), this sum counts every element that appears in exactly two sets exactly once, but it also
counts every element that appears in exactly three sets three times, so we subtract these elements three times
to obtain the sum

#HANB)+#ANC)+#AND)+#BNC)+#HBND)+#HCND)
=3HANBNCO)+#HANBND)+#ANCND)+#BnNCnD)].

Now, this sum counts every element that appears in all four sets 6 —3-4 = —6 times, so we must add these
elements six times. Hence, the number of elements that appear in exactly two sets is

#HANB)+#ANC)+#HAND)+#BNC)+#BND)+#CND)
—3#ANBNC)+#ANBND)+#ANCND)+#BNCND)]
+6#HANBNCND)
=166+ 100+ 71 + 66+ 47 +28 —3(33 + 23+ 14 +9) + 6 - 4

=[265}

3.6.3 To slightly simplify the calculations, we’ll say that each die has 3 equally-likely outcomes: one outcome is
rolling a [+]or al. T, another outcome is rolling a [~Jor ald, and the third outcome (the one that we’re focused on)
is rolling a l*J or a &l So there are 3* = 81 equally-likely possible outcomes of rolling the four dice.

(a) There are (g) = 4 ways to choose three dice. Once we’ve chosen the three dice, there are 3 possible outcomes

in which these three dice are l.* or greater, since the 4" die can be any of our 3 outcomes. This gives us an
initial count of 4 - 3 = 12 successful outcomes. But we have counted the outcome in which all four dice are
i or greater 4 times, once for each choice of three dice. Therefore, we must subtract this outcome 3 times,
so that it is only counted once. Thus, there are 12 — 3 = 9 successful outcomes, and hence the probability is
9 |1
81 |9
(b) The only one of the 9 outcomes from part (a) that we need to exclude is the outcome in which all four dice
8

a e

arel*s| or greater. Thus, there are 8 successful outcomes, and the probability is

3.6.4 We need to make sure that every element that appears in at least two of the sets is counted exactly once
by the large PIE expression. We proceed by cases, based on exactly how many of the sets a particular element is
contained in.

Consider an element that appears in exactly two of the five sets, say A and B. This element is counted once in
the term A N B, so it is counted p times in the expression. Hence, p = 1.

Now consider an element that appears in exactly three of the five sets, say A, B, and C. This element is also
counted once in the terms ANB, ANC, BNC,and ANBNC, soitis counted 3p + g times in the expression. Hence,
weneed3p+g=1,50g=1-3p=-2.
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CHAPTER 3. A PIECE OF PIE

Now consider an element that appears in exactly four of the five sets, say A, B, C, and D. This element is also
counted once in the terms ANB,ANC,AnD,BNC,BND,CND,AnBNC,ANBND,ANCND,BNCND,
and ANBNCND, soitis counted 6p + 4q + r times in the expression. Hence, we want 6p + 4 + r = 1, giving
r=1-6p—49=1-6+8=3. ‘

Finally, if an element appears in all five sets, then it is counted 10p + 10g + 57 + s times in the expression. Then
we must have 10p + 109 +5r+s=1,s0s =1-10p—10g —5r =1-10+20 - 15 = —4.

Therefore, the constants are | p=1l9g=-2,r=3,ands = —-4|

Exercises for Section 3.7

3.7.1 Label the six children A, B, C, D, E, and F. For a given subset X of children, let Sx denote the set of
arrangements where the children in X can be paired off, so that the children in each pair are chasing each other;
for example, S4,,c,p) is the set of all arrangements in which the children A, B, C, D are paired off into two pairs,
each of which is two children chasing each other.

Then by PIE, the number of arrangements where some pair of children are chasing each other is equal to:

#(S(a,8) + #(S1a,0) + #(Siap)) + - + #(SiER)
— [#(Sia8cm)) +#(SiacE) + #(Suscr) + - +#Scoen)]
+#(Sia8,cD.EF)-

First we count #(S(4,5)), the number of arrangements where A and B are chasing each other. Each of the other
four children have five children they can choose to chase, so Si45 = 5* Similarly, #Siac) = #(Sup) = -+ =
#Sien) = 5"

Next we count #(Si4,5,c,p)), the number of arrangements where the children A, B, C, and D can be paired off so
that the children in each pair are chasing each other. There are 2 - (3) = 3 ways to partition the four children into
pairs. Each of the other two children have five children they can choose to chase, so Sia,scp; = 3 - 52.

,,,,, F}), the number of arrangements where all six children can be paired off so that
the children in every pair are chasing each other. There are % - (g)(i) = 15 ways to partition the six children into

:::::

Therefore, the number of arrangements where some pair of children are chasing each other is equal to

6 4 6 2 —
(2) 5 (4) 3-5% + 15 = 8265.

There are a total of 5° = 15625 arrangements. Therefore, the probability that some pair of children are chasing
each other is

8265 [ 1653

ﬁ = ﬁ 252.9/:).

3.7.2 Label the vertices of the shaded square be C, D, E, and F as shown in the diagram on the next page.
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o]

A

Let Pr, P, Py, and Py be the sets of paths that include the top edge, right edge, bottom edge, and left edge of
the shaded square, respectively. Then by PIE, the number of paths that include an edge of the shaded square is

#(Pr U Pr U Py UP) = #(Pr) + #(Pg) + #(Pg) + #(Pp) — #(Pr N Pg) - #(Pr N Pp).

A path cannot include both the top edge and right edge, so the term #(Pr N Pg) and similar terms are not included
in our PIE formula. Also it is not necessary to list the terms that are intersections of 3 or more sets, since no paths
can pass through more than 2 of the sides of the shaded square.

First we count #(Pr). The set Pr can also be described as the set of paths that go from A to C to D to B. Point C
is 2 units to the right and 2 units up from A, so there are (3) paths from A to C. Point B is 3 units to the right and 2
units up from D, so there are (g) paths from D to B. Therefore,

w1-()f-a

w0={f-s o~ -G

The set P N Py can be described as the set of paths that gofromAtoFtoEtoDto B. Hence,

#(Pr N Pg) = (;J(g) = 30.

Similarly,

Similarly,
3\(5
#HPr 0Py = ( 2)(3) - 30.

Therefore, the number of paths that include an edge of the shaded square is 60 + 40 + 60 + 45 — 30 — 30 = .

Alternative Solution: A path from A to B that includes an edge of the shaded Square must pass through exactly
one of the points F, G, or H in the diagram below.

=
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CHAPTER 3. A PIECE OF PIE

If such a path passes through H, then it must also pass through D. There is only one path from A to H via D,
so the number of paths from A to B via H is equal to the number of paths from D to B, which is (Ey=10.

Similarly, if a path from A to B passes through G and a side of the shaded square, then it must also pass through
D. There are (3) = 3 paths from A to G, and (g) = 10 paths from D to B, so there are 3 - 10 = 30 paths from A to B
via G.

Finally, every path through F includes a side of the shaded square. There are () = 3 paths from A to F, and
(}) = 35 paths from F to B, so there are 3 - 35 = 105 such paths.

Hence, the total number of paths that include an edge of the shaded square is 10 + 30 + 105 = 1145].

3.7.3 First, we constructively count the number of pairs of subsets (A4, B) such that B is contained in A. Consider
any element s € S. If B C A, then there are three possibilities: (1) s is in both A and B, (2) s is in A but not B, or (3) s
is neither in A nor B. This gives us 3 choices for how to deal with s when we are constructing A and B. The same
holds for the other five elements. Therefore, the number of pairs (A, B) with B C A is 3°.

We can similarly count the number of péirs of subsets (A, B) such that B is contained in S \ A, or equivalently,
AN B = 0. Again, there are three possible cases for each element s € S: (1) s is in A but not B, (2) s is in B but not
A, or (3) s is neither in A nor B. The same holds for the other five elements, so the number of such pairs (4, B) is
again 3°.

However, we must consider pairs (A, B) that appear in both counts. If (A, B) satisfiesboth B € A and B C (S\A),
then we also have B C (AN (S \ A)). But An(S\ A) =0, so B ¢ 0. This can only happen if B = (. In this case, A
can be any subset of S; hence, the number of pairs (A, B) that appear in both counts is just the number of subsets
A of S, which is 25.

The total number of pairs of subsets (4, B) is 2 - 25 = 212, so the probability that B is contained in A or S\ A is

23626 | 697
212 {2048 [

3.7.4 First, we count the number of pentagons with two particular edges of the n-gon as its sides. If the two
edges are adjacent on the n-gon, then we must choose 2 of the remaining (1 — 3) vertices to be the remaining two
vertices of the pentagon. If the two edges are non-adjacent, then we must choose 1 of the remaining (12 —4) vertices
to be the fifth vertex of the pentagon. There are n ways to choose two adjacent edges, and () — n ways to choose
two non-adjacent edges, so our initial count is

n—3 n
After a bit of algebra, this simplifies to n(n — 3)(n — 4).

Next, we count the number of pentagons with three particular edges on the n-gon as its sides. If all three edges
are adjacent, then we must choose 1 of the remaining (1 — 4) vertices to complete the pentagon. Otherwise, two of
the edges must be adjacent, and we must choose one of the remaining # — 4 non-adjacent edges as the third edge.
There are n ways to choose the original adjacent edges in either case, so this gives a total of

nn—4+n-—4)=2nn-4)
such pentagons.

Lastly, there are n pentagons with 4 sides on the n-gon.

Each pentagon with 3 sides on the n-gon is counted 3 times in our original count, so the count of pentagons
with 3 edges must be subtracted twice. Each pentagon with 4 sides on the n-gon is counted 6 times in our original
count, and then gets subtracted 2 - 4 times in second count, so it must be added back 3 times. Therefore, the PIE
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Review Problems

expression is

n(n — 3)(n — 4) — 2(2n(n - 4)) + 3n = [n® — 11n® + 31n |

As a check, we note that this should equal () for all 6 < n < 8, and plugging in = 6,7, 8 we see that it works.

3.7.5 (We use the same notation as in the problem.) Recall that we proved that B > 10. If no pair overlaps an
area more than 1, then every pair of patches overlaps with area exactly 1, meaning that B = 10. Therefore, looking
at equation (3.7.6) in the text, we see that D — 2E = 0, so D = 2E. But we also know that D > 5E, meaning that
2E 2 5E. Since E > 0, the only way that this can happen is if E = 0, meaning D = 0 as well. But that’s what we
wanted to prove: recall that D is the area covered by the intersection of sets of 4 patches, and we’ve shown that
this is 0, so there is no point covered by more than 3 patches.

Review Problems

3.25 First we count words starting with a vowel. There are 5 choices for the first letter (since there are 5 vowels),
and there are 26 choices for each of the other 3 letters, so there are 5 - 26 words that start with a vowel.

Using the same reasoning, there are 5 - 26 words that end with a vowel, and 5% x 26* words that start and end
with a vowel.

Therefore, the number of words that start or end with a vowel is
2(5-26”) — (5% - 26%) = (260 — 25) - (26%) =[ 158,860 .

3.26 A 3-digit number has the form abc, where a is non-zero and b and ¢ can be any digit.

First, we count the number of numbers where a = b. This common digit can be any digit from 1 through 9, and
the digit c can be any digit, so there are 9 - 10 = 90 such numbers. Next, we count the number of numbers where
b = c. This common digit can be any digit from 0 through 9, and the digit a can be any digit from 1 through 9, so
again there are 10 - 9 = 90 such numbers.

Finally, the number of numbers where all digits are the same is 9. Therefore, by PIE, the number of 3-digit
numbers that have two equal consecutive digits is 90 + 90 — 9 = .
3.27 From the given data, by PIE, there are 15 + 12 — 6 = 21 ninth-graders that play either lacrosse or soccer. This
is impossible, as there only 20 ninth-graders.

3.28 The probability that I forget my keys or my wallet is 20% + 30% — 5% = 45%, so by PIE, the probability that
I remember both my keys and my wallet is 100% — 45% = | 55% |

3.29

(a) Let Sy, Sy, and S be the sets of four-letter words where the first and second letters, second and third letters,
and third and fourth letters are identical, respectively. Then by PIE, the number of four-letter words with at
least one pair of identical consecutive letters is

#(51 U 82 U S3) = #(S1) + #(S,) + #(53) = #(51 N S3) — #(S; N S3) — #(S2N S3) +#(51 N Sy N S3).

First we count #(S;), the number of four-letter words where the first and second letters are identical. There
are 26 choices for this common letter. The third and fourth letters can be any letters, so #(S;) = 26%. Similarly,
#(S2) = #(S3) = 26°.

Next, we count #(S1 N S,), the number of four-letter words where the first, second, and third letters
are identical. There are 26 choices for this common letter. Then the fourth letter can be any letter, so
#(S1 N Sy) = 262, Similarly, #(S» N S3) = 262,
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The number #(5; N S3) is the set of four-letter words where the first and second letters are identical, and
the third and fourth letters are identical. There are 26 choices for the first common letter, and 26 choices for
the second common letter, so #(S; N S3) = 262.

Finally, S1 N Sz N S3 is the set of four-letter words where all letters are identical, so #(5; N S N S3) = 26.

Therefore, the number of four-letter words with at least one pair of identical consecutive letters is
#(S1 U S, U S3) =326 — 3 -26% + 26.

The total number of four-letter words is 26%, so the number of four-letter words that do not contain a pair of

identical consecutive letters is
26* - 3(26%) + 3(26%) — 26 = | 406,250 |

(b) There are 26 choices for the first letter. Once the first letter is chosen, there are 25 choices for the second letter,
then 25 choices for the third letter, then 25 choices for the fourth letter. Hence, there are 26 - 25° = | 406,250
such four-letter words.

(c) Factoring out a 26 from both answers, we claim that
26° — 3(26%) + 3(26) — 1 = 25°,
The left side of this expression is just the expansion of (26 — 1), so clearly they are equal.

3.30 Let X be the set of 10-digit numbers where the first four digits are the same as the next four digits, and let
Y be the set of 10-digit numbers where the first four digits are the same as the last four digits.

First we count #(X). The first four digits can be any number from 1000 to 9999, for a total of 9000 choices.
Then the next four digits are determined, and the last two digits can be any digits, so #(X) = 9000 - 100 = 900,000.
Similarly, #(Y) = 900,000.

Next we count #(X N Y). If a 10-digit number is in both X and Y, then it must be of the form ababababab, where a
and b are digits. There are 9 possible values for 2 and 10 possible values for b, so #(X N Y) = 90. Therefore, by PIE,
the number of 10-digit numbers that Sam can remember is #(XUY) = #(X)+#(Y)-#(XNY) = 900,000+900,000-90 =

[L910]

3.31 To count the number of license plates that contain a three-letter palindrome, there are 26 choices for the first
letter, 26 choices for the second letter, and then the third letter must be the same as the first letter. There are 10°
choices for the numbers, so there are 26 - 26 - 10% such license plates.

Similarly, to count the number of license plates that contain a three-digit palindrome, there are 10 choices
for the first number, 10 choices for the second number, and then the third number must be the same as the first
number. There are 26> choices for the letters, so there are 26% - 10 - 10 such license plates.

Finally, using the same constructive counting method, we find that the number of license plates that contain
both a three-letter palindrome and a three-digit palindrome is 26 - 26 - 10 - 10. The total number of license plates is
26° - 10°. Therefore, by PIE, the probability that a license plate contains a three-letter palindrome or a three-digit
palindrome is

262-10° +26° - 102 —26%-10>°  10+26-1 35 |7

263 - 103 T 26-10 260 |52f

3.32 If k numbers in the permutation (x1, x2, ..., X7) are fixed, then the remaining 7 — k numbers can be permuted

in (7 — k)! ways. Furthermore, there are (',f) ways to choose k odd numbers to be fixed. Hence, the PIE expression
that counts the number of permutations in which at least one odd number is fixed is:

(-t »-m
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3.33 Since all seatings are equally likely, the probability that at least two of the chosen knights had been sitting
next to each other is equal to the number of seatings where at least two of the knights had been sitting next to each
other divided by the total number of possible seatings.

Let the chosen knights be K;, K3, and K3, and let A, B, and C be the sets of seatings where knights K; and K»,
knights K; and K3, and knights K; and Kj sit next to each other, respectively. Then by PIE, the number of seatings
where at least two of the knights had been sitting next to each other is

#AUBUC) = #(A) +#(B) + #(C) —#ANB) —#ANC) —#BNC) + HAN BN C).

First we count #(A), the number of seatings where knights K; and K; sit next to each other. We can choose
where K; sits in 25 possible ways. (We'll ignore the symmetry of the round table here; this is OK to do as long
as we also ignore it when counting the total number of possible seatings.) After the seat for K; has been chosen,
there are two possible spots for Ky, and then 23 possible spots remaining for K3, so #(4) = 25 -2 - 23. Similarly,
#B) =#C)=25-2-23.

Next we count #(A N B), the number of seatings where the knight K; sits next to both knights K; and K3. We can
choose the seat for K; in 25 possible ways. Then knights K; and K3 must sit on either side of K;, and there are two
possible ways. Hence, #(A N B) = 25 - 2. Similarly, #ANC) = #(B N C) = 25- 2. Finally, note that #A N BN C) = 0,
as it is impossible for all three pairs of knights to be sitting next to each other (one of them has to be the middle,
and then the outside two are not next to each other).

Therefore,
#AUBUC)=3-25-2-23-3-25-2 = 3300.

The total number of ways of seating the three knights is 25 - 24 - 23 = 13800 (remember, we are ignoring the
symmetry of the round table), so the probability that two of the knights were sitting next to each other is

3300 |11
13800 | 46 |

Alternative solution: First seat all of the knights. There are 25 - 21 ways to choose 2 adjacent knights and a third
non-adjacent knight. There are 25 ways to choose 3 adjacent knights (just choose the middle one). There are (235)
ways to choose 3 arbitrary knights. Therefore, the probability that, among 3 randomly-chosen knight, two of them
will be adjacent, is:

25-21+25 _6-22 |11
(%'5) 24-23 |46

3.34 LetS, H, C, and D be the sets of hands that are void in spades, hearts, clubs, and diamonds, respectively.
Then by PIE, the number of hands that are void in at least one suit is

#SUHUCU D) = #(S) + #(H) + #(C) + #(D)
—#(S N H) —#(SNC) —#S N D) —#(H N C) — #(H N D) — #(C N D)
+#SNHNC)+#SNHND)+#SNCND)+#HNCND)
-#SNnHNCND).

First, we count #(5), the number of hands that are void in spades. There are 52 — 13 = 39 cards to choose from,
s0 #(S) = (3;). Similarly, #(H) = #(C) = #(D) = ().

Next, we count #(SNH), the number of hands that are void in both spades and hearts. Thereare 52—13—13 = 26
cards to choose from, so #(S N H) = (). Similarly, #(S N C) = #(SND) = #(HN C) = #(HN D) = #C N D) = ).

Next, we count #(SNH N C), the number of hands that are void in spades, hearts, and clubs. The only such hand
is the hand consisting of all 13 diamonds, so #(SNHNC) = 1. Similarly, #SNHND) = #SNCND) = #(HNCND) = 1.
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Finally, S N H N C N D is the set of hands that are void in every suit, so#(SNHNCN D) = 0, since every hand
contains cards of some suit!

Therefore, the number of hands that are void in at least one suit is
39 26
4(13)—6(13)+4.
The total number of hands is (52), and therefore, the probability that a hand has a void is

39 26
4 -6 +4

(13) (13) _1,621,364,909
(52) ~ 31,750,677,980

13

= 5.11%.

3.35 Let’s count the number of sequences in which 0 appears at least 3 times. We can then just multiply this
count by 10 to get our answer, since there are 10 choices of which digit can appear at least 3 times, and no more
than one digit can appear at least 3 times in the same 5-digit sequence (there aren’t enough digits).

There are (g) = 10 choices for 3 of the 5 digit positions in which a 0 might appear. Once we have chosen the 3
positions, there are 10 = 100 choices for digits in the other 2 positions. This gives an initial count of 10(100) = 1000
sequences.

However, if a 0 appears in 4 different positions of a sequence, then this sequence is counted 4 times in the
above count, and so must be subtracted 3 times. There are (}) = 5 possibilities for 4 of the 5 digit positions, and 10

choices for the 5% digit. So there are 5 x 10 = 50 sequences that must be subtracted 3 times each, giving a running
total of 1000 — 3(50) = 850.

Finally, the sequence 00000 has been counted 10 times in the first term and subtracted 3(5) = 15 times in the
second term. Thus, it has been counted a net —5 times, and must be added back 6 times.

So the number of sequences with at least 3 0’s is 1000 — 150 + 6 = 856. We multiply this by 10 to get our final

answer of | 8560 |

Challenge Problems

3.36 We can analyze this by breaking up the event “A or B” into exclusive cases:
P(A or B) = P(A and (not B)) + P((not A) and B) + P(A and B).

Also note that
P(A and (not B)) = P(A) — P(A and B),

and similarly
P((not A) and B) = P(B) — P(A and B).

Therefore,
P(A or B) = P(A and (not B)) + P((not A) and B) + P(A and B)
= (P(A) - P(A and B)) + (P(B) — P(A and B)) + P(A and B)
=|P(A) + P(B) - P(A and B) |
Note the strong similarity to PIE!
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3.37 Rewrite the desired inequality as
3N = 2(S(A) + S(F) + S(I)) — (S(AF) + S(A]) — S(F])).

We will think of the right side of this as a PIE-like expression, and count how many times each student is counted
by it. The goal is to show that every student is counted 3 times or less, thus proving the inequality.

There are four types of students, namely students who speak exactly zero, one, two, or all three of the languages.
We make a table showing how many times each student is counted. Note that the “Total” column is twice the
second column, minus the third column, as per the expression above

Languages spoken | Counted in S(A) + S(F) + 5(J) | Counted in S(AF) + S(A]) — S(F]) | Total
0 0

W= O
WWwN o

1 0
2 1
3 3
So every student is counted at most 3 times, and thus the inequality holds.
3.38 A set with n elements has 2" subsets, so we can rewrite the equation s(X) + s(Y) + s(Z) = sS(XUYUZ)to be:
o#X) 4 oY) 4 o#(Z) _ pH(XUYUZ)
We are also given that #(X) = #(Y) = 100, so
2100 | 9100  o#(Z) _ 9101 4 o#(Z) _ HH(XUYUZ)
Since #(Z) and #(X U Y U Z) are integers, we must have #(Z) = 101 and #(X U Y U Z) =102.
Next, note that PIE gives us
#HXUY)=#X)+#Y)-#HXNY)=200-#XNY),

so that #(XNY) = 200-#(XUY). But XU Y is at least as large a set as either X or Y, and is no larger than XUYU Z,
therefore 100 < #(X U Y) < 102. This means that

98 < #X NY) < 100.
Similar computations show that 99 < #(X N Z) < 100 and 99 < #(Y N Z) < 100.
Finally, by PIE, we have that
HXUYUZ)=#X)+#Y) +#Z) - #XNY)-#XNZ)-#YNZ)+HXNYNZ).
Filling in the known values #(X) = #(Y) = 100 and #(Z) = 101, along with #X U Y U Z) = 102, and rearranging

terms, gives us:
#HXNYNZ)=#HXNY)+#XNZ)+#Y NZ)-199
>98+99+99-199 =97.

So the lower bound for #XNY N Z) is . This lower bound is achieved in the following example:

X=1{1,2,3,...,97,98,99, 100},
Y={1,23,...,97,98,101,102},
Z={1,2,3,...,97,99,100,101, 102}.
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3.39

(a) The form of the expression makes us consider somehow using PIE. The first term, 9%, counts the number of
ways to place k distinguishable items into 9 distinguishable boxes. Using this as our starting point, we can
construct a counting argument.

Consider a partition of the numbers 1, 2, ..., k among the sets 5, 5z, ..., Sg. (In other words, we place
each number from 1 to k in one of the sets 51, Sa, . . ., So; the sets are our “boxes.”) For 1 <7< 9, let A; be the
set of partitions in which S; is empty. Then the number of partitions where at least one of the sets 5; is empty
is #(A; U Ay U -+ - U Ag). We count the number of such partitions using PIE.

Let 1 <i < 9. Then A; is the set of partitions where the set S; is empty. We then distribute the k elements
freely among the remaining 8 sets, so #(A;) = 8.

Let1 < i< j<9. Then A;NAjis the set of partitions where both sets S; and S; are empty. We can distribute
k elements freely among the remaining 7 sets, so #(A; N Aj) = 7%

More generally, for any choice of | of the S’s, where 1 £ | < 8, there are (9 — 1k partitions that leave our
chosen I sets empty, since we must then distribute the k elements into the remaining 9 —I sets. Also note that
there are (}) choices for [ sets to remain empty.

Therefore, by PIE,
84 UAy U UAg) = I8 = (D) -+ [ = (D
1 2 9) =4 5 7 gt

This is the number of partitions in which at least one of the sets is empty. On the other hand, there are a total
of 9% partitions, so the number of partitions where all of the sets S; are non-empty is

- (p-Gr=--L-()

But if k < 9, then there is no way to distribute the numbers 1, 2, ..., k among the sets 51, 52, ..., S¢ such that
each set §; is non-empty, because we’d need at least 9 objects to place into the sets to make sure that each set
gets at least 1 object. Therefore, this number is 0.

(b) By the same reasoning as part (a), we see that the expression counts the number of partitions of {1,2,...,9}
into 9 sets such that none of the sets are empty. But this is the same thing as choosing one element for the first
set of the partition, one element for the second set, and so on. In other words, we are choosing a permutation
of the 9 elements, and thus there are 9! choices. Therefore,

-l

3.40 LetA, B, and C be the set of divisors of 101, 157, and 18", respectively. Then by PIE, the number of positive
integers that divide at least one of these numbers is

#AUBUC) = #(A) + #(B) + #(C) - #ANB) —#ANC)—#BN C) +#ANBNC).

To count the number of divisors, we first write down the prime factorizations: 1010 = 2'%. 51, 157 = 37 .57,
and 18! = 211 .32, Every divisor of 10' is of the form 205 where 0 < a < 10 and 0 < b < 10. Hence,
#(A) = (10 + 1)(10 + 1) = 121. Similarly, #(B) = (7 + 1)(7 + 1) = 64, and #(C) = (11 + 1)(22 + 1) = 276.

Next, we count #(ANB), the number of positive integers that divide both 101° and 15”. A positive integer divides
both these numbers if and only if it divides their greatest common divisor, and ged{10", 157} = ged (21051, 37.57} =
57,s0 #(AN B) = 7 + 1 = 8. Similarly,

ngilolﬂ,lsu} — gcd{zlo . 510’ 211 . 322} = 210’

ng{157, 1811} = gcd[37 . 57’ o1l 322} — 37’
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so#(BNC)=7+1=8.
Finally, we count #(A N B N C), the number of positive integers that divide 10°°, 157, and 181!, Since
ged{10,157, 18"} = ged(210 . 510, 37 . 57 11, 37} =1,
the only positive integer that divides all three numbersis 1, so #ANBNC) = 1.
Therefore, the number of positive integers that divide at least one of 101, 157, and 18! is 121 + 64 + 276 — § —

11-8+1=[435)

341
(a) We rephrase the problem as follows: Let 7 = (a1,a2,...,a,)bea permutation of the numbers (1,2, ... ,1). Find
the number of such permutations 7 such that ai#iforalll<i<n.

For1 <i<n,let A; be the set of permutations 7 for which a; = i. Then by PIE, the number of permutations
for which a; = i for some 7,1 <i < n, is equal to

#AUAU-- U Ap) = #(Ay) + #A) + -+ #(An)
—[#(A1 N A2) + #(A1 N As) + -+ + #(Apq N Ap)]
+ [#(Al N A; nA3) + #(Al n Az 0A4) 2 S o #(An_z n A,;_l n A")]

+ ()" WA NA N0 Ay).

First we compute #(A1), the number of permutations 7 for which a; = 1. Thenn — 1 numbers 4y, as, ..., a
can be any permutation of 2, 3, . . ., n,s0#(A1) = (n—1)!. Similarly, #(A;) = (n —1)! for1 < i < n.

Next we compute #(A; N Aj;), the number of permutations 7 for which #; = 1 and a2 = 2. The n—2 numbers
3,44, ..., 4y can be any permutation of 3,4,...,1n,50#A; N As) = (n-2)!, Similarly, #(A; N Aj) = (n-2)! for
l<i<j<n

n

More generally, for any distinct indices iy, 7y, . . ., i,
#HALNAL, N NA) = (n- k).

In the PIE formula above, there are (}) terms of the form Ay NAL,N---N Aj,, so the number of permutations
for which a; = 7 for some ,1<i<mn,is

#(AI U A2 U UAn) = (;1)(?2 = ]_)I' = (;)(n = 2)' + (;1)(" — 3)' oot (—1)"—1(::)0-'

k=1
n
— _1yk-1 — )
(-1) TPy (n—k)!
k=1
n
=n! (-—1)"‘1—1—.
k!
k=1

The total number of permutations 7 is 1!, so the number of permutations it for which a; # i forall 1 < i <n
is

n

n
D; =l = n!Z(—l)k‘I% = n!Z(—l)"% :

k=1 k=0
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(b) Let(a,ay,...,a,) beapermutation of (1,2,...,n). We say that i is a fixed point if a; = i. Let 0 < k < n. We count
the number of permutations that have exactly k fixed points.

First, of the values 1, 2, . .., n, we choose k to be fixed. This can be done in (;:) ways. Then the remaining
n -k values must be permuted in a way that there are no fixed points. This is simply D,,_¢, so there are (})D, ¢
permutations with exactly k fixed points. Since there are a total of n! permutations, and each permutation
can have between 0 and » fixed points, we sum over all integers 0 < k < 1, and we get

n n
Z (k)D,,_k =nl.

k=0

3.42 Since every team has an equal chance of winning, every outcome is equally likely. Therefore, the probability
that the tournament will produce neither an undefeated team nor a winless team is simply the number of outcomes
satisfying this condition divided by the total number of outcomes.

Note that if a tournament does not satisfy the given condition, then there is either a team that wins all of its
games, or a team that loses all of its games (or both). To count the number of such tournaments, let W be the set
of tournaments in which some team wins all of its games, and let L be the set of tournaments in which some team
loses all of its games. Then by PIE, the number of tournaments in which some team wins all of its games or some
team loses all of its games is #(W U L) = #(W) + #(L) - #(W N L).

The five teams play a total of 5 - 4/2 = 10 games. Note that if one team wins all of its games, then it can be
the only such team. Any of the five teams can be this winning team, and since it plays four games (one against
each of the other teams), this leaves 10 — 4 = 6 games whose outcomes can be any combination of wins and losses.
Therefore, #(W) = 5 - 2¢ = 320.

Similarly, if one team loses all of its games, then it can be the only such team. This team plays four games, and
the other six games can be any possible combination of wins and losses as well, so #(L) = 320.

Now we count #W N L). As above, there can only be one team that wins all of its games, and only one team
that loses all of its games. There are 5 choices for the winning team, then 4 choices for the losing team. Each team
plays four games, but one game is against each other, so this leaves 10—4—4+1 = 3 games whose outcomes can be
any combination of wins and losses. Therefore, #(WNL) = 5-4-2% = 160. Hence, #(W UL) = 320+ 320 — 160 = 480.

However, this counts the number of tournaments that have the opposite property of what we are interested in.
There are a total of 210 = 1024 possible outcomes. Thus, the probability that the tournament will produce neither
an undefeated team nor a winless team is

480 _1 15 17

-t =13 7|3

3.43

(a) There are n/p; positive integers less than or equal to n that are divisible by p;, and n/p; positive integers less
than or equal to n that are divisible by p». More generally, for 1 < i < k, there are n/p; positive integers less
than or equal to n that are divisible by p;.

(b) Subtracting all the numbers we found in part (a), we obtain the formula

However, in this count, every positive integer that is divisible by two or more primes gets subtracted twice.
So this count is too small.

() Forl <i < j<n,there are n/(pjp;) positive integers less than or equal to n that are divisible by p;p;, so to
account for the positive integers that are divisible by two primes, we add all terms of this form to obtain the

formula
n n n n n n

e — — —— s — ———— 44 ’
L p2 Pr PPz P1p3 Pk-1Pk
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However, we must now subtract out all positive integers that are divisible by three primes, and so on.
Using PIE, this gives us the formula

n n n
N=m—— — — — s — —_
() 1 P2 Pk
n n n
+—t—F-
Pipz Pips Pr-1Pk
L N S —t
Pipa2ps p1papa Pr—2Pk-1Pk
+ sea
+(-1F—2 .
1) Pip2 - Pk

(d) Suppose that we expand the product

--2)--2)

Then other than n, each term will be a product of # and factors of the form —1 /pi- For example, the terms

including one factor of —1/p; are
n n n

_p_].r _;-2': seey _;;f
the terms including two factors of -1/ p; are
n n n

pe2’ pws T peape

and so on. These are the same terms in our formula for ¢(n) above.

We conclude that
-4
P1 P2 Pk )

3.44 To get started on the problem, we draw the two n-pointed stars forn = 7.

P, Ps Py P

Pg P
Py Py
Ps P;

P, Py Pe Py

In each figure, the vertices of the pointed star are also the vertices of a regular heptagon. Note that in the first
pointed star, P, is two vertices away from P; (going counterclockwise), and in the second pointed star, P; is three
vertices away from P; (going counterclockwise).

More generally, in an n-pointed star, we let Py, P;,...,P, be the vertices of a regular n-gon (in some order).
Suppose that P; is a vertices away from P; (going counterclockwise). Then P; is 2a vertices away from Py, and in
general, Py is (k — 1)a vertices away from P;.

We must have that none of 4,24, ..., (n — 1)a are multiples of 7, so that our path doesn’t prematurely return to
Pj. But this means that # must be relatively prime to 1; otherwise, if d = ged(a, 1) > 1, then (n/d)a is a multiple of
n.

31



CHAPTER 3. A PIECE OF PIE

There are some other restrictions on a. For example, 2 must be less than n/2; otherwise, the angles in the
path PP - - - P,P; would be greater than 180 degrees. Also, a cannot be equal to 1; otherwise, we would obtain a
regular n-gon, and so the line segments would intersect each other only at their endpoints. All other values of 4,
relatively prime to 7, lead to a regular n-pointed star.

Thus, the number of non-similar regular 1000-pointed stars is equal to the number of positive integers a,
relatively prime to 1000, with 1 < a < 500. By the previous problem, the number of positive integers less than or
equal to 1000 that are relatively prime to 1000 is

1 1 1 4
_ T~ = —_—]= i — .
¢$(1000) 1000( 2) (1 5) 1000 7' 400
Exactly half of these are less than 500, and we must subtract one because # must be greater than 1, so the number

of non-similar regular 1000-pointed stars is % — 1 = 199
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L Constructive Counting and 1-1 Correspondences

Exercises for Section 4.2

4.2.1 There are a total of 3 + 2 + 3 + 7 = 15 dots, so there are (135) = 455 ways to choose a triple of these dots. We
must then subtract the triples where all three points lie on a line. In (5) = 4 of these triples, all three points lie on
side AB, so they do not form a triangle. Similarly, there are (g = 10 triples where all three points lie on side BC, and
(3) = 84 triples where all three points lie on side AC. Therefore, the number of triangles is 455 -4 —10—84 = .

4.2.2 Let the three numbers be a, b, and ¢. Consider the remainders that a, b, and c leave when divided by 3. (In
other words, consider 4, b, and c modulo 3). Ifa + b+ cis a multiple of 3, then either g, b, and c all leave the same
remainder, or else 4, b, and c all leave different remainders.

In S, there are 11 numbers congruent to 0 modulo 3, 12 numbers congruent to 1 modulo 3, and 11 numbers
congruent to 2 modulo 3. Hence, there are () = 165 ways of choosing three numbers congruent to 0 modulo
3, (*}) = 220 ways of choosing three numbers congruent to 1 modulo 3, and (}) = 165 ways of choosing three
numbers congruent to 2 modulo 3, giving a total of 165 + 220 + 165 = 550 ways of choosing 3 numbers that all
leave the same remainder upon division by 3. Also, there are 11-12 - 11 = 1452 ways of choosing three numbers

that are all different modulo 3. Therefore, the total number of ways of choosing a, b, and ¢ is 550 + 1452 =| 2002 |

4.2,3 The word MISSISSIPPI contains 11 letters, and only one M, so the M must be the middle letter. This leaves
41's,2 P's, and 4 S’s. Hence, the first five letters contain 2 I's, 1 P, and 2 §’s. Once the first five letters have been
ordered, the last five letters are uniquely determined. Therefore, the number of orderings is ot = .

4.2.4 For a sum of numbers to be odd, there must be an odd number of odd numbers. Since there are five odd
numbers from 1 to 9, two players must receive one odd-numbered tile, and the third player must receive three
odd-numbered tiles. From here, we present two different solutions.

Solution 1: First, we choose one player to be the one who receives three odd-numbered tiles; this can be done
in 3 ways. Then we distribute the odd tiles. Of the five odd-numbered tiles, three go to the chosen player, and
one each goes to the other two players. These can be distributed in (g) -2 = 20 ways. Finally, there are four
even-numbered tiles remaining, and two each go to the other two players. These can be distributed in Gi=6

ways. Hence, the total numbers of ways to distribute the tiles so that the sum of the numbers for each player is
odd is 3-20- 6 = 360.

The nine tiles themselves can be distributed in (;)(g) = 1680 ways. Therefore, the probability that the sum of
the numbers for each player is odd is

360 3

1680 |14 |

Solution 2: We compute the probability that the first player receives 3 odd tiles. There are 9 tiles total, and 5 of
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them are odd, so this probability is

@ 10 5
Q) 8 4
We now have 2 odd-numbered tiles and 4 even-numbered tiles remaining to distribute to the other two players.
For both players’ sums to be odd, we need each remaining player to receive one odd-numbered tile. This occurs
with probability 2: think of the first odd tile as being arbitrarily assigned to one of the players, then there are 5
slots left, and we need to other odd tile to go to one of the slots belonging to the other player.

Therefore, the probability that the first player gets 3 odd tiles, and that the other two players also have a

odd-numbered sum of their tiles, is fi . % = 7;. By symmetry, this is also the probability of this happening with
either of the other two players getting 3 odd tiles. Therefore, the overall probability is 3 - % = % ;

4.2.5 First we consider how the coins may be stacked with respect to being face up or face down. If some coin
is face up, then the next coin above must also be face up, which implies that every coin above must be face up.
Hence, any possible stacking must consist of a certain number of coins (possibly 0) on the bottom that are all face
down, and the rest face up on the top. There are eight coins, and the number of coins that are face down may be
any number from 0 to 8, so the number of possible orientations of the coins is 9.

After the orientation has been chosen, we can select four of the eight coins to be gold, which can be done in
() = 70 ways. Hence, the total number of possible stackings is 9 - 70 = [ 630 |

Exercises for Section 4.3

4.3.1 We separately consider the cases where 7 is even and 7 is odd.

If n is even, then n = 2k for some positive integer k. A palindrome with 2k digits is determined by the first k
digits, so there are 2* palindromes with 2k digits. However, since the palindrome must contain at least one 1 and
one 2, we must exclude the palindrome that is all 1s and the palindrome that is all 2s, which means there are a
total of 2¥ — 2 such palindromes. Since 2'° — 2 = 1022 and 2! — 2 = 2046, n must be at least 2 - 11 = 22 if n is even.

If nis odd, thenn = 2k +1 for some positive integer k. A palindrome with 2k+1 digits is determined by the first
k + 1 digits, so there are 2k+1 palindromes with 2k + 1 digits. However, as above, we must exclude the palindrome
that is all 1s and the palindrome that is all 2s, which means that there a total of 2**! — 2 such palindromes. Hence,
k + 1 must be at least 11, or k must be at least 10, and so # must be atleast 2-10+ 1 = 21 if » is odd.

Thus, the smallest 1 for which there are at least 2002 such palindromes of length n is .

4.3.2 Let A be the set of even numbers from 1 to 10, and let B be the set of odd numbers from 1 to 10. Then from
the given condition, the color of every number in A must differ from the color of every number in B, and these are
the only restrictions.

In particular, the numbers in A cannot be represented by three different colors (otherwise, it would be impossible
to color any of the numbers in B), so the numbers in A are either represented by one color or two colors.

Suppose the numbers in A are represented by one color. There are three possible choices for this color. Then
each element in B can be colored using either of the other two colors, resulting in 2° possible colorings. Hence,
there are 3 - 25 = 96 possible colorings in this case.

Now suppose the numbers in A are represented by two colors. There are (g) = 3 possible ways to choose
two colors. Then there are 2° ways of coloring the elements in A using these two colors, but we must exclude
the 2 colorings where all elements are the same color (because we have already counted these above), so there
are 2° — 2 = 30 ways to color the elements in A. Then all elements in B must be the third color. Thus, there are
3 - 30 = 90 possible colorings in this case.
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Hence, the total number of possible colorings is 96 + 90 = .

4.3.3 Consider five consecutive positive integers 1, n+ 1, n +2, n + 3, and n + 4. Two consecutive integers cannot
appear in the subset (since they would differ by 1), so at most three of the five numbers can appear in the subset.

Suppose three of the five numbers appear in the subset; then these three numbers must be 7, n + 2, and 7 + 4.
But n and 1 + 4 differ by 4, so three of the five numbers cannot appear in the subset, which means that at most two
of any five consecutive positive integers can appear in the subset.

We can partition S into five subsets of five consecutive positive integers, namely {1,2,3,4,5}, {6,7,8,9,10}, ...,
{21,22,23,24,25}, so at most 5- 2 = 10 elements can appear in the subset. The subset {1, 3, 6,8,11,13,16,18,21,23)
shows that such a set can contain 10 elements; we have already determined that no two of these elements differ
by 1 or 4, and can easily verify that no two of them differ by 9 or 16 as well. So the maximum number of elements

is .

4.3.4 TFirst, we factor 21,600 = 25 - 3% . 52. If 21,600 is the least common multiple of m and n, then in particular
both m and # must divide 21,600. Hence, m = 223%5% and n = 2/1325% for some nonnegative integers ey, ey, e3, fi,

fo,and f5. Then
lcm{m,n] = 2maxlel,f1]Bmaxleg,lesmaxleg,ﬁ] = 25 : 33 ) 52.

Thus, we seek the number of ways to choose nonnegative integersey, e, €3, f1, fo, and f3 such thatmax{e;, fi} = 5,
max{es, f2} = 3, and max(es, f3} = 2.

If max{ey, f1} = 5, then one of ¢; and fimustbe 5. Ife; =5, then f; may be any nonnegative integer from 0 to 5,
giving 6 possible values of e; and f;. If f; = 5, then e; may be any nonnegative integer from 0 to 5, giving another
6 possible values of ¢; and fj. However, the case that both ¢; and fi1 are equal to 5 is counted twice, so we must
subtract one, and obtain that the number of possible values of ¢; and f;is2-6 -1 = 11.

Similarly, the number of possible values of ¢; and f2i82-4—1 =7, and the number of possible values of e; and
fais 2-3 =1 = 5. Therefore, the total number of possible pairs (m,1)is 11-7-5 = .
4.3.5 Letabcdef be a 6-digit cute number, where each letter stands for one of the digits 1-6.

The number abcde is divisible by 5,s0e = 5.

The numbers ab, abcd, and abeds f are divisible by 2, 4, and 6, respectively, so in particular each of them is even,
which means that the digits b, d, and f must be even. But there are only three even digits from 1 through 6, namely
2,4, and 6, so these must be equal to b, d, and f in some order. This leaves 7 and ¢ to be 1 and 3 in some order.

Next, the number abc is divisible by 3, which means that the sum of its digits must be divisible by 3. Since a
and c are 1 and 3 in some order, the sum of its digits are  + b + ¢ = b + 4. The only even digit b from 1 through 6
for which b + 4 is divisible by 3 is 2, so b = 2. This means d and f are equal to 4 and 6 in some order.

As derived above, 2 and ¢ are 1 and 3 in some order. Suppose # = 1 and ¢ = 3. Then abcd = 1234 must be
divisible by 4, which only works for d = 6. Then f must be 4, giving the cute number 123654.

Now suppose a = 3 and ¢ = 1. Then abed = 321d must be divisible by 4, which again only works for d = 6.
Then f must again be 4, giving the cute number 321654.

Therefore, there are | 2 | cute 6-digit numbers.

4.3.6 Let R be the set of rows that contain an empty desk, and let C be the set of columns that contain an empty
desk. Then every empty desk is at the intersection of a row in R and a column in C. Conversely, from the
conditions in the problem, the intersection of a row in R and a column in C must be an empty desk, so the set of
empty desks is determined by R and C.

There are 2° = 32 possible sets for R. If R is empty, then there are no empty desks, so C must be empty as well.

35



CHAPTER 4. CONSTRUCTIVE COUNTING AND 1-1 CORRESPONDENCES

Otherwise, R is one of the remaining 31 non-empty sets, and for each such set R, there are 31 possible non-empty
sets C. Hence, the number of possible arrangements of empty desks is 1 +31-31 = .

Exercises for Section 4.4

4.4.1

(@) Thesets({1,2,3,...,12} and {66,68,70, ...,88} are in 1-1 correspondence, via the relation n < 2n + 64.

(b) Theset{3,6,9,...,60} contains 20 elements, and the set {4,9,14,...,104} contains 21 elements, so the sets are
not in 1-1 correspondence.

(c) Both {0,1,...,15} and P({1,2,3,4}) contain 16 elements, so the sets are in 1-1 correspondence. We can set
up a natural correspondence as follows: For each element a € {0,1,...,15}, write z as a four-digit number
in binary (with leading zeros, if necessary). For example, 5 becomes 0101, and 11 becomes 1011. Then we
form a subset of {1,2,3,4}, where i is in the subset if and only if the it digit of # is 1. So 0101 corresponds to
the subset {2,4}, and 1011 corresponds to the subset {1,3,4}. Thus, we have a 1-1 correspondence between
{0,1,...,15} and P({1, 2, 3, 4}). Note that 0 corresponds to 0.

(d) The first set contains (g) = 10 elements, and the second set also contains 10 elements, so the sets are in 1-1
correspondence. There’s not an obvious natural way to make the correspondence, so we can arbitrarily
choose it. For instance, if the five items are {A, B, C, D, E} and the 10 items are {1,2,...,10}, then one possible
correspondence is:

A,B) o 1 IB,D} & 6
(A,C] & 2 BE} & 7
{A,D} o 3 ICD} & 8
{AE} & 4 {CE} & 9
B,C}] & 5 ID,E} 10

(e) Leta be a 3-digit number with no 2. Change all the 4’s in a to 2’s, to obtain a 3-digit number b with no
4. Conversely, we can change all the 2’s in b to 4’s, which gives back a. Thus, the two sets are in 1-1
correspondence.

(f) Counting digit by digit, the first set contains 8 - 9 = 72 elements, and the second set contains 9 -9 = 81
elements, so the two sets are not in 1-1 correspondence.

44.2 Any choice of three different letters gives two possible words in our set (for example, choosing A,B,C gives
the words ACB and BCA). Also, any choice of two different letters gives a possible word in our set (for example,
choosing D and E gives DED). Therefore, the number of words is

2(236) + (226) = 5200 + 325 = 5525 |

4.4.3 For a given path, for every change in the x, y, and z coordinate, write down an X, Y, and Z, respectively.
This establishes a 1-1 correspondence between the set of paths from (0,0,0) to (4,4,4) and the set of strings of length
12 containing 4 Xs, 4 Ys, and 4 Zs.

The total number of such strings, and hence the total number of such paths, is

12!

We must subtract the number of paths that pass through (2,2,2). The number of paths from (0,0,0) to (2,2,2) is
the number of strings of length 6 containing 2 Xs, 2 Ys, and 2 Zs, of which there are

6!

o = 0
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The number of paths from (2,2,2) to (4/4,4) is also 90, so the number of paths that pass through (2,2,2) is 90% = 8,100.
Therefore, the number of paths that do not pass through (2,2,2) is 34,650 — 8,100 = 26,550 |.

444 One way to think about this is that A and B must have the same number of elements, and B and C must
have the same number of elements, therefore A and C have the same number of elements, and thus are in 1-1
correspondence.

A more formal way to show the correspondence is by examining the bijective functions that exhibit the
correspondence. Since A and B are in 1-1 correspondence, there exists a function f + A — B that is bijective.
Similarly, since B and C are in 1-1 correspondence, there exists a function g : B — C that is bijective. We claim that
the composition of the functions, namely the functiongo f: 4 — C, is bijective.

To show that g o f is bijective, we must show that it is both injective and surjective. Suppose that (ge fla) =
(g0 f)(@) for some elements a, 4’ € A. This can be re-written as g(f(a)) = g(f(a’)). Since g is injective, f(a) = f(a’).
Since f is injective, a = a’. Thus, (g o f)(a) = (g o A)(@') implies thata = #’, 50 g o f is injective.

Now, let ¢ € C. Since g is surjective, there exists a b € B such that &(b) = c. Since f is surjective, there exists an
a € A such that f(z) = b. Hence,
(80 /)@) = g(f(@) = g(b) = c.

Thus, for any ¢ € C, there exists an a € A such that (8 © f)(@) = ¢, so g o f is surjective. Therefore, g o f is bijective,
and sets A and C are in 1-1 correspondence.

4.4.5 Letn = #A), the number of elements in A. Then any proper subset B of A must contain fewer than »
elements, so A and B cannot be in 1-1 correspondence.

4.4.6

(a) Notethat42 =2-3-7. The odd divisors of 42 are {1,3,7,21}, and the even divisors of 42 are {2,6,14,42}. There
are 4 of each, so they are in 1-1 correspondence. Specifically, the correspondence takes an odd divisor to an
even divisor by multiplying by 2, and goes back by dividing by 2.

(b) Note that 28 = 2.7, The odd divisors of 28 are just 1 and 7, so there are only 2. However, 28 = 22 .7 has
(2+1)(1+1) = 6 divisorsinall, namely (1,2,4,7,14,28), s0 6—2 = 4 of them are even, namely {2, 4, 14, 28}. Since
there are more even divisors than odd divisors, the set of odd divisors of 28 are not in 1-1 correspondence
with the set of even divisors of 28.

(c) Letn be a positive integer for which the set of odd divisors of 1 and the set of even divisors of n are in 1-1
correspondence. If 7 is odd, then n has no even divisors, meaning that the set of even divisors is 0. But we
cannot have @ in 1-1 correspondence with any nonempty set. Thus, n must contain at least one factor of 2.
So, let n = 291p2p3 - - - p* be the prime factorization of 1.

Then an odd divisor of #n must be a divisor of P3Py -+ P, of which there are
(e2 + 1)(e; + 1)---(er + 1).

The positive integer n has
(er +1)(e2 +1)(e3 + 1) -+ (ex + 1)

divisors in all, so
(er+1)(e2+1)(es + 1)+ (ex +1) — (ez + 1)(ez + 1) - - - (r+1)=eife2+1)(es +1)--- (e + 1)
of them are even.
Since the set of odd divisors of  and the set of even divisors of 7 are in 1-1 correspondence, we must have
2+ 1)(es + 1)+ (ex +1) = exfez + 1)(es + 1) - (e + 1),
which occurs if and only if e; = 1.

Hence, the set of odd divisors of 1 and the set of even divisors of 1 are in 1-1 correspondence if and only
if n contains exactly one factor of 2. This is equivalent to saying that 7 is even but not a multiple of 4.
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Exercises for Section 4.5

4,51 If Annie and Benny meet, then they must meet after they’ve each made 6 moves. If they meet at a point P,
then following Annie’s path from (0,0) to P, combined with following Benny’s path backwards from P to (5,7),
gives us a 12-step path from (0,0) to (5,7). Conversely, given a 12-step path from (0, 0) to (5,7), let point P be the
6" point on the path. Then we get a 6-step path for Annie from (0,0) to P by following the first 6 steps of the
12-step path, and we get a 6-step path for Benny from (5,7) to P by following the last 6 steps, in reverse order, of
the 12-step path.

Therefore, we have a 1-1 correspondence:
{Ways in which Annie and Benny can meet} <«  {12-step paths from (0, 0) to (5,7)} .

There are (152) = 792 12-step paths from (0, 0) to (5,7), so there are 792 (equally likely) ways in which Annie and
Benny can meet. Annie and Benny each have 2° = 64 equally-likely possible 6-step paths overall. Therefore, the
probability that they meet is

792 792 |99
(64)(64) ~— 4096 | 512

4.5.2 The sum counts 1 for each 61-tuple (1g, 11, ..., 1) such that 0 < np < ny < -+ < ngy < 2. In other words, we
have a 1-1 correspondence:

{Terms in the sum} <  {Sequences of integers 0 < 19 < ny <--- <1 < 2}.

Hence, the sum is equal to size of the set of sequences shown on the right above, so we must count such sequences.
Note that every #; in the sequence is either 0, 1, or 2. We can informally describe such a sequence as some number
of 0’s, followed by some number of 1’s, followed by some number of 2’s.

Case 1 One of the terms in the sequence is a 1.

We can describe such a sequence by choosing the point in the sequence where the first 1 occurs and the point
in the sequence where the first 2 occurs. In other words, we must choose 0 <i < j <61 such that:

0 if0<k<i,
=41 ifiSk'(j,
2 ifj<k<60.

Note that i = 0 gives sequences where ny = 1 (that is, where there are no 0s), and that j = 61 gives sequences
where n¢p = 1 (that is, where there are no 2’s). So we have a 1-1 correspondence:

Sequences of integers 0 < ng < ny < -+ < Mgy < 2} . s
{that contain at least one 1 ©  {Integers (i, /) such that 0 < < j < 61J.

But this latter set is easy to count: it is just choices of 2 distinct integers from {0,1,2,...,61}, which we can
doin ((’22) ways.
Case 2 No 1 occurs in the sequence.

This is the same as Case 1, but where i = j. Thus we have the 1-1 correspondence:

{Sequences of integers 0 < ng <m -+~ Shgp £ 2

hat do riot confain any 1's } & {Integersisuchthat0 <i<61}.

There are 62 elements in the latter set.

38



Section 4.6

Therefore, the sum is (¥) + 62 = 1891 + 62 = 1953

Note that we could write the count from Case 2 as (612), and then apply Pascal’s identity to get the answer:

5-{-[5)-
There is a relatively simple counting explanation for the answer of (623) ; can you find it?
4.5.3
(@) Thereis a 1-1 correspondence

{Rolls with even number of evens} «  {Rolls with odd number of evens),

where the correspondence is given by replacing, on every die, the number 1 by the number 7 — n. This
correspondence in either direction swaps odd and even numbers. If there are k dice showing even numbers,
then after applying the correspondence, there will be 101 — k dice showing even numbers. Therefore, each

set above consists of exactly half of the rolls, and hence the desired probability is .

(b) There is a 1-1 correspondence
{Rolls with sum greater than 353) «  {Rolls with sum less than 354},

again using the correspondence that replaces, on every die, the number by the number 7 — 1; note that this
replaces a roll with sum s with a roll with sum 707—s. So the two sets above have an equal number of elements,
and in particular each contains exactly half of the possible rolls. Therefore, the probability that the sum of
a roll is greater than 353 is exactly %, and thus the smallest s such that P(sum of a roll greater than s) < % is

354 |.

4.54 Every such triangle is formed by three chords, as shown, which correspond to six points B
on the circle. Conversely, any set of six points uniquely determines a triangle: given any six

points A, B,C, D, E, F on the circle, in that order, we draw the chords 715, BE, and CF. Since
these three chords do not pass through a common point, they must form a triangle, as shown D
in the picture to the right. No other way of drawing 3 chords using these 6 points will produce

a triangle; for example, if we draw BE, then we will be forced to draw either CD, CE, or DE, F
and none of these intersect BE.

Therefore, we have a 1-1 correspondence

{Triangles formed by portions of chords inside the circle}] < {Sets of 6 points on the circle}.

n 3 . [n
The latter set is easy to count: there are ( 6) sets of 6 points on the circle. Therefore, the number of triangles is ( ) :

Exercises for Section 4.6

4.6.1 The set of legal positions of Chomp on an m x 1 board is in 1-1 correspondence with the set of paths from
the top-left corner to the bottom right-corner of an m x 1 grid (where all the steps are down or to the right), so the

e . |[(mt+n
number of such positions is ( - ) .

4.6.2 First, let’s look at an example. Consider the partition 24 = 8 + 8 + 4 + 2 + 2. The Ferrers diagram for this
partition is as follows:
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If we read this Ferrers diagram by columns instead of rows, then we obtain the partition 24 =5+5+3+3 +
2 +2 + 2 + 2. Note that each part appears an even number of times.

This is true in general. To see why, consider a partition of n into parts of even size, and consider the Ferrers
diagram column by column. The number of dots that appear in the first column must be equal to the number of
dots in the second column, because otherwise some part (in the original partition) would be equal to 1. Similarly,
the number of dots that appear in the third column must be equal to the number of dots that appear in the fourth
column (otherwise, some part would be equal to 3), and so on. Thus, each part in the partition generated by the
columns appears an even number of times.

Conversely, consider a Ferrers diagram where the columns represent a partition of n into parts that occur an
even number of times, and look at the partition corresponding to the rows. No row can end in an odd-numbered
column, because if there is a dot in any position in an odd-numbered column, there must also be a dot in the
even-numbered column immediately to the right (because those two columns are equal). Therefore, every row
must contain an even number of dots, and thus the rows of the diagram give a partition with only even terms.

This establishes a 1-1 correspondence between the set of partitions of # into parts of even size and the set of
partitions of n where each part occurs an even number of times, so the number of such partitions are equal.

4.6.3 Let n be the number of problems on the test. Consider the total number of correctly solved problems. We
may count this across students, or across problems.

We are given that each problem was solved by 7 students, so the total number of correctly solved problems is
7n.

The first nine students each solved 4 problems, so the tenth student solved 71 — 36 problems. Then we must
have 7n — 36 > 0, so n = 6. On the other hand, the tenth student could not have solved more problems than there
were on the test, so 7n — 36 < 1, meaning that 6n < 36, hence n < 6. Therefore, # = 6, so the tenth student solved

7-6-36= IE problems.

Note that this leads to two partitions of 42, the total number of solved problems on all 10 tests. The first
partition, 7+ 7 +7 + 7 + 7 + 7, is the sum of the number of correct solutions to each problem. The second partition,
4+4+4+4+4+4+4+4+4+6,is the sum of the number of problems that each student solved.

4.6.4 Let the vertices of the equilateral triangle be A, B, and C. Each parallelogram must be one of the three
different orientations: the sides are parallel to AB and AC, to AB and BC, or to AC and BC. By symmetry, we can

count the number of parallelograms whose sides are parallel to AB and AC, and then multiply by three to obtain
the total number of parallelograms.

Extend AB one unit past B to D, and extend AC one unit past C to E, so that triangle ADE is equilateral with
side length 72 + 1.
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For any parallelogram, extend the sides of the parallelogram to intersect DE. These extended sides must
intersect DE at four distinct points. Conversely, any four distinct ct points on DE uniquely determine a parallelogram.
(Through the two points closest to D, draw lines parallel to AB, and through the two points closest to E, draw
lines parallel to AC.) This establishes a 1-1 correspondence between:

{parallelograms whose sides are parallel} o =t of four distinct (triangular lathce)
to AB and AC points on DE

The side DE contains n + 2 triangular lattice points, so the number of ways of choosing four distinct points on

DE is ("?). Therefore, the total number of parallelograms is 3(" Z 2) :

4.6.5 First, we look at a small case. Let n = 25. Then

\-n+1J+|-n+2 +{n+4J+{n+8 . _{25+1J+l25+2j+ 25+4J+{25+8J+{25+16}+
2 4 8 16 L2 4 8 16 32
=134+6+34+2+1+0+:--

= 25.

Now, we partition the set of positive integers from 1 to 25 according to the number of powers of 2 that divide
them. Let Sy be the set of positive integers from 1 to 25 that have exactly k factors of 2. We list the results in the
following table:

k| Sk | #(Sx)
0] (1,3,5,...,25] | 13
1]{2,6,10,...,22} | 6
2| {4,12,20) 3
3 (8,24) 2
4 {16) 1

Note that these are the same numbers that appears in the sum above. In general, we claim that the number of
positive integers from 1 to n that have exactly k factors of 2 is

n+ 2k
ok+1 |”
Then the result will follow, because the sum will count every positive integer from 1 to 1 exactly once.

The sequence of positive integers that have exactly k factors of 2 begins

2k.r 3- zkr 5- zk.r 7- Zk.r
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Thus, the i term of the sequence is (2i — 1)2*. Hence, the number of positive integers from 1 to 1 that have exactly
k factors of 2 is given by the positive integer m, where

@m-1)2* <n < [2(m +1) - 1]2*.

But k
r n+2
@2m-12"<n © mc< ok
and "
2
n<[2m+1)-1]2% nz%<m+1.
Hence,
2k
m < sz <m+1.
Therefore,
|n+2t
= k+1 |7
as desired.

4.6.6 Let's consider the partitions of a smaller number, say 8. There are five partitions of 8 with only even parts:
8,6+2,4+4,4+2+2,and 2+2+2+2. For every such partition = with only even parts, we can generate a partition
7’ with only odd parts by taking every part a and splitting it up as (2 — 1) + 1. We list these partitions in a table:

'

T i T

8 7+1

6+2 5+41+1+1

4+4 3+3+1+1
4+2+4+2 3+1+1+1+1+1

2424242 | 1+1+1+1+1+1+1+1
Note that in every partition 7" generated this way, at least half the parts must be 1s.

We are now ready to generalize to any positive integer n. We claim that for any positive integer 1, the number
of partitions of n with only odd parts is greater than or equal to the number of partitions of # with only even parts.

If n is odd, then there are clearly no partitions of n with only even parts, so the result holds. Hence, assume
that # is even.

For any partition 7 of # with only even parts, take each part a and split it into (2 — 1) + 1, as done above. This
generates a partition n” with only odd parts. Furthermore, at least half the parts of 7’ must be 1s, and there are an
even number of parts (because an odd number of odd numbers must sum to an odd number, and # is even).

Conversely, for any partition 7 where at least half the parts are 1’s, and there are an even number of parts, we
can recover the partition 7 as follows: Pair every part that is not a 1 with a 1, and add them. If there are any 1s
left over, pair them and add them to form 2’s.

Thus, we have a 1-1 correspondence between the set of partitions of # with only even parts, and the partitions
of n with only odd parts, where at least half the parts are 1’s.

If n =2 or n = 4, then we can check that the number of partitions of # with only even parts is equal to the
number of partitions of # with only odd parts. However, for n > 6, the partition (1 — 3) + 3 contains only odd
parts, and no 1s, which means that the number of partitions of n with only even parts is less than the number of
partitions with only odd parts. In particular, this is true for n = 2006.

4.6.7 Often our strategy to prove that a set has an even number of elements is to break the set up into two halves
that we can place into 1-1 correspondence with each other. We'll try a modified version of that here.
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Review Problems

Let T be a subset of S such that the average of the elements of T is an integer. Then either T contains that
average or it does not. Let A be the set of such subsets T that contain the average, and let B be the set of such
subsets T that do not contain the average. At this point, we know that #(A) + #(B) = k.

Let T be a set in A with an average of m, so that T = {x1,x,...,X, m} for some positive integer I and some
distinct elements x;, Xy, . . ., X;, none of which are equal to m. Then

X1+Xa+-4+X+m

1+1 =m
= X1+x+--+x+m=m(l+1)
= n+x+--+xy=ml+1)—m=ml

Xi+Xp+tx) m

= I

Thus, the average of the elements of {x3, xy, ..., %} is also m, which means that {x;, x2,..., %} is an element of B.

However, this result assumes that the set {xy,x,, ..., x;, m) contains more than one element, or in other words
that ] > 1. There are also elements of A that contain only one element, namely the singletons {1}, {2}, ..., {n}.

Conversely, for any element T of B, we can add the average of T to obtain an element of A with at least two
elements. This establishes a 1-1 correspondence between B and the sets of A that contain more than one element.
Hence, #(A) = #(B) + n, and

n+k=n+4#A)+#B) = n+ (n+#B)) + #(B) = 2#(B) + 2n = 2[#(B) + ],

and hence n + k is even.

Review Problems

4.21 Since 20 has a factor of 5, which is prime, one of , b, and ¢ must have a factor of 5. There is only one number
from 1 to 9 that has a factor of 5, namely 5 itself, so one of 4, b, or ¢ must be equal to 5. Then the product of the
other two numbers must be divisible by 4, which means either both are even, or one is divisible by 4 and the other
is odd.

First, we count the number of triples where one number is 5 and the other two are even. We can choose any
of the three numbers to be 5. There are four even numbers from 1 to 9, so there are 3 - 4 - 4 = 48 such triples.

Next, we count the number of triples where one number is 5, one is divisible by 4, and one is odd. We can
choose any one of the three numbers to be divisible by 4, and there are only two numbers from 1 to 9 that are
divisible by 4, namely 4 and 8. There are 9 ways to choose the other two numbers so that one is odd and one is 5:
we have 2 choices for which number is 5, and then 5 choices for the other odd number, but this counts twice the
case where both numbers are 5. So there are 3 - 2 - 9 = 54 such triples.

Therefore, there are a total of 48 + 54 = triples (a, b, c) such that abc is divisible by 20.

4.22 Letabethesmallestelement, so the largestelementis 13—a. Thenwemusthavea <13-a =22 <13 =a<6.
The set can then contain any combination of elements from a + 1 to 12 — a. There are 12 — 2a such elements, thus
there are 2012-0)-(+1)+1 — 212-22 gy3ch combinations. Therefore, the total number of subsets that have the given

property is

6
2212“2“=1024+256+64+16+4+1: 1365 |

=1

4.23 There are 2° ways to color the cube, each of which is equally likely. We now need to count the number of
these in which we can have four vertical faces of the same color. We divide into cases, based on the number of red
faces.
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If there are 0 or 1 red faces, then we can always place the cube so that all four vertical faces are blue. There is
only 1 way to color to cube to get 0 red faces, and there are 6 ways to color the cube to get 1 red face (we just need
to choose which face is red).

If there are 2 red faces, then the cube can be placed so that all four vertical faces are blue if and only if the 2 red
faces are on opposite sides of the cube. There are 3 ways to color to cube with 2 opposite red faces (we just need
to choose which pairs of opposite faces are red).

If there are 3 red faces, then it is impossible to place the cube with four vertical faces all the same color, since
there are only 3 red faces and 3 blue faces.

The situation for 4, 5, and 6 red faces is exactly the same as the situation with 2, 1, and 0 red faces, respectively
(with the red faces and blue faces reversed), so the number of cubes in these cases are 3, 6, and 1, respectively.

Therefore, the probability that the cube can be placed with four vertical faces of the same color is

1+6+3+3+6+1 20 5

26 64 |16

4.24 First, we factor 30% = 2% .3% .5%  Hence, 30* has (39 + 1)(39 + 1)(39 + 1) = 64,000 divisors.

For a number of the form 2?3"5¢ to be a multiple of 30%, we must have a > 29, b > 29, and ¢ > 29. Therefore, to
construct a divisor of 30* that is a multiple of 30%°, we must choose 29 <4 < 39,and 29 < b < 39,and 29 < ¢ < 39.
There are 11 choices for each exponent, and thus 11* = 1,331 divisors of 30% that are also multiples of 30%.

1,331
64,000 [

Therefore, the desired probability is (%)3 =

4.25 There are () ways of drawing four slips. There are ('°) ways of choosing @ and b. After a and b have been

chosen, there are (;) ways of choosing two slips labeled 4, and (g) ways of choosing two slips labeled b. Therefore,
the desired probability is

(DG _ 1620 _[162
(19 91,390 | 9139 |

4.26 First, we compute the number of ways to distribute the rolls so that each guest receives a roll of each type.
For the first guest, we may choose one of three nut rolls, one of three cheese rolls, and one of three fruit rolls,
leaving two rolls of each type. Then for the second guest, we may choose one of two nut rolls, one of two cheese
rolls, and one of two fruit rolls, leaving one roll of each type, all of which go to the third guest. Hence, the number
of correct distributions is 3° - 2% = 216.

Now we compute the total number of ways to distribute the rolls. We must choose 3 of the 9 rolls for the first
person, then 3 of the 6 remaining rolls for the second person, and the remaining rolls will go to the third person.
Thus, the number of ways to distribute the rolls is (g)(g) = 1680.

Therefore, the probability that each guest receives a roll of each type is 2% = 2 :
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%

4.27 If thesides of the square are parallel to the sides of the grid, then the diagonal (from
the lower-left to the upper-right corners) of the square must lie along one of the diagonals
of the grid, as shown in the picture to the right. Conversely, any choice of a diagonal
segment uniquely determines a square. Therefore, there is a 1-1 correspondence:

{squares in the grid with sides parallel to the sides of the grid}
I

{pairs of points on a diagonal segment]} .

7

There are two diagonal segments each with 2,3, ..., 9 points, and one central diagonal with 10 points. Therefore
the number of pairs of points, and thus the number of squares, is

2((i)+(i)+...+(z))+(lf):2(1+3+6+10+15+21+28+36)+45='

4.28 There is a 1-1 correspondence
{Numbers in the sequence} « {Positive integers written in binary}.

We simply read the binary integer as an integer in base 4. Since each digit is 0 or 1, the resulting base 4 number
will be the sum of distinct powers of 4. Therefore, since 50 is 110010 in base 2, the 50" term of the sequence is the

base 4 number 110010 = 45 + 4* + 4! =|1284

4.29 Choose any element s € S. There is a 1-1 correspondence
[TcSwith#T)odd} <« ([T cSwith#(T)even],

which in both directions is given by the following algorithm: for any subset T C S, if s € T then the correspondence
takes T to T\ {s}, and if s ¢ T then the correspondence takes T to T U {s}. This pairs up subsets containing s with
subsets that do not contain s. Furthermore, adding or deleting s always changes the parity of #(T), so every odd
subset is mapped to an even subset and vice versa. Therefore, the numbers of even-sized and odd-sized subsets
of § are equal.

4.30 By Problem 4.19, for all 1 < k < n, the number of partitions of n into exactly k parts is equal to the number
of partitions of n in which the largest part is k. Summing over 1 < k < r, we get that the number of partitions of #
into at most r parts is equal to the number of the partitions of n where the largest part is at most r.

4.31 Every partition of n either contains 1 as a part or it does not.

If a partition of n with k parts contains a 1, then we can remove the 1 to obtain a partition of n — 1 with k — 1
parts. Conversely, given a partition of # — 1 with k — 1 parts, we can add a 1 to this partition to get a partition of
n with k parts, each of which is at least 2. This establishes a 1-1 correspondence between the set of partitions of n
with k parts that contain a 1, and the set of partitions of #n — 1 with k — 1 parts, of which there are f(n — 1,k —1).

If a partition of n with k parts does not contain a 1, then every part is at least 2. We can then subtract 1 from
each part to obtain a partition of # — k with k parts. Conversely, given a partition of n — k with k parts, we can add 1
to each part to get a partition of n with k parts. This establishes a 1-1 correspondence between the set of partitions
of n with k parts that do not contain a 1, and the set of partitions of n — k with k parts, of which there are f(n -k, k).

Hence, f(n,k) = f(n—1,k—=1) + f(n — k, k).

4.32 A path starting at (0,0) and ending at (5, 1), which passes through all 12 points, corresponds to an ordering
of the set of 10 points:
{1,0),(2,0),(3,0),(4,0),(5,0),(0,1),(1,1),(2,1), (3, 1), (4, 1)}
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However, we have the additional condition that the path cannot cross itself. This means that the point (a,0)
must appear before the point (b,0) for all 1 < a < b < 5, and that the point (c,1) must appear before the
point (4,1) for all 0 < ¢ < d < 4. In other words, our ordering of the 10 points in the above set must include
(1,0),(2,0),(3,0),(4,0), (5,0) in order, and also must include 0,1),(1,1),(2,1),(3,1),(4,1) in order. Thisis equivalent
to choosing 5 of the 10 points in our list to have y-coordinate 0, and the rest to have y-coordinate 1, as once we
assign the y-coordinates, the x-coordinates are determined by the orderings above. Therefore, we have a 1-1
correspondence

{Paths satisfying the condition] {Orderings of five 0's and five 1s).

The latter set is easy to count, so there are (%50) = 252 | such paths.

Challenge Problems

4.33 We claim that it is impossible to place eight knights on the chessboard so that all squares on the chessboard
are attacked.

For the sake of contradiction, suppose that there is such a placement. Each knight attacks at most eight
squares, and there are eight knights and 64 squares, so for every square to be attacked, each knight must attack
eight squares. Consider the square marked A in the chessboard below.

This square can only be attacked by a knight at squares B or C, so we must have one of our knights on either B
or C. But a knight at square B or C attacks only six squares, a contradiction of the fact that each knight must attack
8 squares.

Therefore, there is no placement of the knights so that all squares are attacked, so the desired probability is @

4.34 On the test, let a be the number of questions that have an answer of true, leaving 10 — a questions that have
an answer of false.

First, we look at the case a < 5. Suppose I were to put false for each of the # questions where the answer was
actually true. Then the answer to each of the remaining questions is false, and I only write false 5 — 2 more times.
So, to ensure that I always get at least four questions correct, we must have 5 —a > 4 = g <1

Conversely, if a < 1, then there is at most one question whose answer is true. Even if I put down false for this
question, I still have at least four other questions where I write down false and the correct answer is false, so I
always get at least four questions right, and the condition is satisfied.

The case a > 5 is symmetric, with true and false answers switched, so a test satisfies the condition in the
problem if and only if there are 0, 1, 9, or 10 questions where the correct answer is true. Therefore, there are

[o)+(3)+(5)+ )=
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such tests.

4.35 First we place the purple balls, row by row. There are four possible places in the first row, then three in the
second row, then two in the third row, and then only one in the fourth row, so there are 4-3-2 -1 = 24 possible
ways to place the purple balls.

Now choose any purple ball, say in row r; and column c;. There must be a green ball in row 71, for which there
are three possible places. Let this green ball be in column ¢;. And there must be another green ball in column ¢y,
for which there are also three possible places. Let this green ball be in row 7.

There are now two rows and two columns that do not contain a green ball, which intersect in four places. Let
S be the set of these four places. We claim that S contains at least one purple ball.

There is a purple ball (the one we originally chose) at the intersection of row r; and column ¢;, so no more
purple balls can be in row 71 or column ¢;. There is another purple ball in row r;, and another (potentially the
same) purple ball in column ¢;, so rows r; and r; and columns ¢; and ¢; collectively contain at most three (but at
least two) purple balls, so S contains either 1 or 2 purple balls.

If S contains one purple ball, then the last two green balls can be placed in only one way. If S contains two
purple balls, then they must be in different rows and columns, and so the last two green balls can also be placed in
only one way in the remaining two boxes. Thus, the final arrangement is uniquely determined by the placements
of the four purple balls and the first two green balls.

Hence, the number of possible arrangements is 24-3 -3 = .

4.36 For four numbers to sum to 0, with each equal to 1 or —1, there must be exactly two 1s and two —1s. Thus,
the problem is equivalent to finding the number of ways of placing eight 1s in a 4 X 4 array such that each row
and each column contains exactly two 1s.

First, we choose the placement of the two 1s in the first row. There are (;) = 6 such choices. Let these 1s be in
columns ¢; and c;. There is a second 1 in column ¢;; let this 1 be in row r;. Similarly, there is a second 1 in column
c2; let this 1 be in row 3. We have two cases: Either r; = rp or ry # ra.

Case 1: r; = rp. If rows r; and r; coincide, then we have placed four 1s that take up two rows and two columns,
and the other four 1s must be placed at the intersections of the other two rows and other two columns. There are
3 choices for row r; = 13, so there are a total of 6 - 3 = 18 placements in this case.

Case 2: r1 # 1. In this case, we have placed two 1s in the top row, as well as one 1 in row r;, and one 1 in row
r2. Then the two 1s in the fourth remaining row must go in the two columns other than columns c; and c;, and
then the final two 1s can be placed in two different ways. There are 3 - 2 = 6 ways to choose distinct rows r; and
ra, so there are a total of 6 - 6 - 2 = 72 placements in this case.

Therefore, the number of 4 x 4 matrices of 1’s and —1’s where the sum of the entries in each row and in each
columnis0is 18+ 72 = m

4.37 We begin by arbitrarily coloring the points in the first row. We have the following cases: either no two
adjacent points have the same color, or some two adjacent points have the same color.

Case 1: No two adjacent points have the same color.

If no two adjacent points have the same color, then the colors must alternate, so there are only two such
colorings of the first row.

Then we can see that the colors in the next row must also alternate, but either of the two colorings that alternate
will work. This holds for every successive row. Since there are two possible colorings for the first row and two
colorings for every successive row, the total number of colorings in this case is 2'.

Case 2: Two adjacent points have the same color.

Since there are 2!! possible ways to color the first row, and two of them have already been accounted for in
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Case 1, there are 2! — 2 ways to color the first row in this case.

Consider a pair of adjacent points in the first row that have the same color. Then the corresponding points in
the second row must have the opposite color. But after the colors of these points have been determined, the colors
of all the other points in the second row are uniquely determined. (In fact, the color of each point in the second
row is the opposite of the color of the corresponding point in the first row.)

By the same reasoning, the color of every point in every successive row is uniquely determined. Hence, the
color of every vertex is uniquely determined by the colors of the first row, so the total number of colorings in this
caseis 211 -2,

Therefore, the total number of possible colorings is 211 + 211 —2 = 212 _ 9 = [1094]

4.38 First, we count the total number of ways of choosing four segments. There are (120) = 45 possible line
segments, so there are (‘ff) ways of choosing four segments.

Next, we count the number of ways of choosing four segments such that three of them form a triangle. Among
the ten points, there are (130) = 120 ways of choosing three vertices to form a triangle. There are 45 possible line
segments, and we have already chosen three, so there are 42 ways of choosing the fourth segment. Hence, there
are 120 - 42 = 5040 such ways.

5040 [ 16

(‘ff) 473 (

Therefore, the probability is

4.39 Let T be a subset of S with the given property, and let d be the common difference of the arithmetic sequence
formed by the elements of T. Then T is determined uniquely by any element a of the arithmetic sequence, because
T must be the intersection of S and the infinite arithmetic sequence

(.., a=2d, a-d, a a+d, a+2d, ...}

If d < 50, then for any elementa in S, either a—d or a+d is also in S, so T will always have at least two elements.
Therefore, we have a 1-1 correspondence

{Subsets T withd <50} <  {Ordered pairs (d,a) with1 <d <50and 1 <a <d).
Hence there are

49
Zd: (50—)2(49-) = 1225
d=1

such sequences.

If d > 50, then T must consist of exactly two elements, and must be one of the sets
Ld+1}, {2,d+2}, ..., {100-4d,100}.
Therefore there is a 1-1 correspondence
{Subsets Twithd > 50} ¢  {Ordered pairs (d,a) with50 <d <99 and 1 < 4 < 100 — d}.

Hence there are

99 50
Y (00-a) = Zz‘: @-)2(@ = 1275
d=50 i=1

such sequences.

Therefore, the number of such sets is 1225 + 1275 = 2500 |.
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440 We can divide the 219 subsets according to whether they contain the element 10 or not. There are 2° subsets
that contain the element 10, and 2? subsets that do not contain the element 10. If § is a subset of {1,2,3, ..., 10} that
does not contain the element 10, then we can form the corresponding set S U {10}, which does contain the element
10; this gives the 1-1 correspondence

{Subsets containing 10} «  {Subsets not containing 10}.

Let S = {x1,%a,..., %) be a subset of {1,2,3,...,10} that does not contain the element 10, where x; < x3 < --+ < xy.
Then the alternating sum of {x1,x2,..., %} is

Xp—Xp-1+Xp2—-+ (_1),1_1351:
and the alternating sum of the corresponding subset 5 U {10} = {x1,x2,...,2x,,10) is
10—y + X1 — X+ + (_l)nxl-

The sum of these two alternating sums is 10. Summing over all 2° pairs of corresponding subsets, we find that the
sum of all alternating sums is 2% - 10 = | 5120 |

4.41 Color the seats alternately black and white, as shown. Then 18 students are seated in white seats, and 16
students are seated in black seats (since we exclude the middle seat).

All of the students in white seats must move to black seats, but there are only a total of 17 black seats available,
so such a reassignment is not possible. In other words, the number of possible reassignments is @

4.42 Suppose that we wish to place k rooks. We must choose k of the 8 rows for the rooks, and independently
choose k of the 8 columns for the rooks. Once we have chosen our rows and our columns, then the placement of
the rooks is fixed, for as the rows increase from bottom to top, the rooks must be placed in columns from right to
left: otherwise, a rook will be below and to the left of another rook. Therefore, there is a 1-1 correspondence

{Placement of k rooks subject to the condition} ¢  {Choices of k rows and k columns}.
The latter set has (ﬁ)(i) elements, so the total number of ways to place a positive number of rooks is
%, (8\(8
Y (k)(k) =[12869]
k=1

Note that the final answer can be computed simply by plugging in the numbers, or by using the identity

() - ()

so that the answer here is (136) — 1. (We will prove this identity in Chapter 12, or you can try to prove it now on
your own.)

4.43 Note that we have the 1-1 correspondence

{Colorings of the faces of an octahedron} ¢  {Colorings of the vertices of a cube},
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where we think of the cube as embedded inside the octahedron, so that each vertex of the cube touches a face of
the octahedron. This doesn't really change the problem, but it makes it slightly easier to visualize.

Choose one vertex of the cube to be a particular color. Then the other seven vertices can be colored in 7! ways.
However, the cube can be rotated by 120° and 240° about the chosen vertex, and these rotations take the cube to
itself. This means that each coloring is counted three times. Hence, the total number of colorings (up to rotational

symmetry) is 7!/3 = [1680 |

4.44 Let S be a subset of {1,2,...,3000} with the property that no element in S is double another element in S.
Let 2 be an odd positive integer, and consider the sequence

a, 2a, 4a, 8a, 16a,

Each term in the sequence is half the next term, so no two consecutive terms can appear in S. Thus, the number of
elements in S is maximized by taking all the elements of the form a,4a,16a, ..., where a is an odd positive integer;
in other words, S is maximized by taking the elements that have an even number of factors of 2.

So the maximal subsets S consists of the following elements:

1, 4, 1, ...,
3, 12, 48, ...,
5 20, 80, ...,
7, 28, 112,

We need to determine #(S). Instead of counting the number of elements by rows, we can count the number of
elements by columns.

We can count the elements in the first column by taking all the numbers from 1 to 3000, and then subtracting
the even numbers from 1 to 3000. This is 3000 — 13000/2].

We can then count the elements in the second column by taking all the multiples of 4 from 1 to 3000, and then
subtracting the multiples of 8 from 1 to 3000. This is |3000/4] — | 3000/8).

Similarly, the number of elements in the third column is [3000/16] - [3000/32], and so on, so the maximum
number of elements in S is

3000 — [BOOOJ & [SOOOJ B [3000-' . [BOOOJ a [SOOOJ

2 4 8 16 32
= 3000 — 1500 + 750 — 375 + 187 =93 + 46 — 23 + 11 - 5+2 — 1
=1999.

Hence, S cannot contain 2000 elements.

4.45 We begin with the first row. We may color the first 2006 squares of the first row arbitrarily. Then the color of
the last square of the first row is uniquely determined, since the first row must contain an even number of black
squares: if we colored an even number of the first 2006 squares black, then we must color the last square white,
and if we colored an odd number of the first 2006 squares black, then we must color the last square black.

The same procedure can be applied to any of the first 2006 rows: Color the first 2006 squares arbitrarily, and
the color of the last square is uniquely determined. There are 220 gy;ch ways to color each row, so there are a total
of (22006)2006 = 92006" gyuch colorings.

Then the colors of the first 2006 squares of the last row are also uniquely determined, since each column must
contain an even number of black squares.

The only square whose color is left to be determined is the last square of the last row. The color of this square
must satisfy two conditions: The number of black squares in the last row must be even, and the number of black
squares in the last column must be even. Fortunately, these conditions are consistent, because both conditions

50



Challenge Problems

are equivalent to the total number of black squares being even, and so the color of this last square is uniquely
determined.

Therefore, the number of possible colorings is .

4.46 We may without loss of generality assume thata; <a; <azand by < bz < bs. (If this is not the case, then just
relabel the numbers.) Then the brick fits inside the box if and only if a; < by and a; < by and a3 < b3.

We find that there are only five ways that all six numbers can be ordered, subject toa; < a, <a3 and by < by < bs,
that satisfy these inequalities:

a1<ﬁz<ﬂ3<b1<b2<b3,
a1<a2<b1<a3<b2<b3,
H1<b1<ﬂ2<&3<b2<b3,
4 <y <by <by<az <bs,
m <by<a<by <az<bs.

On the other hand, there are (g) = 20 possible orderings of the a’s and b’s, given the condition thata; < a, < a3 and
by < by < bs: we must choose 3 of the 6 slots to be a’s, and the rest are b’s. All 20 orderings are equally likely over
all the possible choices of a’s and b’s, and as we saw, 5 of them lead to the brick being enclosed in a box.

Therefore, the probability that the brick fits inside the box is 25—0 = E

Note that the probability is the same if the number 1000 (in the problem) is replaced by any number that is at
least 6, as the actual choice of numbers is irrelevant; all that matters is the relative ordering of the numbers that
are chosen.

4,47 For convenience, let IN denote the set {1,2,3,...} of positive integers. (These are sometimes called natural
numbers, hence the notation IN.)

(a) Let f:IN — Z be defined as

n

if n is even
_ 2 ’
fn) = { ~21 jf nis odd.

Note that all of the even integers in IN map to the positive integers, and all of the odd integers in IN map to
the negative integers. Also note that every integer is in the range of Z. So f establishes a 1-1 correspondence
N — Z.

(b) First, note that every rational number can be represented in lowest terms as #/n, where m is an integer, 1
is a positive integer, and (m,n) = 1. Let T be the subset of ordered pairs (m,n) of integers where n > 0 and
(m,n) = 1; then Q is in 1-1 correspondence with T.
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We can list all of the elements of T by constructing a
spiral on the Cartesian plane starting at the origin and
extending outwards in a counterclockwise direction, as
shown in the picture at right. Note that not all of the
lattice points are elements of T, but we can skip those
thatare not. (The lattice points that are members of T are
circled in the diagram.) In other words, we are making a
correspondence between IN and T, where 1 corresponds
to the first element of T in the spiral (namely, (1, 1), which
corresponds to the rational number }), 2 corresponds
to the second element of T in the spiral (namely, (0, 1),
which corresponds to the rational number 2), 3 corre-
sponds to the third element of T in the spiral (namely,
(=1,1), which corresponds to the rational number ‘Tl),
4 corresponds to the fourth element of T in the spiral
(namely, (2,1), which corresponds to the rational num-
ber %), and so on. Every element of T will occur in the
list, so T is in 1-1 correspondence with IN, and hence Q
is also in 1-1 correspondence with IN.

(c) Let[0,1]={reR|0<r<1}. We can make a 1-1 correspondence [0, 1] «» P(IN) as follows. Write every such
r as a binary decimal: # = .rir2r3. .., where each digit r; is either 0 or 1. This corresponds to a subset N, of N,
wherei € N, ifand only if 7; = 1 in the binary decimal expansion. Thus, [0, 1] cannot be in 1-1 correspondence
with IN, and hence neither is the larger set R. So IR is uncountable.
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CHAPTER

I The Pigeonhole Principle

Exercises for Section 5.2

5.21 We argue by contradiction. Suppose that each of the boxes contains at most one ball. If we add up the
total of all of the balls in all of the boxes, then this total must be at most k, since there is at most 1 ball in each
box. But we already know that this total is 7, since there are n balls. Therefore, we must have n < k. But this is a
contradiction, as we are given that n > k. Therefore, at least one box contains more than one ball.

5.2.2 Imagine placing each coin in a box called “heads” or a box called “tails,” depending on its result. By the
Pigeonhole Principle, since I have 3 coins, at least one of the boxes must contain at least 2 coins.

5.2.3 If we draw 13 cards, all with different rank, then there will be no pairs, so 13 cards will not suffice. On
the other hand, if we draw 14 cards, then by the Pigeonhole Principle, there must be two cards of the same rank,

\ which means there must be a pair. Therefore, we must draw at least cards.

Exercises for Section 5.3

5.3.1 There are only 10 different units digits an integer can have, namely 0, 1, 2, ..., 9. Therefore, by the
Pigeonhole Principle, among any 11 integers, there must be two with the same units digit.

5.3.2

(a) Since there are 8 rows and 8 columns, we can place at most 8 rooks on the chessboard
so that no two rooks lie in the same row or same column. If we tried to place 9 or
more rooks, then by the Pigeonhole Principle, there would have to be at least 2 rooks
in some row, which is not allowed. But if we place 8 rooks on a diagonal of the
chessboard as shown at right, then no two rooks lie in the same row or same column.

So the maximum number of rooks we can place is .

(b) We can divide the black squares into 7 diagonals, as shown in the diagram on the
left below (on the next page). Each diagonal can contain at most one bishop, so the
number of bishops that are on black squares can be at most 7. Similarly, the number of bishops that are on
white squares can be at most 7, so there can be at most 14 bishops on the chessboard such that no two lie in

the same diagonal. It is indeed possible to place bishops such that no two lie in the same diagonal, as
shown in the diagram on the right below (on the next page).
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/S

5.3.3 The possible groups that can sum to 4 are: 4,3+1,2+2,2+1+1,and 1 +1+1+ 1. If we have at least
four 1’s in our sum, then we’re done, so assume that we have three or fewer 1's. If we have two or three 1's, then
we must have at least one 2, 3, or 4, because otherwise the other five or six elements would all be at least 5, which
wotild make the total too large. In any of these cases, we can pair a 2, 3, or 4 with the appropriate number of 1's
to get a group that sums to 4.

If we have only one 1, then we must have either at least two 2’s or a 3 or a 4; if we have only one 2 and every
other of the six remaining elements is 5 or greater, then the total is too big.

Finally, if we have no 1's, then we must show that we will either have two 2’s or a 4. In fact, we must have two
2’s: if we have only one 2 and the other seven elements are all at least 3, then the total is at least 2 + 7(3) = 23 > 20,
so this cannot happen.

So, in any case, we must have a group that sums to 4.

Note: while this solution did not explicitly invoke the Pigeonhole Principle, the type of reasoning that we used
is definitely of the same flavor as the Pigeonhole Principle.

5.3.4 If xis an element in §, then no other element in S can be congruent to 7 — x modulo 7. Hence, we count the
number of elements in (1,2, 3,...,50} that are congruent to 0, 1, ..., 6 modulo 7, respectively. We find that there
are 7 numbers congruent to 0, 2, 3, 4, 5, and 6 modulo 7, and 8 numbers congruent to 1 modulo 7.

Then to maximize the number of elements in 5, we take the 8 numbers that are congruent to 1 modulo 7, the
7 numbers that are congruent to 2 modulo 7 (or 5 modulo 7), and the 7 numbers that are congruent to 3 modulo
7 (or 4 modulo 7). We can add one number (but only one) that is congruent to 0 modulo 7, so that S contains a

maximum of 8 +7 +7+1= elements.

5.3.5 Divide each of the n + 1 numbers by n, and consider their remainders. There are n possible remainders,
namely 0, 1, ..., n — 1. Since there are n + 1 numbers, by the Pigeonhole Principle, some two numbers leave the
same remainder when divided by n. The difference between these two numbers is then divisible by n.

5.3.6 If two numbers from 1 to 100 sum to 125, then they must be one of the following pairs: {25,100}, {26,99},
{27,98}, ..., {62,63]. There are 38 such pairs, and B can contain at most one element from each such pair. The
subset B can also contain any combination of the remaining elements 1, 2, 3, ..., 24, so B can contain a maximum

of 38 +24 = elements.

Exercises for Section 5.4

5.4.1 We have 13 cards, each of which must be one of four suits. Hence, by the Pigeonhole Principle, at least
(13 —1)/4] + 1 = 4 cards must be in the same suit. (Another way to think of this is that if we had at most 3 cards
of each suit, then we’d only have at most 4 x 3 = 12 cards in our hand, but we know that we have 13 cards.)

5.4.2 Each integer has remainder 0, 1, 2, 3, or 4 upon division by 5. There are 17 numbers and 5 possible
remainders. If there are 5 numbers all with different remainders, then we can add these five numbers together:
the remainders willadd to 0 + 1+ 2 + 3 + 4 = 10, and thus the sum will be a multiple of 5.
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On the other hand, if one of the possible remainders is not a remainder of any of the 17 numbers, then the 17
numbers only have 4 possible remainders, and thus, by the Pigeonhole Principle, there must be at least 5 numbers
with the same remainder. When we add these 5 numbers together, the result will be a multiple of 5.

5.4.3 Therearea total of (') = 165 triangles. By the Pigeonhole Principle, we know that at least [ (165—1)/4]+1 =
42 triangles must have the same color. Furthermore, we can color 41 of the triangles amber, 41 burgundy, 41
chartreuse, and 42 dark green, which means it is not always true that at least 43 triangles have the same color.

Hence, the largest number N for which at least N triangles have the same color, for any coloring, is .
5.4.4

(a) There are 12 x 6 = 72 letters sent in August, but there are only (122) = 66 pairs of members of the club.
Therefore, by the Pigeonhole Principle, there must be some pair of people that has more than 1 letter between
them; that is, there must be a pair of people who send letters to each other.

(b) In September, only 12 X 5 = 60 letters are sent, so we cannot invoke the Pigeonhole Principle as we did in
part (a). But this does not prove that the conclusion for part (a) does not hold — we still need to show that it
is possible for the letters to be sent in such a way so that no pair of people exchange letters.

Have the 12 club members sit around a circle. Then have each member send a letter to the 5 people sitting
to his or her immediate left. Note that each member will receive a letter from the 5 people sitting to his or
her immediate right, and no correspondence at all will take place between people who are sitting opposite
from one another. This configuration of letter-sending results in no two people sending and receiving letters
from each other.

5.4.5 First, note that if any student gets k questions correct and 10 — k questions incorrect, then she will get (g)
pairs of questions correct and (102— ¥) pairs of questions incorrect. This gives her a total of

(k) (10 - k) _ k(k—1) & (10 -k)9 k)

o]+ s 5 5 =% - 10k + 45

pairs of questions that she answers the same way (either both correct or both incorrect). Note that this number is
at least 20 for any value of k, since
K> — 10k + 45 = (k — 5)> + 20 > 20.

So each student answers at least 20 pairs of questions the same way, and hence if there are n students, then there
are at least 20n pairs of questions answered the same way.

There are (120) = 45 pairs of questions, thus there are 45 pairs of questions that can be answered correctly, and
(the same) 45 pairs of questions that can be answered incorrectly. Thus there are 90 different pairs of questions
and ways that they can be answered the same — we'll call these “pair-ways.”

Thus, by the Pigeonhole Principle, when we place the 201 pairs of questions answered in the same way into
the 90 “pair-ways” boxes, there must be at least

20m—1
l ) J”

of them in some box. We want to be able to prove that there are at least 57 in some box, since this corresponds to
at least 57 students answering the same pair of questions in the same way, so we will want to have

lZDn -1
90

Thus, we have shown that if there are at least 253 students, then at least 57 of them will answer some pair of
questions in the same way.

J256 & n=z253.

To finish, we will have to prove that there is a non-laughable performance of 252 students. When we see a big
number like “252” in a counting problem, one good idea is to try to find it in Pascal’s Triangle. And indeed, we

note that (150) = 252, and this gives us a plan.

55



CHAPTER 5. THE PIGEONHOLE PRINCIPLE

We can have a group of 252 students, all of whom correctly answered five different problems. Consider any
two given problems. If a student answered those two problems correctly, then there are (g) = 56 choices for
the other 3 problems that he also answered correctly, therefore there are exactly 56 students who answered the
two given problems correctly. Similarly, there are exactly 56 students who answered any two given problems
incorrectly. Hence, the performance of this group of 252 students is not laughable.

Therefore, the answer is .

Review Problems

511

(a) IfIonly pull out four socks, they may all have different colors, and there will not be any matching pairs.
However, if I pull out five socks, then by the Pigeonhole Principle, there must be two socks of the same color,

and so I will have a matching pair. Therefore, I must pull out at least | 5 | socks to ensure a matching pair.

(b) IfI pull out 6 socks, then I might get, for example, three white socks, one black sock, one brown sock, and
one blue sock, so six socks do not suffice. But if I pull out seven socks, then either (1) I will get 4 of one color,
giving me two pairs of that color, or (2) I will get at least 2 of two different colors, in which case I get two
pairs of different colors. In either case, there will always be two matching pairs.

512 Atany point in the tournament, each team will have played between 0 and 37 games (inclusive). However,
we cannot simultaneously have a team that has played 0 games and a team that has played 37 games: the former
team hasn’t played anybody yet, whereas the latter team has played everyone, and these two conditions can’t
simultaneously occur. So there are only 37 different possible numbers of games that teams could have played,
hence by the Pigeonhole Principle, at least two of them must have played the same number of games.

5.13 Let the positive integers be x1, x3, x3, x4, and xs. For 1 < i < 5, let r; be the remainder when x; is divided by 3
Each of these remainders r; must be 0, 1, or 2. So we have five “balls” (the x;) and three “boxes ” (the remainders).
There are two cases: Either every remainder appears at least once (meaning there is a ball in each box), or one of
the remainders appears at least 3 times (if a box is empty, then there are 2 boxes remaining for the 5 balls, and
thus by the Pigeonhole Principle, one of the boxes must have at least 3 balls). Note that these two cases are not
exclusive, but that's QK.

If every remainder appears at least once, then choose an x; corresponding to each of the three remainders.
Their sum will be a multiple of 3. If not, then the sum of the three x; corresponding to the same remainder will be
a multiple of 3. In either case, we can find three elements whose sum is divisible by 3.

514 The first three students (those who got exactly 1, 2, and 3 questions right) account for 6 of the solved

questions. That leaves 35 — 6 = 29 questions that must be solved by the remaining 7 students. So, by the
Pigeonhole Principle, at least one of the remaining students must have solved [”%J +1 =5 questions.

5.15

(a) IfIonly buy 4 x7 = 28 apples, specifically 4 of each of the 7 types, then I won’t have enough to bake a pie.
On the other hand, if I buy 29 apples, then by the Pigeonhole Principle there must be at least L%J +1=5

apples of one type, and thus I can make a pie. So I need to buy apples.

(b) Thinking about the worst-case scenarios, we see that 38 apples is not enough. For instance, I might buy 14 of
one type and 4 of each of the other 6 types, or I might buy 9 of two types and 4 of each of the other 5 types.
In either case, I only have enough for 2 pies.

We can prove that 39 apples will do the job. If we buy at least 5 apples of at least 3 types, then we're safe,
so suppose that out of our 39 apples, we have at most 4 apples of 5 different types. This accounts for at most
20 apples, so we have 19 apples left for the remaining two types. By the Pigeonhole Principle, at least 10 of
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these must be of the same type, and that lets us bake two pies. Once we bake those pies, we have 9 apples
left, again for two types. By the Pigeonhole Principle, at least 5 must be of the same type, so we can bake a

third pie. Thus we need apples.

Note an interesting phenomenon between these two parts. We needed 29 apples for 1 pie, but we only needed 10
additional apples for two more pies. Can you explain this?

5.16 Let the 11 positive integers be x1, X3, ..., X1, and for 1 <i <11, let
si=x1+xp+ -+ X

For 1 < i < 11, let 7; be the remainder when s; is divided by 11. If some remainder r; is equal to 0, then the
corresponding sum s; is divisible by 11, and we are done, so assume that none of the r; are equal to 0.

Then each of the remainders r; must be one of 1, 2, ..., 10, for a total of 10 possible remainders. By the
Pigeonhole Principle, two of the remainders, say r; and r; are equal, where i < j. Then the difference between s;
and s; is divisible by 11. But

|
i P

§j— 8 =Xiy1 + Xigz + -0 T Xj,
which gives us a subset whose sum is divisible by 11. -

5.17 If all of the friends have a different amount of money, then the minimum amount that they can have will
occur if one has $0, one has $1, and so on, up to one having $14. But this gives a total amount of

($14)(15)
2
which is greater than the allowed total. Therefore, they cannot all have a different amount.

5.18 Since there are 16 people and 20 chairs, there are 4 empty seats. Divide the row of 20 chairs into 5 groups of
4 consecutive seats. Since there are 5 groups and 4 empty chairs, at least one of the 5 groups has no empty seats.
So in that group with no empty seats, all four consecutive seats are full.

5.19 Divide the chessboard into 16 2 X 2 regions, as shown at right. If we tried to place
17 or more kings on the board, then by the Pigeonhole Principle, at least 2 of them would
be in the same 2 X 2 region. But these two kings would necessarily be adjacent, which is
not allowed. So we cannot place 17 or more kings.

We can legally place 16 kings, by placing a king in the lower-left corner of each 2 x 2
region, as shown below:

Therefore, the maximum number of kings is .

Challenge Problems

5.20 Since (g’) = 20, each of the 20 students can enroll in a different combination of three courses. Then given any
pair of courses, there are exactly four students who have enrolled in both courses (because there are 4 choices for
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the third course that each student takes, beyond the given two), and there are exactly four students that have not
enrolled in either course (because there are 4 choices for the third course that each student does not take, beyond

the given two). Thus, the statement given in the problem is .

521 Let the band members be A, B, C, D, E, and F. Then Sam’s band can give three concerts with the following
members: A, B, C, D in the first concert, A, B, E, F in the second concert, and C, D, E, F in the third concert. Ablt
of experimentation may convince you that there’s no way to do 4 concerts, so let’s try to prove it.

Suppose that the band gives four concerts. Consider the band member A. For every concert he plays, he
belongs to each of (3) = 3 triples. There are a total of () = 10 triples that he can belong to, so if no triple can appear
twice, then A can play at most three concerts. The same holds for every other band member.

Let a be the number of times that A plays, and define b, ¢, d, ¢, and f similarly. Thena+b+c+d+e+ f = 16,
and all six variables are at most 3. Then at least four of them must be equal to 3, for if at most three of them are
equalto 3, thena+b+c+d+e+ f <3-3+3-2 =15, a contradiction. Without loss of generality, assume that a, b,
¢, and d are equal to 3, so that A, B, C, and D play three times.

If A and B play in the same concert, then there are two triples that contain both A and B from that concert.
Among all six band members, there are a total of four triples that contain both A and B, so_A and B can play at
most two concerts together. The same holds for any pair of A, B, C, and D, which means that there is one concert
with A, B, and C; one w1th A B, and D; one with A, C, and D; and one with B, C, and D.

This leaves E and F to fﬂl four slots. By the Pigeonhole Principle, at least [(4 — 1)/2] + 1 = 2 of these slots
have the same member. However, this will always lead to some triple being repeated, since every pair of concerts
already has two band members in common, and adding E or F will make an illegally repeated triple. So Sam’s
band cannot give four concerts.

Therefore, Sam’s band can give at most |3 | concerts.

5.22 Consider the sequence

Lop P
Each term p* can only have one of 10000 different remainders upon division by 10000, but the sequence contains
an mfmlte number of terms, so there exist i and j such that 1 < i < j and p = pJ (mod 104) In other words,
p/ —p' = p'(p'™" - 1) is a multiple of 10000. But if p is any prime other than 2 or 5, then p' is relatively prime to
10000. Therefore, p/~* — 1 is a multiple of 10000, which means that p/~ ends in the digits 0001.

Alternatively, if you know Euler’s Theorem, then you can say that p?(1%") = p%00 = 1 (mod 10%).

5.23 Let {x) denote the fractional part of a real number x; that is, (x) = x — | x]. Note that 0 < {x) < 1 for all real
numbers x. For all integers 0 < i < n — 1, define

Bi={xeR| Lem< ”1}.
In other Words B; is the set of all real numbers whose fractional parts lie between £ and 1. For a real number to

be at most - i . from an integer, it must be in By or B, (except that it could be exactly = greater than an integer, in
which case it would lie in By, but it turns out that this detail is not important).

We will proceed by contradiction. Suppose that none of 7,27, ..., (n — 1)r are in By or in B,_;. Then they are all
in By, By, ...By-2. So we have n — 1 real numbers but only 1 — 2 of the B;’s, so by the Pigeonhole Principle, two
different multiples of r in our list must be in the same B;. Suppose that ar and br are in the same B;, with a < b.
Then their difference (b — a)r is in our list of multiple of 7, and lies in either By or B,_1 (since the fractional parts of
ar and br differ by less than 1), giving a contradiction.

Thus one of the elements in the list must be no more than 1 from an integer.

5.24 The Pigeonhole Principle tells us that given any set of 4 points, there must be at least 2 that are the same
color. However, we need 4 points that are the same color, and in a particular configuration: corners of a rectangle.
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Sets of 4 points have 3* = 81 possible colorings, so we might try to find some sort of Pigeonhole argument with
81 + 1 = 82 sets of 4 points.

Consider a grid of 4 x 82 points in the plane, so each column contains 4 points. As discussed above, by the
Pigeonhole Principle, there are two columns whose points are colored the same way. Now consider the colors in
one of these columns. There are four points in the column, so again by the Pigeonhole Principle, at least two of
these points must have the same color. The corresponding points in the other column also have same color, so
these four points form a rectangle where all the vertices have the same color.

Using a more clever argument, one can show that every grid of 4 X 19 points must contain a rectangle where
all the vertices have the same color. Can you find it?

5.25 We claim that a maximum of 16 squares can be colored. The diagram at right shows
a possible shading of 16 squares.

For each row, consider the pairs of columns that are formed by the colored squares in that
row. For example, in the bottom row in the diagram at right, the three colored squares form
three pairs of columns (namely, the second and fourth columns, second and fifth columns,
and fourth and fifth columns). More generally, for 1 < i < 6, let 4; be the number of colored
squares in the i row. Then the colored squares in the i row generate (§) pairs of columns.

Now, if the colored squares in two different rows have two columns in common, then the two rows and two
columns intersect in four colored squares that form a rectangle. Therefore, if no four squares form a rectangle,
then a given pair of columns can be represented in at most one row. In particular, the total number of pairs of
columns represented over all rows must be at most (5) = 15. This gives us the inequality

2] an as ay as g
< 15.
(3)+ (2] (3)+(5)+ (3)+(3) 2
We claim that if a4y, a2, . . ., a6 are nonnegative integers that satisfy this inequality, then a; + a3 + - -+ + a5 can be at

most 16.

We can turn this problem around, and ask when

_[m )y, (%

s=(3)+(3) (3]
is minimized for a fixed sum s = a; + a4 + - - - + a5. We claim that this occurs when no two of the a; differ by more
than 1.

Suppose that two of the g; differ by more than 1, so aj > a; + 2 for some i, j. Then we claim that S decreases
when g; is replaced by a; + 1 and a4} is replaced by a; — 1. (Note that the sum s = a; +az + - - - + a6 remains the same.)
To see this, we expand:

aj aj ai+1 aj—1\| _ ai(a;—1) aj@j—1)  (a;+1a; (aj—1(aj—-2)
) G)- ()0 ) o -

=aj—a,~—1

This difference is positive, so the sum S does indeed decrease.

Hence, to minimize S, it suffices to look at values a4, 4, . . ., 45 where no two of the a; differ by more than 1. In
particular, when s = 16, the minimum value of S is

(B s
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For s = 17, the minimum value of S is
2 3 3 3 3 &
(2)+(2)+(2)+(2)+(2)+(2)—1+3+3+3+3+3—16.

However, we want S to be at most 15, so s is at most 16. And we have already given an example for 16 colored
squares. Therefore, the maximum number of squares that can be colored so that no four form a rectangle is .

' 526 The formal proof is a little hard to follow, so let's first informally explain the procedure. Imagine that
the elements of X are white stones, with weights x1,x2,...,X,, and that the elements of Y are black stones, with
weights 1,2, ..., yn». We also imagine a large balance-type scale, with two pans balancing across a fulcrum. Our
goal is to put some number of white stones in the left pan and some number of black stones in the right pan, so
that the two sides balance. ’ =

We use what is essentially a “greedy” algorithm: start by placing a white stone in the left pan, and then at
each step, add a stone to whichever side is lighter, and keep doing this until we run out of stones. Either at some
intermediate point the scales will be in balance (in which case we're done), or we’ll run out of stones. But the
bounds on the weights of the individual stones mean that the scale can never be out-of-balance by more than n
on the left side or by more than # — 1 on the right side. (It can never be out of balance by m on the right, since
we started with a white stone in the left pan.) Since there are m + n total stones and only m +n — 1 different ways
that the scale can be out of balance, we may conclude by the Pigeonhole Principle that if we run out of stones, the
scale must have been out of balance by the same amount at two different times. But this means that all the stones
that we added between these two times must balance evenly, thus solving the problem.

Keeping this algorithm in mind, we'll now present a formal proof.

Forl<i<m,lets;=x1+x3++-+x;,and for1 < jEnletti=y1+yp+---+ yj. Without loss of generality,
assume that s,, < t,. (If s,;, > t,, then the same argument works with all the x’s and y’s reversed.)

Forall 1 <i <m, we haves; <s,, <t,, so there always exists an index j such thats; < ¢ j- Define f(i) to be the
smallest such index. Then for1 <i<m, letc; = triy —si, so ¢; = 0 for all i. If ¢; = 0 for some i, then s; = tr@), which

means e ————
X1 +x2+---+x,-=y1 +y2+'--+_1/f(,),

and we are done, so assume that ¢; > 1 for all 7.

We claim that ¢; < m — 1 for all i. For the sake of contradiction, suppose that ¢; > m for some i, sos; + m < ¢ £
Note thats; + m 2 m+1 > y; = t, so f(i) must be at least 2. Then

SiStfpg—m=yi+ Y2+ + Y1+ Y —MmS Y1+ 2+ + Ygoor = b
However, this contradicts the definition of f(i). Therefore, ¢; < m — 1 for all .

Hence, each of the m numbers c;, ¢, . . ., ¢,, must be between 1 and m — 1. By the Pigeonhole Principle, there
exist indices p < g such that ¢, = c;, or £ — 5, = trigy — Sq- Then sy —sp =ty = g, so

i1 Xprz e R Xy = Yo FYfgr2 + oo+ Yrgy
as desired. e, sy

5.27 Since every team has an equal probability of winning, the probability that no two teams win the same
number of games is equal to the number of tournaments where no two teams win the same number of games,
divided by the total number of possible tournaments.

Label the teams 1 through 40 arbitrarily, and for 1 < i < 40, let w; be the number of games won by team i. Then
0 < w; < 39 for all i, so there are 40 possible values of w;. Hence, if all the w; are distinct, then all 40 possible values
must be represented among the w;.
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We can relabel the teams, if necessary, so that team 7 wins i — 1 games. In particular, team 40 wins all of its 39
games. Since team 39 wins 38 games, the only game it lost was to team 40. Then team 38 wins 37 games, and so
the only two games it lost were to teams 39 and 40, and so on. It follows that forany 1 < i < j £ 40, team j worq
against team 1.

Hence, any tournament in which no two teams win the same number of games corresponds to a permutation
of the 40 teams, of which there are 40!. There are (420) = 780 games, and each game has 2 possible outcomes, so
there are a total 2% possible tournaments. Therefore, the probability that no two teams win the same number of

40!

. . /
games is| 7o |

5.28 LetA,B,C, D, E, and F be the sets of numbers of the members from the six countries. Then by the Pigeonhole
Principle, one of the sets contains at least [ (1978 — 1)/6] + 1 = 330 elements. Without loss of generality, assume
that this set is A, and let the 330 elementsbe a; < a, < --- < as3p.

For 1 <i <329, let b; = aasp — a3ap-i, 50 by < by < -+ < bage. If one of these b; belongs to A, then we have
bi = a3 —aszo-i =  azzp-i +bi = ass,

and as30-i, b;, and azsp are all in A, and we are done.

Otherwise, all of the b; belong to the other five sets. By the Pigeonhole Principle, one of the five sets contains
at least | (329 — 1)/5] + 1 = 66 of these differences b;. Without loss of generality, let this set be B, and let the 66
differencesbe by < b, <--- <bj,. For1< j<65,letc; = b}, — bgﬁ—j‘

Then for each j, there exist indices #; and i, such that by, = a3 —a;, and by, j = 330 = @iy, SO

=W
Cj = bgg —bge_;

= (a330 — ai,) — (@330 — a3,)
= @i, — .
If ¢j belongs to B, then

— ’ ! v el
j=bgg—bge; = bgj+cj =D,

and béﬁ_j, cj, and by, are all in B, and we are done. If c; belongs to A, then

Cj = a;, — aj = a;+ Cj = Ay,

and 4;,, cj, and a;, are all in A, and again we are done.

Otherwise, all of the c; belong to the other four sets, and we can proceed in the same way as above. By the
Pigeonhole Principle, one of the four sets contains at least | (65 —1)/4] + 1 = 17 of these differences c;. Without loss

of generality, let this set be C, and let the 17 differences be €] <G <<y Forl <k <16, letdy=cj, — ¢y

In the same way as shown above, if d; is in A, B, or C, then we are done. Otherwise, all of the d; belong to
other three sets. By the Pigeonhole Principle, one of the three sets contains at least [(16 — 1)/3] + 1 = 6 of these
differences di. Without loss of generality, let this set be D, and let the 6 differences be d] < d, < -+~ < d;. For
1<1<5,letg =dg—dg_r.

If ¢ is in A, B, C, or D, then we are done. Otherwise, all of the ¢; belong to other two sets. By the Pigeonhole
Principle, one of the two sets contains at least [ (5 — 1)/2] + 1 = 3 of these differences . Without loss of generality,

let this set be E, and let the 3 differencesbee; < e} <ej. Forl <m <2, let fn = R

If fiisin A, B, C, D, or E, then we are done. Otherwise, both of the f,,, namely f; and f;, belong to F. Then the
difference f, — f; must belong to one of the six sets, and we are finally done.
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CHAPTER 1

Constructive Expectation

Exercises for Section 6.2
6.2.1 Each individual coin has a § - 1 = 1 of coming up tails twice. Thus, each coin contributes 1 to the total
number of tails remaining at the end. Therefore, the expected number of tails remaining is § - 20 = .

6.2.2

(@) The expected value of the sum of the blue dice is 2(3.5) = 7. The expected value of the green die is 3.5.
Therefore, the expected value of their difference is 7 — 3.5 = .

(b) The expected value of the sum of the blue dice is 38(3.5) = 133. The expected value of the sum of the green
dice is 37(3.5) = 129.5. Therefore, the expected value of their difference is 133 — 129.5 = .

Another way to see this is that, in terms of expected value, the 37 green dice “cancel out” with 37 of the
blue dice, so that the expected value of (37 blue dice) — (37 green dice) is just 0. Therefore, the expected valu.
of (38 blue dice) — (37 green dice) is the same as the expected value of a single blue die, which is 3.5.

(a) The expected value of Kai's number is pw + (1 — p)x.
(b) The expected value of Jae’s number is gy + (1 — g)z.

(c) LetKand J denote Kai’s number and Jae’s number, respectively. Then

PK=w,]=y)=pg,
PK=w,]J=z)=p(1-9q),
PK=x,]=y)=(1-pk,
PK=x]=2z)=1-p)1-9q),

so the expected value of the sum of Kai’s number and Jae’s number is

EK+]) =pqw+y) +p(l —q)(w +2) + (1 - p)g(x + y) + (1 = p)(1 - g)(x + 2)
=pqw+pgy +p(l-qw+pl-gz+ 1 -plgx+ (1 -pigy+ (L -p)L - gx+ (1 - p)(1 - g)z
=pqu+p(l-qw+ 1 -pgx+ Q1 -p)L-qx+pqy+(1-plgy +pl - gz + (1 -p)1 -q)z
=pw+1-px+qy+(1-g)z.

From part (a), E(K) = pw + (1 — p)x, and from part (b), E(J) = qy + (1 — g)z. Thus, we have confirmed that
E(K+]) = E(K) + E(]).

6.2.4 Let X be the number of heads before Henry chooses one of the coins, and let Y be the number of heads after
Henry has possibly flipped a tail to a head. Then Y = X if Henry chooses heads, and Y = X + 1 if Henry chooses
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tails. The probability of either event occurring is 1/2 (since the coin that we choose is equally likely to be heads or
tails), so

1 1 1 1 1 1
E(Y) = 7E(X) + ;EX +1) = 5E(X) + 7EX) + 5 = E(X) + 5.

Each coin is equally likely to be a head or a tail, so each coin contributes 1 to the total number of heads.
11
> |

Therefore, E(X) = 10(3) =5, and thus E(Y) =5+ 1 =

6.2.5 A turn occurs when a step to the right is followed by a step upwards, or vice versa. There are 8 intermediate
points on each path at which a turn might occur: each path has length 9, but a turn cannot occur at A or B.

Pick an arbitrary point on the path, for instance the 4™ intermediate point. Each path from A to B must have 5
steps to the right and 4 steps upwards, so if a turn occurs at the 4™ intermediate point of the path, then the two
steps surrounding that point must be a step right and a step up (in either order), and the other seven steps in the
path must be 4 steps to the right and 3 steps up (in any order). Thus, there are 2 X (Z) = 70 paths that have a turn
at the 4™ point of the path.

There are (g) = 126 total paths from A to B, and 70 of them have a turn at the 4™ intermediate point of the path,
therefore a randomly-chosen path has an expected 7% = 3 turns at that point. There are 8 intermediate points,
and the calculation of the expected number of turns at each of these points is the same, so a randomly-chosen path

40
5 |

has an expected number of turns of 8 (g) =

Exercises for Section 6.3

531 Let X be the number of times I laugh, and for 1 < i < 20, let X; be 1 if the it" and (i + 1)** house have the
same color, and 0 otherwise, so X = X; + X, + - - + Xpg. (The 21 house is understood to be the first house.) Then
E(X;) = §,s0

E(X) = E(X;) + E(Xp) + -+ + E(Xz0) = 20 - % =5.

Therefore, the expected value of the number of times I laugh is .

6.3.2 More generally, suppose we start with n ropes. We choose one of the loose ends, which leaves 2n — 1
loose ends. Hence, the probability that the second loose end we choose is the other loose end of the first rope is
1/(2n — 1). If we choose two loose ends from the same rope, then we form one loop, with n — 1 ropes remaining.
If we choose two loose ends from different ropes, then we form n — 1 ropes

So at the first step, with 6 initial ropes, we create a loop with probability 1. If we create a loop, we set it aside,
so that in any event, we have 5 ropes and 10 loose ends left.

At the second step, we create a loop with probability 1. If we create a loop, we set it aside, so that we are left
with 4 ropes and 8 loose ends.

We continue in this fashion, creating a loop with probability 1, 1, 1, and 1 at each subsequent step. (Note that
we must create a loop at the end.)

Hence, the expected number of loops George ends up with is

1 1 6508
775737 T|3465]

6.3.3 The expected value of the roll of the first dieis E(a) = (1+2+3 +4+5+6)/6 = 7/2. To obtain b, we roll a
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dice, so .
E() = S E@),

so E(b) = (7/2)* = 49/4. To obtain ¢, we roll b dice, so

E(c) = gE(b).

Therefore, E(c) = (7/2)(49/4) = .

6.3.4 We can divide the square into a 55 array of smaller squares, each of which has side length 1. The expected

number of points in each of the small squares is 31 = 2.04, therefore at least one of the squares must contain at
least 3 points. (If they all contained 2 or fewer points, then the average number of points in each square would be

at most 2, but we know that it's greater than 2.) Finally, a diagonal of a small square is g 50 we can completely
cover a small square with a circle of radius

N2 1 _V2_ /1. /L _1
5 210 " V50 49 7

Therefore, a circle of radius } also completely covers a small square, and there exists a small square with at least
3 points, so there is a circle with radius % that covers at least 3 points, and we are done.

6.3.5 Naturally, since we are trying to find the average number of anchors in a randomly-chosen subset, we
might think to count the total number of anchors in each subset. However, this is somewhat difficult to count
directly. Instead, we'll count how many subsets have each given anchor.

Specifically, let # be a fixed positive integer, where 1 < n < 15. We count the number of subsets S for which n
is an anchor. Since the definition of anchor depends on #(S), it makes sense to try to count them in cases based or
#(5). So let k = #(S5), and note that since S cannot be empty, we must have k > 1. This means that # and # + k arc
distinct elements of §,so0 k > 2. Also, n+k <15,s0k <15 —n.

So both 1 and n + k must be in S, and we can choose any k — 2 of the other elements of {1,2,...,15} tobe in S,

so there are
13
k=2

subsets S of size k that have n as an anchor. Summing over 2 < k < 15 — n, we find that there are
13 ; 13 resa 13
0 1 13-n

Sincek >2andn+k <15, wecanhave 1 < n < 13. So summing over 1 < n < 13, we find that the total number

subsets S that have n as an anchor.

64



Review Problems

of anchors over all subsets of {1,2,...,15} is

e e
ool o303

Then using the identity (1n3) = (1;:;), we get

13 13 13 13
a= B e 2]+ e o)+ (5)

13 13 13 13
= (1)+2(2)+---+12(12)+13(13).
Adding these expressions for A gives:

o

Let

0 1 2 13
5[5 (3) o) ()]

0 1 12/ "\13
=13.213,

Therefore A = 13- 212,

The total number of subsets of {1,2,...,15} is 2'%, so the average number of anchors over all subsets of

(1,2,...,15) is (13- 212)/2'5 =[13/8]

Review Problems

6.10 We can approach this problem using the same technique as in Problem 5.7. At any interior
point, we obtain a circle if and only if all four of the squares surrounding that point line up correctly. /"'\
Each square has four different orientations, so the probability of obtaining a circle at any particular
interior point is (1/4)* = 1/256. The number of interior points is (1 — 1)(n — 1), so the expected \/

number of circles is| (m—1)(n—1)/256 |

6.11 Ina 10-digit binary number, the leftmost digit must be a 1, so three of the remaining 9 digits mustbe 1, with
the rest 0. For each of the 9 digits after the first, the probability that itis a 1 is 3/9 = 1/3. Therefore, the expected

65



CHAPTER 6. CONSTRUCTIVE EXPECTATION

value is:

1 1 1 1 1

Nl | S oM TN W=, ¢ S, | ST, | W | (T - (R
2+3 +32+ +3 +32 +3(2+2+ +2+1)

1
=22+-(2°-1
3( )

2047
5 |

6.12 This is essentially the same as Problem 5.6. Each draw will match the number on the ball with probability
1, and there are 5 draws, so the expected winnings are (5) ($%) = .

6.13 For1l <i < 17, let X; be 1 if the M cage and (i + 1)* cage contain different animals, and 0 otherwise, so
A=X1+X2+--'+X17.
To compute E(X;), we count the number of arrangements for which X; = 1, and divide by the total number of

arrangements. If X; = 1, then either the i cage contains a dog and the (i + 1)* cage contains a cat, or the it" cage
contains a cat and the (i + 1)* cage contains a dog.

If the ™" cage contains a dog and the (i+1)* cage contains a cat, then this leaves 5 dogs and 11 cats to be arranged
among the remaining 16 cages, and there are (') such arrangements. Similarly, there are (¥¥) arrangements where
the i cage contains a cat and the (i + 1)* cage contains a dog.

The total number of arrangements is (168), S0

2(3) _2-160-61-121 _2:6-12 _ 8
(& — 18.5-111 T 17-18 17

E(X;) =

Therefore, the expected value of A is

E(A) = E(X0) + E(G) +++ + E(Xiy) = 17 2 = [8].

6.14
(a) We see that

A 0 ifa<i,
1 ifa>3.

and similarly
{o ifh<1,
1 ifb>1.
Also
0 ifﬂ+b<%,
C=41 ifj<a+b<3,
2 ifa+b>3.

We graph these cases below:
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(b)

(©

1 __
Ry e b
Bi=1
A=0 Hie
B=1 G
C=1 A=1 7%
= B=1
c=1
b
A=0
BiO A=1
Ao i
B=0 i
0 G=0
0 1

a

Notice that A + B = C for the shaded regions in the diagram above, which have areas 1/8, 1/4, 1/4, and 1/8,
respectively. Therefore, the probability that A+ B=Cis1/4+1/8+1/8+1/4= .

Note that E(C — (A + B)) = E(C) — E(A) — E(B).
Since A =0ifa <1/2and A = 1ifa > 1/2, we have E(A) = 1/2. Similarly, E(B) = 1/2.

Consulting the graph above, the region where C = 0 has area 1/8, the region where C = 1 has area 3/4, and
the region where C = 2 has area 1/8, so

1 3. 1
EQ)=3-0+7 1+5-2=1

Hence, E(C — (A + B)) = E(C) - E(A) - E(B) = 1-1/2-1/2 =[0]

We could have also arrived at the answer by taking advantage of symmetry. Consider a region with
values (4, B,C) = (x, ¥,z). If a rounds to x, b rounds to y, and ¢ = @ + b rounds to z, then 1 —arounds to 1 — x,
and 1 —broundstol—y,s0(1—-a)+(1-b)=2—(a+b)=2-crounds to 2 -z so there is a corresponding
region with values (4,B,C) = (1 —x,1 - y,2 — z) of equal area. (Note that the borders of the regions do not
correspond, but that’s OK as the borders do not contribute anything to the areas of the regions.) All regions
can thus be paired up.

Furthermore, the average of C — (A + B) for the two regions is

z-x+y)+Q2-2-[A-x+Q1 -yl _

0.
2

Therefore, the average of C — (A + B) over all regions is 0.

We can use the same symmetry argument as in part (a). Consider a region with values (A, A, . .. ,A100,C) =
(%1, %2, ..., %100, 2)- If a; rounds to A; for all i, and ¢ = a; +a; + - - + 2310p rounds to z, then 1 — g; rounds to 1 — A;
foralli,and (1 —a1) + (1 —a3) + -+ + (1 —a100) = 100 — (a1 + a2 + - -+ + @100) = 100 — ¢ rounds to 100 — z. Thus,
there is a corresponding region with values (A1, Az, ..., A100,C) = (1 —x1,1 - x2,...,1 — X100, 100 - z) of equal
area.

Furthermore, the average of C — (A1 + Az + - -+ + Ayqp) for the two regions is

z— (i +x2+ - +x100) + (100 -2) — [(1 —x1) + (1 —x5) +- - + (1 = x100)] _

) 0.

Therefore, the average of C — (A; + Az + -+ + Ajgo) over all regions is @
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6.15 Let X be the number of children in the family of a randomly chosen child. First we compute the probabilities
of the different possible values of X. Note that P(X = 1) is not 1: although 20% of families have 1 child, this does
not mean that 20% of children come from 1-child families. Instead, we calculate as follows:

0.2 1

PX=D=52703 240234014~ 9
BX =2)= 0.2+0.3-20fo-.§-3+0.1-4 :g’
PX=3)= 0‘2+0_3.20;20'.3-3+0.1-4 - g’
P(X:4)=0.2+o.3-204.-10..§-3+0.1-4 =§,

Also note that if a child comes from a family with ¢ children, then he has ¢ — 1 siblings. Hence, the expected
number of siblings of a randomly-chosen child is E(X — 1), which we compute:

rx-n=1o0+21:2.0,252[7]

We could also have solved the problem by using a “representative” population. Consider 100 families, where
20 families have no children, 20 families have 1 child, 30 families have 2 children, 20 families have 3 children, and
10 families have 4 children. This group of families has the same statistical distribution as Aopslandia.

The number of childrenis 20-1+30-2+20-3+10-4 = 180. Of these 180 children, 20 have no siblings, 30-2 = 60
have 1 sibling, 20 - 3 = 60 have 2 siblings, and 10 - 4 = 40 have 3 siblings, so the average number of siblings is
20-0+60-1+60-24+40-3 5

180 3

Challenge Problems

6.16 Let x be the number we are looking for: the total number of ways to distribute the handouts. Since 6
handouts are going to 15 students, and all of the students are essentially the same, the expected number of
handouts received by any individual student is £. Therefore, if we can compute the number of distributions of
handouts in which any given student (call her Sally) receives a handout (call this number ), then we know that
Y= %x, S0 X = % y. (You can think of this as something like constructive expectation “in reverse.”)

If Sally gets a handout, then we must give the other 5 handouts to the other 14 students. Call Sally’s handout
#1 and number the other five handouts as #2 through #6 as we move around the circle clockwise starting at Sally.
For1 <i <6, let x; be the number of students sitting between the student with handout #i and the student with
handout #(i + 1) (where handout #7 is understood to be Sally’s handout #1).

Each student must either have a handout or be sitting beside a student with a handout, so x; < 2 for all i.
Furthermore, there are 15 — 6 = 9 students without a handout, so x; + X, + -+ + x5 = 9. The only solutions under
these conditions are (0,1,2,2,2,2) and (1, 1,1, 2, 2, 2), and their rearrangements. Our next step is to find the number
of ways these gaps can appear around the circle.

For the first configuration (0,1,2,2,2,2), we have 6 x5 = 30 arrangements (there are 6 slots in which to place
the “0”, then 5 slots in which to place the “1”). For the second configuration (1,1,1,2,2,2), we have (g) =20
arrangements (we must choose 3 of the 6 slots in which to place the “1”s).
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Therefore, there are 50 possible configurations of the gaps between the students, so there are 50 ways in which
the other 5 handouts can be distributed. Therefore, y = 50, and the answer is x = 1—65-(50) = .

6.17 First, we count the number of 10-element arithmetic sequences in S. Any arithmetic sequence is determined
by its smallest element # and its common difference d. The sequence is then

aa+da+2d,...,a+9d.

So we are counting all ordered pairs (a,d) of positive integers such that a + 94 < 2007. For any value of a < 1998,
we must have d < (2007 — a)/9. Therefore, the number of sequences is

1998

{2007—&]
9 .

a=1

This can be reindexed using the substitution b = 2007 — a to give

ol
=1
Note that 2006/9 = 222+ &, so that in the above sum, every number from 1 through 222 appears 9 times. Therefore,

the sum is equal to
9% = 222777.

9(1+2+---4+222) = 5

Given a random coloring of S, and random subset of 10 elements of S, the probability that all of the elements

9
are colored with the same color is (%) = 5t = 5. Therefore, since there are 222777 arithmetic sequences of

ler;%th 10, the expected number of them that are colored with the same color in a randomly-chosen coloring of S
is ZZ7 This is less than 1, which means that there must be some coloring in which 0 of the sequences are colored
with the same color: if every coloring had at least 1 monochromatic sequence, then the expected number of such

sequences would be at least 1.

6.18 Let us count the expected number of fixed points in a random permutation. On the one hand, each slot in
the permutation is fixed with probability 1, and there are 7 slots in the permutation, so the total expected number

n’
of fixed points is n(%) = 1. On the other hand, a permutation with k fixed points occurs with probability 2l and

n 7
such a permutation has k fixed points, so the expected number of fixed points is :
3. 2
e n!
Therefore, we must have
i k.- Pu(k) ol
o n!
and multiplying both sides of the above equation by n! gives the desired identity.

6.19 We claim that not only can we find such a line, but we can find such a line that is parallel

to one of the sides of the square. m
Consider a randomly chosen line £ that is parallel to the top and bottom sides of the square,

as shown in the picture at right. If C is a circle with diameter d (where 0 < d < 1, since C must ~L ¢

lie entirely within the square), we see that the probability that ¢ intersects C is just d. This

means that, given a randomly chosen line, the expected number of circles that it intersects is

equal to the sum of the diameters of all the circles. But we know that the sum of the circumferences is 10, so the

sum of the diameters is 10/m ~ 3.183. Thus a randomly chosen line will intersect, on average, 3.183 circles. But
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this means that some line must intersect at least 4 circles, because if they all intersected 3 or fewer circles, then the
average would be at most 3.

6.20 The 4 Aces divide the other 48 cards in the deck into 5 groups: the cards before the 1% Ace, the cards between
the 1t and 2™ Aces, and so on. Therefore, the expected size of each group is 48/5 = 9.6 cards. We have to turn
over all of the cards in the first group, plus the first Ace, before we see an Ace. Therefore, the expected number of

cards that we have to turn over is .

6.21 We will compute the expected number of pairs of judges that agree on a randomly-chosen contestant. Given
any pair of judges, they agree on that contestant with probability at most £, since that pair of judges agrees on at

most k of the # contestants. There are (g) pairs of judges, so the expected number of pairs of judges that agree on a
randomly-chosen contestant is af most

k(b

5(2)- (*)

On the other hand, suppose that p of the judges pass a given contestant, so that b — p of them fail the contestant.
Then the number of judges that agree on that contestant is

B (27)

_ _ R 2 _ 2 _ _ 2 _
etk O el e VR Y

We can write this as a quadratic in p:

This quadratic is minimized when p = b/2, but this is not an integer, so the minimum value occurs when
p = (b—1)/2. This minimum value is

c%%(%j:w—nw—m+w+nw—n=w—n{

2 2 8 4
Therefore, the expected number of pairs of judges that agree on a randomly-chosen contestant is af least

(b -1y
4

s (+#)

Combining (*) and (++), we see that

g(b) N (b—l)""
a\2) = 4

and dividing both sides by (g) gives

ko @-1?_ 2 _b-1
i< 4 bo-1) 2b°
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CHAPTER

I Distributions

Exercises for Section 7.2

7.2.1 Line up the 30 cookies in a row. Then we need to insert 9 dividers into 9 of the 29 slots between cookies. So

the number of distributions is (299) = 10,015,005.

7.2.2 Give the head of the work crew 2 bills. Then the problem becomes distributing 8 bills, so that each member
gets at least one bill. (Since the head already has 2 bills, by getting at least one more bill, she gets at least 3 total.)

Therefore, the number of ways the bills can be distributed is $7}) = (}) = .

7.2.3 The problem is equivalent to distributing 100 1’s among 3 disﬁnguishable boxes, where the “boxes” are the
variables a, b, and c. So, the number of solutions is (100 = (99) 4851

724

(a) We distribute each type of candy separately. The 8 licorice sticks are distributed in (Z) = 35 ways. The 10
chocolate bars are distributed in (2) = 126 ways. Since these distributions are independent, the total number

of distributions is (§)(}) = (35)(126) = [4410

(b) First, we choose which kid(s) will receive licorice and which kid(s) will receive chocolate. We can choose any
subset of 1-4 kids to receive licorice, and then the rest will receive chocolate.

Specifically, if 1 < k < 4, then we can choose k kids to receive the licorice in (2} ways. Then, the licorice
can be distributed to these kids in (kzl) ways, and the chocolate can be distributed to the remaining 5 — k kids
in (49“,\_) ways. Therefore, the total number of distributions is

. 5\(7\(9 579(579 5\(7\(9
M Y AR R AR R M W
= (5)(1)(84) + (10)(7)(36) + (10)(21)(9) + (5)(35)(1)
= 420 + 2520 + 1890 + 175 = [ 5005 |

Exercises for Section 7.3

7.3.1 To transform the given equation into one involving positive integers, leta =u+1,b=v+1,c=w+1,
d=x+1,ande=y+1. Thena,b,c, d, and e are positive integers,and a+ b+ c+d+e=u+v+w+x+y+5=27.

Therefore, the number of solutions is (27—1) @)= E
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7.3.2

(@) Leta, b, and c be the number of glazed, chocolate, and powdered donuts that Pat buys, respectively. Then
a+b+c =4, wherea, b, and c are nonnegative integers. To transform this equation into one involving positive
integers, letd = a+1,e = b+1,and f = c+1. Thend, ¢, and f are positive integers, and d+e+ f = a+b+c+3 = 7.

Therefore, the number of possible selections is (gj) = (g) = .
(b) Letx, y, and zbe the number of chocolate chip, oatmeal, and peanut butter cookies that Pat selects, respectively.

Then x + y + z = 6, where x, y, and z are nonnegative integers. To transform this equation into one involving
positive integers, let # = x+1,v = y+1, and w = z+ 1. Then u, v, and w are positive integers, and

u+v+w=x+y+z+3=9. Therefore, the number of possible assortments is (gj = (g) = .

7.3.3 Let the number of dollar bills received by the seven peoplebe x1, x5, ..., x7. Thenx; +x0 + +-+ + x7 = 77,
and x; > 10 for all i. Let y; = x; — 9 for all 7, so i, + 12 tortyr=x1+x+--+x7—7-9=77-63 = 14, and each y;

is a positive integer. Hence, the number of possible distributions is (17‘.1_“11) = (?) =|1716|.

7.34 Leta=20-x,b=20-y andc = 20-z,s04,b,and care all positive integers, and a+b+c = 60— (x+y+z) = 50.
Hence, the number of solutions is 530__11 = (429) =|[1176 ).

7.3.5 We could use casework and solvew +x+y+z=4,w+x+y+z =5, etc, uptow +x+ y+z = 24, and add
all of the solutions. But there is a more clever approach.

Add a new dummy variable d, and consider solutions in positive integers tow + x + y + z + d = 25. Any such
solution will also be a solution in positive integers to w + x + y + z < 25, since we have d = 25 —w — x — y — z. We

know that there are (24

4) solutions to w + x + ¥ + z + d = 25, therefore there are (24) = 10,626 | solutions to our

4

original inequality.

If you know the Hockey Stick Identity, then you may recognize that what we have done in this solution is
essentially a proof of the identity.

7.3.6 Leta, b, c, and d be the number of candy bars, packages of jelly beans, lollipops, and packs of chewing gum
that one sister receives from Andrew, soa + b+ c +d = 20. Since there are 40 pieces of candy total, the other sister
also receives 20 pieces of candy, so the number of ways Andrew can distribute his candy is equal to the number
of solutions of a + b + ¢ + d = 20 in nonnegative integers no greater than 10.

If there is an infinite supply of each candy, then the problem is fairly straightforward to solve: we canletw = a+1,
x=b+1,y=c+1,andz=d+1. Thenw, x, y, and z are positive integers, and w+x+y+z=a+b+c+d+4 = 24.
Hence, the number of solutions is (2;1_’11) = (%3) =1771.

However, we must have a,b,c,d all at most 10, since our candy supplies are not infinite. Qur count of 1771
solutions from about includes solutions in which at least one of w, x, Y,z is greater than 11, which is not permitted
(recall that we must have a < 10, so we must have w < 11, and similarly for x, y,z). Therefore, we must exclude
these solutions. Even though we wrote “at least one of w, x, ¥,z..." above, we don't actually need to use PIE,
since only one of w, x, y, z can possibly exceed 11 (if two of them do, then the sum must be at least 12+12+1+1 =
26, which is too big).

If w > 11, then let w’ = w — 11. Then we are counting solutions to @’ + x + y + z = 24 — 11 = 13 in positive
integers, so we know that there are (lf_‘ll) = (132) = 220 solutions. The same holds true for each of other three

variables, so this gives us 1771 — 4(220) = solutions to the original problem.
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Exercises for Section 7.4

741 Forl<i<09,leta; be the number of times that i appears on the game piece. Then a; +a, +--- +ag = 6, and
each g; is a nonnegative integer.

Letb;=a;+1,s0b1+ba+---+bg=a; +ay+---+ag+9 =15, and each b; is a positive integer. Therefore, the
number of possible 6-sided game pieces is (5 ) = (4) =[3003]

7.4.2 The key feature of ARMLovian is that there are at most two consonants between any two A’s. Once we
realize this, we can count the 7-letter words by casework on the number of A’s.

There is only 1 word with 7 A’s, namely AAAAAAA.

If we have 6 A’s, then we have 7 choices for the position of the consonant:

A A A A A A ,

and 3 choices for which consonant. Therefore, there are 7 - 3 = 21 words with 6 A’s.

If we have 5 A’s, we have 6 slots available for the consonants:

A A A A A ,
1 2 2 2 2. 1

where the numbers underneath the slots indicate the maximum number of consonants that we are allowed to
place there. We have 4 choices if we elect to put both consonants in the same slot, plus (g) = 15 choices if we elect
to put one consonant in two of the three slots, for a total of 19 possible positions for the two consonants. We also
have 3% = 9 choices for the two consonants. Therefore, there are 19 - 9 = 171 words with 5 A’s.

If we have 4 A’s, we have 5 slots available for the consonants:

A A A A
1 2 2 2 1

We have (g) = 10 choices if we elect to put the consonants in 3 different slots, plus we have 3 - 4 = 12 choices if we
elect to put two consonants in one of the middle slots, then the third consonant in one of the 4 remaining slots.
This gives us a total of 10 + 12 = 22 possible positions for the three consonants. We also have 3% = 27 choices for
the consonants. Therefore, there are 22 - 27 = 594 words with 4 A’s.

Finally, if we have 3 A’s, we have 4 slots available for the consonants:

A A A
1 2 2 1

We can put one consonant in each of the 4 slots in 1 way. We can put two consonants in one slot, then one
consonant in each of two remaining slots, in 2 - (3) = 6 ways. We can put two consonants in each of two slots in
just 1 way (the two middle slots). Thus, we have 1+ 6 + 1 = 8 ways to position the four consonants. We also have
3% = 81 choices for the consonants. Therefore, we have 8 - 81 = 648 words with 3 A’s.

We cannot have 2 or fewer A’s, as then we will not have enough space for the consonants.

Therefore, there are 1 + 21 + 171 + 594 + 648 = | 1435 | 7-letter ARMLovian words.

7.4.3 We can treat the 3 maple trees and 4 oak trees as 7 indistinguishable non-birch trees. There is a total of (2

arrangements of the 5 birch trees and the 7 non-birch trees.

If no two of the birch trees are next to each other, then we can arrange the trees by first placing the 7 non-birch
trees in a row, and then placing the 5 birch trees into 5 of the 8 slots created by the non-birch trees (6 of these slots
are between trees, and 2 are at either end). So there are (g) of these arrangements.
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Therefore, the probability is

©Q _ 87654 [7
(3 12-11-10-9-8 | 99|

744 Let f(x) = agx® + asx® + agx* + a3x® + axx® + ayx + a9, where ag through a¢ are positive integers. The given
information yields the following equations:
f() =as+as+as+az+ax+a; +ap =30,

f(-1)=as—as+as —as +a, —ay +ap = 12.
If we add and subtract these equations, we will get two separate Diophantine equations, one involving the even
coefficients and the other involving the odd coefficients:

Qg +ds +ap +ap =21,
as+az+a; =9.

The first one has (230) = 1140 solutions and the second one has (g) = 28 solutions, so the number of combined
solutions, and thus the answer to the original problem, is (1140)(28) =|31,920 |

7.4.5 Let's compute the probability that a drawing has at least one pair of consecutively numbered balls. “At
least” usually means either tricky casework or PIE, so let’s count the complement instead: the probability that a
drawing has no pair of consecutively numbered balls.

If we draw 6 balls, no two of which are consecutive, then the remaining 38 (undrawn) balls are distributed into
7 groups: the balls less than the smallest drawn ball, the balls between the two smallest drawn balls, and so on.
To simplify things, imagine that there’s a extra undrawn ball labeled 0 and an extra undrawn ball labeled 45. This
means that there are 40 undrawn balls in 7 groups, and each of the groups must be nonempty. In other words, we
have a 1-1 correspondence:

{Drawing of 6 balls from 1-44, in} o {Solutions to the equation ag +a; + -+ +ag = 40,}
which no two are consecutive where each g; is a positive integer (for0 <i<6). |-

The number of solutions to the equation in the latter set above is (‘?). There are (4:) possible drawings, so the
probability of no two consecutive balls is

(39)

6 3262623

T = o ~ 46.2%.
(4.4) 7059052 Bt

6

So the citizens shouldn’t be worried! We expect at least one pair of consecutive balls about 53.8% of the time.

Review Problems

7.14 Part (a) is our “basic” distribution problem. The goal of parts (b)-(d) is to do a manipulation to make them
look like a basic problem similar to part (a).

(@) The number of solutions is given by (13?__11) = (g) = .

(b) Leta==x+1,b=y+1andc=z+1. Thena,b, and c are nonnegative integers, and a+b+c = x+y+z+3 = 13,
so the number of solutions is (571) = (1) = [66 ]

() Leta=x+3,b=y+3,andc=2z+3. Thena,b, and c are nonnegative integers, anda+b+c =x+y+2+9 =19,
so the number of solutions is () = (¥) = 153 ],
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(d) Leta=x/2,b=y/2 and c = z/2. Thena, b, and c are nonnegative integers,and a+b+c=(x+y +z)/2 =5,
so the number of solutions is (}) = (3) = |E|

7.15 We are told that x; is a positive odd integer for each 1 < i < 5, so there exists a positive integer y; such that
x; = 2y; — 1. Then y; = (x; + 1)/2 for all i, so

X1+ D)+ +1)+ @ +1)+(xg+1)+(xs+1) 2003 +5
yx+yz+y3+y4+ys=(1 )+ (%2 )(32)(4 )+ s +1) _ >

004-1y _ (1003)

= 1004.

This is now a straightforward distribution, and the number of solutions is (1 59 )= 4

7.16

(a) We can distribute the two types of goodies separately. The candy can be distributed among the 3 children in
(;) = 21 ways. The cookies can be distributed in (g) = 3 ways. These distributions are independent, so there
is a total of (21)(3) = distributions.

(b) We can distribute the cookies first—after distributing the cookies, we simply hand enough candy to each
child so that he or she has 4 items. But now note that we do not necessarily have to make sure that each child
gets at least 1 cookie. So we are distributing 4 cookies to 3 children, where each child receives a nonnegative
number of cookies; this is equivalent to distributing 7 cookies to 3 children, where each child received a
positive number of cookies. (Think of this as baking 3 extra cookies, distributing the 7 cookies, and then
cruelly swiping a cookie back from each child.) Therefore, there are (5) = such distributions.

(c) Asin part (a), consider the two types of goodies separately.

For the candy, note that the girl must receive at least 4 pieces (if she receives 3 or fewer, then by the
Pigeonhole Principle, one of the boys must receive at least as many as she does). If she receives 5 or more,
then the rest can be distributed to the boys in any manner (which includes one of the boys not getting any),
so if the girl gets ¢ candies (where 5 < ¢ < 8), then there are (8 —¢) + 1 = 9 — ¢ ways to distribute the rest. If the
girl gets 4 candies, we cannot give all 4 remaining candies to either boy, so there are only 3 ways to distribute
the remaining 4 candies (2 ways where one boy gets 3 and the other gets 1, and 1 way where both boys get
2). So there is a total of 3 +4 + 3 + 2 + 1 = 13 distributions of the candies.

For the cookies, we can choose to give 0, 1, or 2 cookies to each boy, and the rest of the cookies would then
go to the girl. This is a total of 3 different distributions.

Therefore, the number of distributions is (13)(3) = .

7.17 Notice that only one of the variables could possibly be larger than 16, given that they all sum to 30. So we
can count the number of solutions without restrictions, then subtract those solutions in which one of the variables
is larger than 16.

The number of positive integer solutions to w + x + y + z = 30, without restriction, is (239)

If w > 16, then let w’ = w — 16. Then w’ is a positive integer, and satisfies w’ + x + y + z = 14. This has (l;)
solutions. Similarly, there are (’;) solutions with any given variable greater than 16.

Therefore, the answer to the original problem is (239) - 4(133) =|2510 |.

7.18 From 1 to 36, there are six multiples of 6 (and thus 30 numbers that are not multiples of 6). First, we can
order the 30 non-multiples of 6. There are 30! such arrangements.

Next, we can place each of the six multiples of 6 between two of the numbers that we have already arranged,
or at the beginning or end. There are (361) choices of slots for the multiples, then 6! ways to arrange them among
the chosen slots. Hence, the number of arrangements of the integers from 1 to 36 where no two multiples of 6 are

1
adjacent is| 30! - (36 ) 6!
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7.19 Any term in the expansion is of the form x"y"z¢, where a, b, c are nonnegative integers such that a+b-+c = 100.
The number of terms is the number of solutions of this equation, which is equal to the number of solutions, in
positive integers, to the equation @’ + ¥’ + ¢’ = 103, wherea’ =a+ 1,0 =b+1,and ¢’ = c + 1. This equation has
102

2

(122) solutions, and thus there are

) = 5151 | terms in the expansion of (x + y + z)'%.

7.20 First, we determine where teachers and students can sit. We must have at least 2 students between each
pair of teachers, so we start with TSSTSST, where T is a teacher and S is a student. We still have 4 students left
to place, and 4 slots in which to place them (two slots between teachers and two slots at either end). This is
equivalent to solving the equation 2 + b + ¢ + d = 4 in nonnegative integers, which is equivalent to solving the
equation @’ +b' + ¢’ +d’ = 8 in positive integers (where @’ = a + 1, etc.). Therefore, there are (;) ways to place the
students.

Once we have the seating positions placed, there are 8! ways to assign students to the student seats and 3!
ways to assign teachers to the teacher seats. Therefore, the number of seatings is

(5)-81-3t = [Baezm],

Challenge Problems

7.21 The 5 seated people divide the 15 empty chairs into 6 groups. Thus, the number of ways to seat 5 people is
equal to the number of solutions in nonnegative integers to x; + x2 + x3 + x4 + x5 + x4 = 15. This has (250) solutions
(substitute y; = x; + 1 so that we are solving for 6 positive integers than sum to 21).

If nobody is sitting next to anybody else, then the number of empty chairs in the 4 middle slots must be
positive; that is, x5, x3, x4, x5 > 0 in our above equation. Substituting y; = x1 + 1 and y¢ = x¢ + 1 means that we are
looking for positive solutions to y; + X2 + X3 + x4 + x5 + Y6 = 17, of which there are (156) solutions.

Since all of these distributions are equally likely, the probability that no one is sitting next to another person is
() _[ o1
) |323

7.22 Since there are fewer B's, they are easier to deal with. The only way that the B’s can be arranged, so that
all of them are next to each other, is if they all appear in one large group (as BBBBB), or if they are split into two
groups, one group of 2 B’s and one group of 3 B’s. This leads to two cases:

Case 1: All 5 B's appear together in one group. Then some number of A’s, possibly 0 but not 1, can appear before the
B’s, and the rest (again possibly 0 but not 1) appear after the B's. This means that 0, 2, 3,4, 5, 6, or 8 A’s can appear
before the B’s, leading to 7 possible words.

Case 2: The B's appear in two groups, one BB and one BBB. There are 2 choices for which group to appear first, and at
least 2 A’s must be in between them. This leaves 6 A’s to distribute in the remaining 3 slots (in front the of first
group of B's, in between the groups of B’s, or after the second group of B's), but we cannot place 1 A in the first
or last slot. This is equivalent to solving the equation x + y + z = 6 in nonnegative integers where x # 1 and z # 1.

If we temporarily ignore the “# 1” condition, then there are (3) = 28 solutions. However, we must exclude the
x = 1 solutions, which are solutions to y + z = 5. There are 6 of these. Similarly, we must exclude the 6 solutions
where z # 1, and add back (using PIE) the 1 solution x = 1, y =4,z =1 that we have subtracted twice. Therefore,
that gives us 28 — 2(6) + 1 = 17 ways to place the A’s. Since there were 2 choices for how to arrange the B’s, this
gives us 2 - 17 = 34 possible words in this case.

This gives a total of 7 + 34 = possible words.
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7.23 Counting heads and tails based on Amy’s observations, we see that

e 8 times a heads follows something,
e 7 times something follows a heads,
e 11 times a tails follows something,

e 12 times something follows a tails.

This implies that any such sequence must have 8 heads and 12 tails, and must start with a T and end with an H.

“3 times a heads followed a head” means that the 8 heads must occur in 8 — 3 = 5 groups. There are (Z) =35
ways to split the 8 heads into 5 positive groups. Similarly, “7 times a tail followed a tail” means that the 12 tails
must occur in 12 — 7 = 5 groups; there are (141) = 330 ways to split them into groups.

Therefore, there are (35)(330) = solutions.

7.24 We can re-engineer the problem a bit by thinking of first drawing all 6 balls at once, then ordering them.

We'll further break this up into cases based on the number of red balls that we draw. If we draw r red balls and b

blue balls, then there are (lro)(g) ways to draw this group from our bin, out of a total of (168) ways to draw any 6 balls.

For each configuration, we'll determine the probability that the balls are ordered with 2 red balls consecutive.
If r = 0 or r = 1, then clearly we cannot have two red balls consecutive, so the probability is 0.

If r = 2, then there are 5 arrangements of the balls with the two red balls consecutive, and (g) = 15 total
arrangements. So the probability is 1.

If r = 3, then the only arrangements that fail, out of the (g) = 20 total arrangements, are the arrangements
RBRBRB, BRBRBR, RBBRBR, and RBRBBR. So the probability is 15 = 2.

If » > 4, then we are guaranteed to have two red balls consecutive.

Therefore, the probability is

o)) (e (5))+ ()
3\2/\4] 5\3/\3 4 \2 5/\1 6/ 1050 + 5376 + 5880 + 2016 + 210 _ 14532 | 173

(18) 18564 T 18564 | 221 (
6

7.25 We can choose 7 balls so that no two balls have consecutive labels as follows: First, arrange n — 7 white
balls in a row. Then we insert 7 black balls among the white balls, so that each black ball goes either between two

white balls, or at one of the ends of the row. This gives us 1 — 6 possible slots, so there are (”;6) ways to place the
black balls. Finally, label all the balls (black and white) 1 to n, from left to right. Then no two black balls have

consecutive labels. Hence, there are (”;6) ways to draw 7 balls so that no two balls have consecutive labels.

Now we calculate the number of ways of drawing 7 balls so that there is exactly one pair of consecutive labels.
Choose one of the n — 6 slots, as described above, and insert two black balls into that slot. This leaves 5 black balls
to be distributed among the remaining n — 7 slots. After labeling the balls from 1 to n, there will be exactly one
pair of black balls with consecutive labels. Hence, there are (1 —6)(";’) ways to draw 7 balls so that there is exactly
one pair of consecutive labels.

Hence, for the probabilities of the two events to be equal, we must have the number of possibility for the two

events to be equal; that is,
n—=6 n-7
[7)=-ol'5")

77



78

CHAPTER 7. DISTRIBUTIONS

We can expand these out and algebraically solve for n:

(n—6) _,
=131 - "9
(n-12)t 7!
(n—-13)! 5!
=3 n—12=42
f—1 n= .

n-7)
" 5l(n — 12)!




CHAPTER

2

I Mathematical Induction

Review Problems

8.7 The first n positive odd integers are 1, 3, 5, ..., 2n — 1, so we must show that
143454--+@2n—-1)=n?%

First, we prove that the result is true for the base case. For n = 1, the left side is 1, and the right side is 12 = 1, so
the result is true forn = 1.

Now assume that the result is true for some positive integer n = k, so
1+3+5+---+(2k—-1) =K.
Adding 2k + 1 to both sides, we get

1+3+5+-+ k-1 +@@k+1) =K +2k+1=(k+1)>

Hence, the result is true for n = k + 1, and by induction, it is true for all positive integers n.

8.8 First, we prove that the formula is true for the base case. For n = 1, the left side is @, and the right side is
a(r — 1)/(r — 1), so the formula is true for n = 1.

Now assume that the formula is true for some positive integer n = k, so

a+ar+ar2+---+m""1=a-7:__11.

Adding ar* to both sides, we get

*—1
r—1
k-1,
:ﬂ(r—l +rJ‘)
_r"—l+r"+‘—rk
r—1
=1
r—1 "

a+ar+ar +--+a  +at =q- +ar*

=q-

Hence, the formula is true for n = k + 1, and by induction, it is true for all positive integers 7.
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8.9 First, we prove the identity for the base case. For n = 1, the left side is 12 = 1, and the right sideis 1-2-3/6 = 1,
so the identity holds for n = 1.

Now we assume that the identity holds for some positive integer n = k, so

24024 2o Mt D@+1)
6

Adding (k + 1)? to both sides, we get

k(k + 1)6(2k+1) £ ety

= (k+1) (k(2k6+ 1)

2kz+k+6k+6)
6

2
= (k+1)- 2k +67k+6

_ (k+1)(k+2)(2k + 3)
= = .

24224 4+ (k+1)2 =

+k+1)

=(k+1)(

Hence, the identity holds for n = k + 1, and by induction, it holds for all positive integers 7.

8.10 First, we prove the result for the base case. If n = 1, then 7" — 1 = 6, which is clearly a multiple of 6, so the
result is true forn = 1.

Now assume that the result is true for some positive integer n = k, so 7 — 1 is a multiple of 6. In other words,
7% — 1 = 6m for some positive integer m, so 7* = 6m + 1. Then

7% = 7(6m +1) = 42m + 7,

which implies that 71 — 1 = 42m + 6 = 6(7m + 1). Hence, 71 — 1 is also a multiple of 6, so the result is true for
n =k+1, and by induction, it is true for all positive integers .

8.11 First, we prove the inequality for the base case. For n = 1, the left side is 2! = 2, and the right side is 2!' = 2,
so the inequality holds forn = 1.

Now, assume that the inequality holds for some positive integer 1 = k, so
2141 - (2k)! = [(k + 1),
Multiplying both sides by (2k + 2)!, we get
2041 (20)1(2Kk + 2)! = [(k + DIk + 2)!.

We want to show that the left side is at least [(k + 2)!]*1. Hence, it suffices to show that
[(k + )15k + 2)! = [(k + 2)!]F+1.

We can simplify this inequality as follows:
[(k+ DF2k + 2)! > [(k + 2)!1]+1
[(k + D152k + 2)! > (k + 2)![(k + 2)!]F
(2K +2)! > (k+2)! (&) = (4 2)10k + 2)F

k !
%:T?S)!Iz(k+2)"
(k+3)k+4)---(2k+2) > (k+ 2)%.

t ¢ ¢3¢
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This last inequality is true, because there are k factors in the left side, and each of them is greater than k + 2. Since
all our steps are reversible, we conclude that

[(k + 1)1k + 2)! > [(k + 2)1.
Hence,
2041 .. (22K + 2)! = [(k + 2)!T
Therefore, the inequality is true for n = k 4+ 1, and by induction, it is true for all positive integers n.

8.12 We will prove the statement by induction. Our base case is n = 2 (since we are given that n > 1), so suppose
that there are 4 points in space with 22 + 1 = 5 segments drawn. Note that there are only (g) = 6 pairs of points,
so only one of the possible segments is missing. In particular, let A and B be the two points that do not have a
segment between them, and call the other two points C and D. Then triangles ACD and BCD are both drawn.

Now assume that the statement is true for 2k points, and consider 2(k + 1) = 2k + 2 points and (k + 1) + 1
segments connecting pairs of points. Pick any two points A and B that have a line segment between them, and let
S be the set of the remaining 2k points other than A or B. If A and B each have a segment to a point C in S, then
ABC is a triangle. If not, then there are at most 2k segments from A or B to the points in 5, since there is at most
1 segment from each point in S to either A or B. Therefore, we have accounted for at most 2k + 1 of the segments
(the one segment between A and B, and at most 2k segments from A or B to points in S), and thus there are at least

k+12+1-(2k+D)=(K+2%k+1D+1-(2k+1) =i +1.
segments between pairs of points in 5. So, by the inductive hypothesis, there is a triangle drawn in 5.

8.13 We prove the statement by induction on n, the number of lines. If n = 1, then we draw one line, and color
one side of the line black and the other side white. This establishes the base case of the induction.

Now suppose that we can color any configuration of k lines, and consider the plane with k + 1 lines drawn.
Temporarily remove any one line, and legally color the k-line configuration that remains. Then, replace the (k+1)*
line, and reverse the colors of all of the regions on one chosen side of the line (it doesn’t matter which side). We
claim that this is a legal coloring of the (k + 1)-line configuration.

If two regions border along a line other than the (k + 1)** line, then these regions had opposite colors in the
k-line coloring. After adding the (k+1)* line, these regions either both kept the same color or both had their colors
reversed, depending on which side of the (k + 1)* line they lie on. So they still have opposite color.

On the other hand, if two regions border along the (k + 1)* line, then prior to adding this line, the two regions
were actually the same region in the k-line configuration, and thus had the same color. After adding the (k + 1)*
line, we reversed the color of one of the new regions. So the regions now have opposite colors.

Thus the (k + 1)-line configuration has a valid coloring, completing the inductive proof.

Challenge Problems

8.14 To prove the general triangle inequality, we first prove it for two variables, i.e.
b+ yl < [xd + 1yl
for all real numbers x and .
To begin, we square both sides (which does not change the inequality, as both sides are nonnegative) to get

Ix + y? < (x| + [y)* = |xPP + 2yl + v = x> + 2lxy] + |yl*.
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Since [af* = a? for all real numbers a, we can replace |x + y|? with (x + y)? = 22 + 2xy + 12, |x|* with x%, and [yl* with
y?, to obtain the equivalent inequality

4 2xy + 7 <27+ 2yl +
e  xy < |xyl

This last inequality is true, because if xy > 0, then both sides are equal, and if xy < 0, then the left side is negative
and the right side is positive. All of the steps in the above argument are reversible, hence |x + y| < |x| + |y| for all
real numbers x and y.

Now we prove the generalized triangle inequality. The inequality is clearly true for n = 1, and we have just
proven the case 1 = 2, so assume that the inequality is true for some positive integer n = k > 2. We wish to prove
that the inequality is true for k + 1 variables, i.e.

[x1 + 22 + - 4 X+ Xpaq] < Jocql + ol + o ] + [Xea -

By the induction hypothesis, the generalized triangle inequality is true for k variables, so we can say that

[y +x2 40+ g+ Xt] = Iy F 20 4+ (X F )]
< loea| + fea| 4 - -+ 4 |2 + Xl

But we can also say that |x; + Xge1| < || + |xr41l, SO
e + X2 + -+ X+ Xl < Peal + ol + -0 -+ ] + g -
Hence, the generalized triangle inequality is true for n = k + 1 variables, so by induction, it is true for n
variables, for all positive integers .

8.15 Leta, = 2% + 3% +5%. To get started on the problem, let’s try small cases, and list the results in a table.

Note that x2" = (x*"")?, so we can obtain the numbers in each row by squaring the numbers in the previous row,
and then reducing modulo 19.

n | 2% (mod 19) | 3% (mod 19) | 5" (mod 19) | a, (mod 19)
1 4 9 6 0
2 16 5 17 0
3 9 6 4 0
4 5 17 16 0
5 6 4 9 0
6 17 16 B 0
7 4 9 6 0

Note that the numbers in the first row coincide with the numbers in the seventh row. Since the numbers in
each row can be generated from the numbers in the previous row, the result follows quickly from this observation.
However, we may also observe that the numbers in the first row are the same as the numbers in the third row
(albeit in a different order), and every odd-numbered row, and the same holds for the even-numbered rows. This
observation can be proved formally as follows:

an+2 — 22n+2 + 32u+2 + 52n+2
= 942" | 342" | a2
=16%" +81%" + 6257
=16* +5% +17%
E (_3)2" + 52H + (_2)2"
E 22" + 32H + 52H'
=a, (mod 19).
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To complete the induction argument, we must show that both a; and a; are divisible by 19. (We must include
both of these values in our base cases, since the congruence above relates 4, and 4,.) To do this, we can consult
the table above, or simply plug in and find thata; =38 =2-19and a, = 722 = 38 - 19.

8.16 We prove by induction. Let g(n) denote the sum of the f(S)’s where S is a nonempty subset of {1,2,...,n}
with no consecutive elements. If n = 1, then the only valid subset is {1}, and g(1) = f({1) =1=2!-1. Ifn =2,
then the valid subsets are {1} and {2}, and we have

2@ = flIH+f(2)=1+4=5=31-1.
So the result holds for n < 2.

Now assume that the result is true for all n < k for some integer k > 2; that is, that g(n) = (n + 1)! — 1 for all
n < k. We will prove the result forn = k + 1.

Suppose that T is a subset of {1,2, ...,k + 1} with no two consecutive integers. If k+ 1 € T, then we cannot have
keT,soT\ {k+1}isasubsetof{l,2,...,k—1}. Note also that in this case,

) = C+12AT\ k+1}),

unless T = {k + 1} (since this would give us T \ {k + 1} = 0), in which case f({k + 1}) = (k + 1)?>. So the sum of the
f(T)’s for subsets containing k + 1 is equal to (k + 1)* times the sum of the f(T \ {k + 1})’s, plus f({k + 1}) = (k + 1)*.

Otherwise, if k+1 ¢ T, then T is a valid subset of {1, 2, ..., k}.
Therefore, applying the inductive hypothesis, we see that

glk+1) = (k+ 1)%g(k — 1) + (k + 1)* + g(k)
=(k+1P2K( -1+ (k+12+((k+1)!-1)
=(k+1)((k+ D! = k+1)+k+1P+(k+1) -1
=(k+1D)+DE+1)! - (k+1)*+(k+1)* -1
=(k+2)! -1,

completing the proof.

8.17 Ifn = 1, then there is only one country and only one person, so the problem is trivial. If # = 2, then there are
two countries with two people each. They can be seated so that both pairs of countrymen are next to each other;
this seating satisfies the requirements of the problem.

Suppose that we can seat n countries, each with 7 people, around a round table as specified in the problem.
Now consider the situation with 7 + 1 countries, each with 1 + 1 people. To our existing n-country seating, we
need to add 1 additional person from each of the original n countries, plus 1 + 1 people from the new country,
which we’ll call country Z.

For each original country C, there must be a pair of people from that country seated together at the table, since
one of the original n people from country C must have another country C person as his neighbor to the left. We
seat the (11 + 1)* person from C and one person from Z (in either order) between the adjacent pair of people from
C already seated at the table. We now have the country Z person to the left of a country C person, and also have a
country C person to the left of a country Z person. So it’s still the case that no two countrymen have people from
the same country as their neighbors to the left. We repeat this operation for all n of the original countries.

Finally, we need to add the (1 + 1)* country Z person. We can simply seat her next to any other country Z
person. By construction, all of the country Z people will have a different country’s citizen to their immediate left.

As an example of this procedure, here is the process by which we go from 2 countries to 3 countries. Letters A
and B denote people from the original two countries, and the letter Z denotes people from the new third country.
The people added at each step are shown in bold.
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A A

B B

8.18 We will prove the result by induction on 1, the number of cars. Obviously, if there is only 1 car on the track,
it must have 1 gallon in its tank, and it can make it all the way around the track.

Suppose that the result is true for k cars, and assume that there are k + 1 cars on the track satisfying the
conditions of the problem. Label the cars C;,C;, ..., Crsq in counterclockwise order. We first claim that there is at
least one car that has enough gas to reach the next car on the track; if not, the sum total of the distances that all
of the cars could reach would be less than the entire track (each car would cover a distance strictly less than the
distance from it to the next car), which is a contradiction.

So suppose (without loss of generality) that C; has enough gas to reach C,. Then the problem with k + 1 cars is
reduced to the problem with k cars if we remove all of Cy's gas and place it in C;’s tank, and delete car C,. Because
car Cy has enough gas to reach C;, we don’t have to worry about running out of gas between C; and C,; therefore,
a car that could make it around the track in the new k-car configuration can also make it around the track in the
original (k + 1)-car configuration.

By induction, one of the cars in the reduced problem (with k cars) can make it around the track, and hence so
can this same car in the (k + 1)-car problem. This completes the induction.

8.19 We assume that Pick’s Theorem is true for all triangles, which establishes the base case. Now, assume that
Pick’s Theorem is true for all polygons with at most 1 = k vertices, for some positive integer k > 3.

Consider a polygon P with k + 1 vertices. To apply the inductive hypothesis, we want to dissect P into two
polygons, so that each of the new polygons has k vertices or fewer. We can achieve this by dissecting along a
diagonal that is contained in P. However, proving that P must contain such a diagonal is a bit tricky.

Choose an arbitrary vertex 1, and let its neighbors be v, and v3. If the line joining v, and v3 does not intersect
any other part of P, then it is contained in P, and we have a suitable diagonal. (There is an amusing bit of
terminology for this: we say that the vertex v; is an ear of the polygon.)

Otherwise, the line joining v, and v; intersects P, as illustrated at right. In such
a case, take the line joining v, and v; and slide it towards v;. Let vy be the last
vertex that this line passes through, before hitting v, and so that v, is contained
in the triangle formed by v1, v2, and v3. Then the line joining v; and vy cannot
intersect any other part of P that is contained in the triangle formed by vy, v, and
v3; hence, it is a diagonal that is completely contained within P.

Now we have a polygon P that has been dissected by a diagonal into two
polygons Py and P,, where P; and P each have at most k vertices, as shown below:
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Let I and I be the number of lattice points in the interiors of P; and P,, and let B; and B, be the number of
lattice points on the boundaries of P; and Py, respectively. Then by the inductive hypothesis, the area of P; is
I + B1/2 — 1, and the area of P; is I + B»/2 — 1. Therefore, the area of Pis I} + I + (B + B;)/2 — 2.

Let I and B be the number of lattice points in the interior and on the boundary of P, respectively. Let m be the
number of lattice points on the diagonal dividing P; and P,. Of these m lattice points, m — 2 lie in the interior of P
(we subtract the two endpoints of the diagonal). Therefore, I = I1 + I, + (m — 2).

To count the number of lattice points that are on the boundary of P, we can add B; and B,, but we must subtract
2 for the endpoints of the diagonal, and 2 for each of the points on the diagonal. Thus

B=B1+B,-2-2(m—2)=B1+ By —2m+ 2.

Therefore,
B 1
I+—2--1=11 + L+ (m-2)+ 5(31+Bz—2m+2)—1
=1 +12+%(B]+Bz)—'2,

which is the area of polygon P, so Pick’s Theorem holds for P. Since polygon P was chosen arbitrarily, Pick’s
Theorem is true for all polygons with k + 1 vertices, and by induction, it is true for all polygons.

8.20 We prove a more general result by induction: Let n be a positive integer, and let 0 < N < 2". Then it is
possible to color every subset of (1,2, ..., 1} either black or white, so that the given conditions hold.

First, we prove the result for n = 1. The subsets of {1} are § and {1}. If N = 0, then color both @ and {1} black.
If N = 1, then color @ white and {1} black. If N = 2, then color both @ and {1} white. These coloring all satisfy the
conditions of the problem, so the result is true for n = 1, which establishes the base case.

Now assume that the result is true for some positive integer n = k. Let0 < N < 281, We must color the subsets
of {1,2,...,k k+ 1) so that the given conditions hold.

If 0 < N < 2%, then by the inductive hypothesis, it is possible to color every subset of {1,2,...,k} so that the
given conditions hold for this set. In addition, we color every subset that contains the element k + 1 black. Then
conditions 1 and 3 clearly hold for the subsets of {1,2,...,k k + 1}, so we check condition 2. Let A and B be two
black subsets of {1,2,...,k, k+1}. If either A or B contains the element k + 1, then so does their union, and hence it
is black. Otherwise, both A and B are subsets of {1,2,...,k}, and by the inductive hypothesis, their union is also
black. Thus, condition 2 holds as well.

If2+1 < N < 2%, then 0 < 21 - N < 2¥—1. Aswe showed above, we can color the subsets of {1,2, ..., k, k+1}
so that conditions 1 and 2 hold, and there are 21 — N white subsets. Now, swap the color of each subset. Then
conditions 1 and 2 still hold, and there are now N white subsets, as desired.

Hence, the result is true for n = k + 1, and by induction, it is true for all positive integers n.
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8.21 We claim that there exists a silver matrix, with 1's on the main diagonal, for every positive integer (1 2
n that is a power of 2. We will prove this by induction. A 2 x 2 silver matrix with 1’s on the diagonalis |3 1
shown at right, establishing the base case of the induction.

Assume that a 2% x 2 silver matrix A exists with 1’s on the diagonal; we will construct a 25! x 2¥+1 silver matrix
with 1’s on the diagonal. Let B be the 2* x 2* matrix in which 2*! is added to every entry of A, and let C be the
matrix in which every occurrence of 2*! + 1 on the main diagonal of B is replaced by 2¥*1. For example, when

k =1, we have:
1 2 5 6 4 6
S A ]

Then we construct our 251 x 251 silver matrix by M = (é i) For example, when k = 1, we have:

125 6
3175
M=lg 61 2
7 43 1

Note that for every integer i with 1 < i < 2%, row i of M consists of row i of A and row i of B, and column i of M
consists of column i of A and column i of C. Also, for every integer i with 2% < i < 2K*1 Jet j =1i—2% Thenrow i of
M consists of row j of A and row j of C, and column i of M consists of column j of A and column j of B.

Thus, forany 1 < i < 2!, row i and column i of M together consist of a matching row and column of A, which
contain all of the elements {1,2,...,2%1 — 1}, together with a row from B and the corresponding column of C (or
vice versa), which contain all of the elements {21,241 4.1, . 22 _ 1}, Therefore, M is a silver matrix with 1’s
on the diagonal. Hence, by induction, silver matrices exist for all positive powers of 2.
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Exercises for Section 9.3

9.3.1 If Norman first inserts a nickel, then he has to put in 70 more cents. If Norman first inserts a dime, then he
has to put in 65 more cents. If we let ¢, be the number of ways that Norman can insert coins totaling # cents, we
see that c;5 = c70 + cg5. More generally, we see that ¢, = c,—5 + ¢;—10. This is the Fibonacci recursion. Noting that

cs = 1 and c19 = 2, we conclude that cs; = Fiq for all positive integers k. Therefore, ¢75 = Fig = .

9.3.2 Leta, count the number of paths that a ray can take if it reflects exactly # times. When a ray first enters the
sheets, it must take its first reflection off of the middle sheet or the bottom sheet. If the first reflection is off the
middle sheet, then (unless # = 1) it must then reflect downward off the top sheet, otherwise it will leave the glass
altogether. After this second reflection, the ray still has n — 2 reflections to make. On the other hand, if the first
reflection is off the bottom sheet, then we can treat the ray as if it is entering the glass from the bottom, and it has
n — 1 reflections to make.

Therefore, a, = ay-2 + a,-1, and we have the Fibonacci recurrence. Noting that ay = 1 (the ray passes through
with no reflections) and a; = 2 (the ray may reflect off of either of the two lower sheets), we see thata, = F,42. (We
check that this works for the given example: a3 = Fs = 5.) Therefore, if we require exactly 9 reflections, then we

haveag = Fq1 = possible paths.

9.3.3 Let A, be the set of sequences of n tosses, where no two heads are in a row, that end with heads, and let
B, be the set of sequences of n tosses, where no two heads are in a row, that end with tails. Leta, = #(A,) and
b, = #(B,). We list the first few terms.

n | Ay B, [ Ay ‘ by
1 {H} {T} 111
2 {TH] {TT, HT} 112
3 {TTH, HTH} {TTT, THT, HTT} 213
4 | {TTTH, THTH, HTTH} | {TTTT, TTHT, THTT, HTTT, HTHT} | 3 | 5

We observe that the sequences (a,,) and (b,) appear to coincide with the Fibonacci sequence. We also observe the
following about the sets A, and B,: For n > 2, every element in A, is generated by appending an H at the end
of an element in B,,_;. (We cannot append an H at the end of an element in A,-1, since this would result in two
consecutive H's.) Hence, a, = b,_1. Also, every element in B, is generated by appending a T at the end of an
element either in A,_; or B,_1. Hence, b, = a,_1 + b,_1.

Since a, = by for n > 2, we have a,_1 = b,,_» for n > 3. Substituting into b, = a,1 + b,—1, we get
bn = bn—l + bn—z-
Also, a,, = by-1, 50 ay41 = ay, + ay—1. Shifting the indices by 1, we get

Ay = Ay—1 +ay-2.
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Let ¢, be the total number of sequences of n tosses, where no two heads are in a row, so ¢, = a, + b,. Then
adding the two equations above, we get
Cy = Cp—1 + Cp-2

for all n > 3. Furthermore, ¢c; =a; +b; =2 = F3 and ¢; = a5 + b, = 3 = F;. We conclude that ¢y =Fypforalln>1.

In particular, the number of sequences of 10 tosses where no two heads are in a row is Fj; = 144. The total
number of sequences of 10 tosses is 2'° = 1024, so the probability that in 10 tosses, no two heads are in a row, is

144/1024 = |9/64 |.

9.3.4 We prove by induction on k that Fy is a multiple of 3 and that Fg,1, Fsx42, and Fug,3 are not multiples of k,
for all nonnegative integers k. Whenk =0, wehave Fg =0, F; =1, F, = 1, and F; = 2, so the base case holds.

For the inductive step, assume that the result is true for some nonnegative integer k. Then we have that:
Fiig :P4k+3+P4k+2
= (Faks2 + Fage1) + (P + Fyr)
= (Faks1 + Fa) + 2Faps1 + Fop
= 3Fp41 + 2F 4.
By inductive hypothesis, Fy is a multiple of 3, and hence so is Fyxy4 = 3F 41 + 2F .

Similarly, we have that Fygyirq = 3Fysis1 + 2F g4 for any 1 <1 < 3. Since Fy,; is not a multiple of 3 (by inductive
hypothesis), 2Fy,; is not a multiple of 3, and neither is Faxyirs = 3Fsksis1 + 2Faeai-

So the result is true for all Fibonacci numbers, by induction.

9.3.5 We prove the result using induction. For k = 1, the left side of the identity is 1+ F, = 1+1 = 2 and the right
side is F3 = 2, so the result is true for k = 1, which establishes the base case.

Now assume that the result is true for some positive integer k = n, so

1+F2+F4+'--+F2” = Fo11.

To prove the result for k = # + 1, add Fs,,» to both sides, to obtain
1+F+Fy+-++Fay + Fapyz = Fapy1 + Fopao.
By the Fibonacci relation, Fs,+1 + Fonsz = Fay43, 50
1+ Fo+Fy+ -+ Fon + Fauer) = Fansa = Fapuanyea-
Thus, the result is true for k = n + 1, and by mathematical induction, the result is true for all positive integers k.

9.3.6 Let s, be the number of minimal selfish subsets of {1,2,...,1}. Note that the only minimal selfish subset
containing the element 1 is {1}.

If S is a minimal selfish subset of {1,2,...,n} and n ¢ S, then S is also a minimal selfish subset of {1,2,...,n - 1}.
On the other hand, if n € S, then we may delete 7 from S and subtract 1 from each of the remaining elements
(since 1 ¢ S), and get a minimal selfish subset of {1,2,...,n — 2}. This shows that s, = s,_1 + Sy—-2.

There is only 1 selfish subset of {1}, namely {1}, so s; = 1. Similarly, there is only 1 selfish subset of {1, 2}, again
namely {1}, sos; = 1. Thuss, = the n'® Fibonacci number.

9.3.7 We relate the identity
Fi4+F2+---+F2 = FyFp.

to the stair-climbing problem from Problem 9.1. Recall that F, counts the number of ways to climb an staircase
with (n — 1) stairs, in which each step is either 1 or 2 stairs. Then the right side of our identity, F,F,41, counts the
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number of ways to climb all but 1 stair of an n-step staircase, take 1 step to the top (the #n™ stair), and then climb
back down.

On the other hand, for any particular way that we can climb up and then back down as above, let j be the last
staircase that we step on going both upwards and downwards. There are F;_; ways to climb up to the ji step,
and F;_; ways to climb back down from it to the ground. The steps from stair j up to the top and back to stair j
are fixed: we must hit all the odd stairs on the climb up and all the even stairs on the climb down (or vice versa,
depending on whether » is odd or even). So there are P?—_l climbs that have the j as the last stair hit in both

directions.

Finally, j can be any integer from 0 to 1 — 1, because any stair (including the bottom “0*” ground-level stair)
can be the last stair stepped on in both directions. This establishes the identity.

Exercises for Section 9.4

9.4.1 Leta=(1+V5)/2and g = (1 — V5)/2, so that we may write Binet’s formula as

a — gn
F, = s )
V5

Therefore, we can write the right side of our identity as

(an — ﬁn)Z ({.‘t"_] - ﬁn—l)z
FA+F2 | = + g
B aZu — 2(05[3)" + ﬁZH + CEZH_Z _ Z(Qﬁ)n_l + ﬁ2n—2
= 5 .
Note that ap = -1, so that (aB)" + (af)*! = (-1)" + (=1)""! = 0. Let us collect the remaining terms:

]

a2u—2(a2 e 1) +ﬁz;;—z(ﬁz AT 1) _ a2n +a2n—2 +ﬁ2” +ﬁer—2
5 - 5

2,2 _
F,+F,_; =

On the other side of the identity, we can use Binet’s formula and the facts that @ — § = V5 and af = —1 to write:

ﬂf2"_1 _ ﬁZn—l

V5
aZn-I _ f’Zn—-l a— ﬁ
Y
aZn _ ﬁaZn—‘l + ﬁZn _ aﬁZﬂ—l
5
052” + az;;~2 &+ ﬁ?_n + ﬁ2n—2
5

Foy1 =

Our expressions for F2 + F2

n_q and Fp,_; are identical, thus proving the identity.

9.4.2 The “simplified” formula for F, is the nearest integer to ¢" /v/5, where ¢ = (1 + V5)/2. The number of digits
of F, is [log;, Fx] + 1, so the number of digits of F,, is:

o]

log(¢"/ V5) = logo(¢") - 10810("/5) = nlog;y(¢) - logm(\/g).

Note that
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We compute log, () =~ 0.209 and log,,(V5) ~ 0.3495, so we approximate that for n > 0:
# of digits of F,, ~ [(0.209)n + 0.6505].

9.4.3

(a) Since the Lucas numbers satisfy the same recursion as the Fibonacci numbers, there exist constants A1 and

Ap such that . .
1 e
L,,:Al( ";V‘E’) +/12(1 2‘/5) .

Setting 7 = 0 and 1 = 1 gives us the system of equations

2=A1+ A,

1=A1(1+2‘/5)+A2(1_\/5).

2

The second equation becomes

1=A1(1+\/§)+A2(1—2\/5) 1 V5 V5
2

5 5
- E(M +A2) + 7(11 -A) =1+ 7(/11 - Aa),

s0 A1 = Aa. Since A; + A2 =2, we get A; = A = 1. Therefore,

A -

2 2 2n
forall n > 1.
(b) To simplify the calculations, let v = 1 + V5 and L=1-15,s0 v = (1+ V5)(1 — V5) = —4. Then
_ Y- 'U" ~ P4 P"
FJ! = 21!\/5 and Lll - 211 ’
and we have:
no__ n M + H
el
2}:\/5 2n
_ .V2n _ PZH
22"4\/5
= PZ?I'

() Using the above notation, we have:

mogh 2 n_ o m\2
[2-spr= | H) 5[ ZH
2" 2nvg
B 1',2n + 21/";1" + y2n 1/2" _ 2v“p" + 'u2n
- 4n =B 5.4n

41)"[.1"
4”
4(vp)"

= 41:

_ 4(-4y"
T

= 4. (-1,
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Review Problems

(d) We construct a table of the Fibonacci and Lucas numbers.

NGO UI R W= OR
REowuwNne= = oM
~

We note that the Fibonacci and Lucas numbers interlace as follows:
Fy <Lz <Fs <L4<P6<L5<P7<... .

We claim that Fy41 < L, < Fy42 for all n > 3, and we prove this using induction.

Since each Fibonacci number depends on the two previous Fibonacci numbers, this induction argument
will require two base cases. We have already seen that the result holds for n = 3 and n = 4, which establishes
the two base cases.

Now assume that the result holds for n = k and n = k + 1, for some positive integer k > 3, so

Fiy1 < Ly < Frea < Lig1 < Fras.

Adding the inequalities Fy,1 < Ly and Frp < Liy1, we get Frpq + Frya < Ly + Ly, 80 Fiyg < Ligsp. Adding
the inequalities Ly < Fiy and Lgsq < Fgyz, we get Ly + Lggq < Fryo + Frya, 50 Lgsa < Fipa. Hence,

Frs2)41 < Lgsa < Fyayea,

so the result holds for # = k + 2, and by mathematical induction, the result holds for all n > 3.

So, Fus1 < Ly < Fpyp for all n > 3, which means that every Lucas number beginning with Lj lies strictly
between two consecutive Fibonacci numbers. Similarly, L,» < F,, < L, for all n > 5, which means that
every Fibonacci number beginning with Fs lies strictly between two consecutive Lucas numbers.

Therefore, if the Fibonacci and Lucas sequences have any numbers in common, they must be among Ly,
Ly, Ly, Fy, F1, Fa, F3, and Fy, and the only such numbers are 1, 2, and 3.

Review Problems

9.10 Let ¢, be the number of ways that we can fill a parking lot with n spaces. Note thatc; =1 (we only have
room for a compact) and c; = 2 (we can have either 2 compacts or 1 SUV). If n > 2, and the car in the first spotis a
compact, then we can fill the rest of the lot in ¢,-; ways. If the car in the first spot is an SUV, then we can fill the
rest of the lot in ¢,—» ways. Thus, ¢, = ¢,-1 + ¢,—2. Based on the initial conditions, we see that ¢, = Fy41, 50 that the

number of ways to fill a 12-space lot is ¢12 = F13 = .

9.11 Let s, be the number of such ordered sums of n. If a given ordered sum has 2 as its first term, then we
can remove it and get an ordered sum of # — 2. If a given ordered sum has an integer greater than 2 as its first
term, then we can subtract 1 from this term and get an ordered sum of n — 1. These processes are reversible, and
therefore we conclude that s, = s;-1 + 5;-2.

We note that s; = 0 and s, = 1, therefore s,, = .
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9.12
(a) Leta, be the number of rearrangements of n people. We can easily compute thata; = 1and a, = 2, so assume
thatn > 3.

Note that the first person (on the far left) must either stay in his seat, or switch seats with the person in
the second seat. In the former case, the remaining n — 1 people will rearrange themselves according to the
condition of the problem. In the latter case, after the first two people have switched seats, the remaining n —2
people will rearrange themselves.

Therefore, a, = a,-1 + a,—3 for all n > 3. Since a; = 1 = F> and a; = 2 = F3, we conclude that a,, = F,+; for
all positive integers n. In particular, 14 = Fi5 = .

(b) Let b, be the number of rearrangements of # people around a circular table. Pick one person at the table. If
that person does not move, then there are a,,_; = F, rearrangements of the other n — 1 people (who we now
think of as in a row). If the chosen person switches places with the person to her left, then there are a,_» = F,_;
rearrangements of the remaining # — 2 people. If the chosen person switches places with the person to her
right, then there are a,, = F,—; rearrangements of the remaining n — 2 people. The only other possibility is
that every person at the table moves 1 space to the left or to the right.

Thus, by = F, + 2F,1 +2 = Fyuq + Fuoq +2. If n = 14, then bys = Fi5 + Fi3 + 2 = 610 + 233 + 2 =[ 845,

9.13 Let m, be the number of n-generation male ancestors, and f, the number of n-generation female ancestors.
Then for all # > 0, we have the relations

my = fu-lr
fn = fr:—l + M.

Substituting the second equation into the first, we see that f, = f,-1 + fy—2. The initial conditions are fo = 0
and f; = 1, so we have that f, = F,, the n™ Fibonacci number. Then m,, = fu—1 = Fy—1, and the total number of

n-generation ancestors is my, + f, = Fy-1 + Fy = .

9.14 We prove the result using induction. For k = 1, the left side of the identity is F; = 1 and the right side is
F3—-1=2-1 =1, so the result is true for k = 1, which establishes the base case.

Now assume that the result is true for some positive integer k = 1, so

Fi+F+:--+F,=Fyp—1.

To prove the result for k = n + 1, add F,+; to both sides, to obtain
Fi+F+-+F,+Fua=Fpa+Fpp— 1L
By the Fibonacci relation, Fy41 + Fy42 = Fy13, 50
Fi+F+-+Fy+Fu1 =Fus—1=Fpua—1.

Thus, the result is true for k = n + 1, and by mathematical induction, the result is true for all positive integers k.

9.15 Leta, be the number of such n-digit base-4 numbers starting with a 3. Note that 4; = 1 (the only number
is 3) and a4 = 1 (the only number is 32), and consider numbers with n = 3. The first 3 digits of such a number
must be either 321 or 323. This suggests looking at the numbers that start with 1, so let b, be the number of such
n-digit base-4 numbers starting with a 1. We then have the equation a, = 4, + b,—». The first three digits of such
a number starting with 1 must be 101, 121, or 123, hence this gives us the equation b, = 2b,_, + 4,-2. So we have
the system of equations:

Ay = Ay + bn—Z;
by = a,_2 + 2y 5.
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We don't have a good idea how to solve this system, so let’s just list some small values of a, and by,.

n || #s starting with 3 | #s starting with 1 || au | by
13 1 1] 1
2 32 10,12 1| 2
3 | 321,323 101,121,123 21 3
4 | 3210,3212,3232 1010,1012,1210,1212,1232 3|5
5 || 32101, 32121, 32123, 32321,32323 | 10101, 10121,10123,12101, 12121, 12123,12321,12323 || 5| &

This should lead to the conjecture a, = F,, and b, = F,.; forall n > 0. We can verify by induction that these satisfy
our system of equations:

Fy = Fyo +Fypa,
Fn+1 =Fy»+ 2-Fn—l-
So the number of such n-digit numbers is .

9.16 Let p, be the number of paths in a diagram with # hexes. The first step of the path moves to the point C or
the point D below.

There are p,_ paths from C to B and Pn-2 paths from D to B, therefore we have Pn = Pu-1 + Pu-a, giving us the
Fibonacci recurrence. Noting that p1 =1and p; = 1, we conclude that Pn = F,. Since the given example has 14

hexes, the answer is | F1, = 377,

Challenge Problems

9.17 Let b, be the number ways to assign a row of n seats as specified in the problem, with a boy in the first seat.
Let g, be the number of such seatings with a girl in the first seat.

First, let’s count the number of assignments with a boy in the first seat. The next seat must also be a boy, and
thus the first three seats must be either BBB (three boys) or BBG (two boys and a girl). In the former case, we can
delete the first boy, and what remains is a valid assignment of n — 1 seats starting with a boy, so there are b,_; of
these. In the latter case, we can delete the first two boys, and what remains is a valid assignment of 1 — 2 seats
starting with a girl, so there are 8n—2 of these. (Note that it might be tempting to delete the first two boys in the
BBB case and conclude that there are by—» such seatings, but this would not count seatings that begin BBBG, which
are allowed in the n-seat case but would not be allowed if the first two boys were deleted.)

Therefore, we see that b, = by-1 + gu—p. But by = & for all k: there is an obvious 1-1 correspondence between
seatings that begin with boys and seating that begin with girls, by switching all the boys and girls. So we can
replace g,,_, with b,_,, giving the recurrence b, = b,_; + by-2. Noting that b, = 1 and b3 =1, we see that b, = -

Finally, the total number of seatings in our problem is by; + &1 =2byy =2Fy = .
9.18 We conjecture that for all n > 0,

)
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We prove this by induction on . The base cases are F; = (g) =land F; = ((1)) = 1. Then for any n > (,

A Y e
AT
:(g)+("11)+(”;2)+...

Fo F  FlF1—-Fe) F p

9.19 We have that

Fisit Fr FetFrn FeoiFra
Therefore,
ﬁ(i B ) TR
Fe-1 Fea/ 5 Fr-aFin
_ B B K Hy
FiF3 FFy FiFs  FeoFim
_ Fioo
Fin
9.20 Let
S—1+l+£+—§—+i+- +ﬁ+
T3 9 27 81 243 31
Then
s_1.,1.2 3 Fua |
39 27 81 243 3n ’
and
E—i+l+i+...+P""2+
9 27 81 243 3n
Adding these expressions, we get
5,5_4_1 141 142 243 Fua+Fux
9 3 9 9 27 81 243 3
I L . N
"9 27 81 243 3
1
=S5— 3

Solving for 5, we get 5§ = .

9.21 Note that the condition 2 < #? < 3 implies that (#%) = a2, and also note that0 < a~! < 1, so that (a1} = a™1.
Therefore, the given condition is ™! = 4? — 2, or 4> — 22 — 1 = 0. We see that a = —1 satisfies this equation, so we
can factor (a + 1) out of this cubic, and get

B-2a-1=@+1)@®-a-1).
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Therefore, a = (1 + \/5)/2 = ¢, the golden ratio. At this point, we start think about Fibonacci numbers, and we
notice that in the quantity we want to compute, we have the constant 144 = Fy,. Also, letting b = (1 - \/5)/ 2, note
that
o % 2(1-v5)  1-+5
a P —3 —a p—
1+5 -4 2

Thus, the quantity that we are trying to compute is

—b.

a'? — 14447 = g% + 144b = a'? + Fypb.

Now we can use Binet’s formula:

12 _ 3,12
H12+P12b=ﬂn+a b b
V5
12 _ 12
=a12+a b b
a-b

=a?+@" +a% +---+b")b
=a? + a4 +a%® + .- + b2

313 _ blS HI3 _ b13

a-b 45

- F13.

Therefore, the answer is Fi3 = 233 |
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CHAPTER 1 0

I Recursion

Exercises for Section 10.2

10.2.1 Leta, be the number of different ways I can arrange flags on an n-foot flagpole. Then ag = 1 (the one way
with no flags) and a; = 2.

Now, for n > 2, consider an arrangement of flags on an n-foot flagpole. The top-most flag is either 1-foot or
2-foot. If it is 1-foot, then it must be one of 2 different types, and the rest of the flags can be arranged in a,_; ways.
If it is 2-foot, then it must be one of 3 different types, and the rest of the flags can be arranged in a,-» ways. Hence,

Ay = 20y-1 + 30y
foralln > 2.

We can then compute ayp using the recursion as follows:

A =201 +3a9=2-2+3-1=7,

a3 =2a;+3m =2-7+3-2=20,
ay=2a3+3a, =2-20+3-7 =61,

as =2as+303=2-61+3-20=182,

ag =2a5 + 304 =2-182 + 3 - 61 = 547,

ay = 2a¢ + 305 = 2 - 547 + 3 - 182 = 1640,

ag = 2ay + 30 = 2 - 1640 + 3 - 547 = 4921,
ag = 2ag +3a7 = 2-4921 + 3 - 1640 = 14,762,

a1p = 2a9 + 3ag =2 - 14,762 + 3 - 4921 = | 44,287 |

10.2.2 Setting n = 2%? in (ii), we get
100 = 299a299.

Setting n = 2% in (ii), we get
A9 = 298.51295 '
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and so forth. We can use (ii) repeatedly, to find

g0 = 299ﬂ299

= 299 . 293a253

— 299 . 298

= 299 . 293

- 299 . 293

. 297{1297

'297"‘21ﬂ1

.297___21

= 299+9B+---+1

— 999100/

— 24950

10.2.3 Leta, be the number of such n-digit base 4 numbers. Note thata; = 1, as the only 1-digit number satisfying

the property is 1.

Given an n-digit number satisfying the property, either the first digit is 1, in which case the remaining n — 1
digits can be anything, or else the first digit is 2 or 3, in which case the remaining (1 — 1)-digit number must satisfy
the property. This gives us the recurrence relation 4, = 4" + 2a,,_;.

We can now recursively compute a4:

ap=4+2m =4+2(1)

=6,

a3 =16 +2a, = 16 + 2(6) = 28,
as = 64 + 2a3 = 64 + 2(28) = 120,
as = 256 + 2a, = 256 + 2(120) = 496,

ag = 1024 + 2a5 = 1024 + 2(496) = [ 2016 .

10.2.4 Let's compute the first few values of a,:
a =p,
ay = q;
az = maz = pq,

ay = axa3 = q(pq)

=p,

as = azas = (pq)(pqg*) = p°q°,
ag = asas = (pP)P*T) = v’ 7,
ay = asfg = (qus)(psqs )= psqs.

Notice the pattern in the exponents of p’s and g's: 1,1,2,3,5,8,. .. .. Those look like Fibonacci numbers!

Indeed, we conjecture that for all 1 > 2, a,, = | pFr-24t1

. We prove this by induction. We have already proven

it for n < 7 from our computations above, so assume that t
integer. Then:

Apy1 = Alr—1

=( Fi_a Fr

Pq

=P
— ka—x qu.

he formula is true for all n < k, where k > 7 is a positive

) (pq")

(Fr-2+F-3) 1(Fi-1+Fy-2)

q
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Thus the formula holds for a1, and hence, by induction, for all positive integers .

10.2.5 Let s, be the number of spacy subsets of {1,2,...,n}. Note that sy = 1 (the empty set is spacy) and s; = 2
(both @ and {1} are spacy). Also note that the only spacy subsets of s, are the empty set and the subsets with one
elements. So s; = 3.

For any positive integer n > 3, if n is an element of a spacy subset of {1,2,...,n}, then n — 1 and n — 2 cannot
be in the subset, and the rest of the subset is a spacy subset of {1,2,...,# — 3}. On the other hand, if # is not an
element, then the subset is a spacy subset of {1,2,...,1n — 1}. This gives the recurrence relation

8y = Sy-1 + Sp-3.
Now we can use the recurrence relation to compute values of s, up to s12:

S3=85+sp=3+1=4,
S54=53+51=4+2=6,

S5 =84+5=6+3=9,

56 =S5+53=9+4=13,
Sy =85 +85.=13+6=19,
Sg =857 +55=19+9 =28,
59 =5g+5,=28+13=41,
510 =89+ 57y =41 +19 =60,
511 = 519 + 55 = 60 + 28 = 88,

512"—‘311+Sg=88+41=.

10.2.6 Let a, be the number of n-digit sequences that have exactly one pair of consecutive 0’s, and the b, be the
number of n-digit sequences that have no consecutive 0’s. Every sequence with one pair of consecutive 0's (with
at least 3 digits) must start with 1, 01, or 001; what follows 1 or 01 is a smaller sequence with exactly one pair
of consecutive 0's, but what follows 001 is a smaller sequence with no consecutive 0’s. This gives the recurrence
relation

Ay = Ay_1 + Ay + by 3.

Similarly, every sequence with no pair of consecutive 0’s (with at least 2 digits) must start with 1 or 01; in each
case what follows is also a sequence with no pair of consecutive 0’s. This gives the recurrence relation

bn = bn—l + bn—z-

Noting that b; = 2 and b, = 3, we see that b, = F,,;5, the (1 + 2)™ Fibonacci number. We can now compute thea,’s,
starting witha; = 0,4, =1,and a3 = 2;

ag=a3+a+F3=2+1+2=05,
as=as+a3+F;=5+2+3=10,

g =as+ay+Fs=10+5+5=20,

ay =ag+as +Fg =20+ 10+ 8 = 38,
ag=ay+ag+F;=38+20+13 =71,
g =ag +ay+Fg=71+38+21 =130,

Ao = ag +ag + Fo = 130 + 71 + 34 = 235 |
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Exercises for Section 10.3

10.3.1 The characteristic polynomial is ¢ + 2¢ — 15 = 0, which factors as (c + 5)(c — 3) = 0. Therefore, the general
form of the solution is given by
ay = Ai(=5)" + Az(3)"

for some constants A; and As.

Substituting the given values for 7 = 0 and 1 = 1 into this equation gives us the system of equations

0= /11 + /12,
1=-=5A1 +3A,.

Solving this system yields A; = —% and A, = %, and hence the solution is

1 1
& =|=5(-5)" +2(3)"|

10.3.2 The characteristic polynomial is ¢® — 4¢ + 3 = 0, which factors as (¢ = 3)(c — 1) = 0. Therefore, the general
form of the solution is given by
ay = A1(3)" + flg(l)” = /11(3)" + /12

for some constants A1 and A,.

Substituting the given values forn = 0 and = 1 into this equation gives us the system of equations

1=A1+A,,
1=3/11+)1.2.

Solving this system yields 1; = 0 and A2 =1, and hence the solution is

ay =

in other words, this sequence is just the constant sequence 1. (Note that computing ay, a3, . .. could have saved us
all this work: we would have immediately seen that a, = 1 for all n.)

10.3.3 The characteristic polynomial of the recursion is ¢2 - 6¢ + 9 = (c = 3)%, so the general term is given by
ay = A13" + Azn3"
for some constants A; and Aa.

Substituting n = 0and n = 1 gives us the system of equations

1= }Llf
4 =341 + 34,.

Solving gives A; =1, 1, = 1/3. Therefore,

dy= 3 4 %n 3" =|(n+3)3" |

10.3.4 We are given that x2 — px — ¢ = (x — )2, so P =2cand g = —c2. Thus the recurrence is

Ay = 2¢ay1 — Czﬂn—Z-
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We plug in a,, = A1c"” + Apnc” and verify that it satisfies the recurrence:
plug

Ay — 2Cay_1 + Py = (A" + Agnc™) = 2c(Arc™ ™ + Ao = 1" + A(A "2 + Aa(n = 2)c"?)
= "M (P — 267 + &) + Aa(nc? = 2(n — 1) + (n — 2)P))
=0.

10.3.5 As usual, we write the characteristic polynomial:
¢ ~2e+5=0.

Via the quadratic formula, we find the roots:

e 2+V4-20 2xvV-16
B 2 - 2

Even though we have complex roots, we can still continue to find the general solution. We get a general solution
of the form

=1+2i.

an = A (1 + 20" + Ax(1 - 20)".

We plug in our initial conditions 4; =2 and a; = 1:

2 = A1(1 +2i) + Ap(1 = 2i),
1= A1(1 +20)% + Ax(1 - 2i)%

We note that (1 + 2i)* = =3 + 4i and (1 — 2i)? = -3 — 4i, s0 let’s rewrite the system as

2= A1(1 + 2i) + Ax(1 - 2i),
1=A1(=3 +4i) + Ax(-3 — 4).

Perhaps the easiest way to solve this is to multiply the top equation by (-3 +4i) and the bottom equation by (1 + 2i)
and subtract. The A; terms will cancel, and we’ll be left with

2(=3 + 4i) = (1 +2i) = Ay((1 — 20)(=3 + 4i) — (-3 — 4i)(1 + 23)) = A,((5 + 10i) — (5 — 10)) = A»(20i).

So we can solve for A; by dividing by 20i:

A _—7+6i 3 +11.
277208 1020
Substituting back in, we see that
oy o
YT 10 207
So our formula is
3 7. N (3 7_) N
By = (10 201)(14-2:) + (55 + 55i) 1 -20" |

At first glance, a, looks like a hideous complex number. But in fact, for any value of 7, this formula will give us a
real number for a,. You can plug in # = 3 and verify that a; = 2(1) — 5(2) = -8.

10.3.6 The characteristic equation is
-2 -c+2=0.

Generally there’s no easy way to find the roots of a cubic polynomial. So what we usually do is search for common
roots, like 0, 1, or —1, and hope we get lucky. In fact, in this case, we do get lucky. We see pretty easily thatc = 1
is a root, so we divide (c — 1) out and the rest easily factors:

A-22—c+2=(c-1)(?-c-2)=(c—-1(c+D(c-2).
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So the roots are 1, —1, and 2. Therefore our general solution is
ay = M1" + Ap(=1)" + 132",

To finish finding the formula, we use the initial conditions to get a system of linear equations, so we substitute
n=20,1,2 into our general solution:

0=/’Ll+ﬂ2+/13,
1=A; — A3 +24A,,
3=/‘.1+A2+4/13.

Subtracting the first equation from the third gives 3 = 313, s0 A3 = 1. Then the first two equations become:
-1= /11 = /12,
-1=A;-A,.

Hence A; = -1 and A; = 0. Therefore, our solution is ay = (11" + 0(-1)" + 1(2") = .

Exercises for Section 10.4

10.4.1 If we iterate the recurrence relation
@y =2(2"1 — g, 1 + 1),
that is, if we substitute in for ay-1 using the same relation, we get:
@y = 22"~ 22" - g, + 1)) + 1) = 22" 1) — 42"2) +4a, 5, -2 =4g, 5 2.

(Note in particular that the powers of 2 cancel.) So we see that the values of a, for n even and the values of ay
for n odd form two separate sequences. And since these sequences have the same initial conditions (in particular,
@ = az = 2), they will be equal.

10.4.2 The recursion can be re-written as
ayp=-20, 1+2"+2

forall n = 1. We can solve this recursion systematically as follows: shifting the index by 1, we get
Ap1 = —20,9 + g1 +2.

Subtracting the two equations, we get
Ay = —@y-1 + 28,5 + 2",

Shifting the index again by 1, we get
Ay-1 = —Ay-3 + 20,3 + 2",

Multiplying this by 2, we get
20,1 =285+ 4a, 3 + 2L,

Subtracting this from the equation a, = —a,_1 + 24,5 + 2", we get

Ay = Ay-1 + 4a,_p — 4ay_3.

This recursion relation is homogeneous, and its characteristic polynomial is

G- —detd=(c-2)(c+2)(c—1).
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Hence,
@y = A12" + Aa(=2)" + A3

for some constants A1, Ay, and A;.
Setting 7 = 0, 1, and 2 gives us the system of equations

1=\ +/12 + Az,
2=2A1—-2A; + A3,
2 =4A1 +4A; + Az.

Solving gives A1 =1/2, A, = —=1/6, and A3 = 2/3. Therefore, the closed-form formula for a,, is given by

1., 1 n, 2 _[3:2"—(=2)"+4
a,,-22 6(2)-1~3_ G !

As a check, we verify that if we substitute n = 11, we get:

3.2 —(=2)1 4+ 4 _ 6144 +2048+4 8196
6 - 6 G

matching the value of a;; that we found in the solution to Problem 10.10.

= 1366,

a1 =

Exercises for Section 10.5

10.5.1 There are 6 ways to start the triangulation of an octagon, as shown below:

OV OD GO

Two leave a heptagon, which can be triangulated in 42 ways. Two leave a triangle and a hexagon, which can be
triangulated in 1- 14 = 14 ways. Two leave a quadrilateral and a pentagon, which can be triangulated in 2-5 = 10

ways. Therefore, the number of ways to triangulate an octagon is 2(42 + 14 + 10) = ways.

10.5.2 We will show a 1-1 correspondence between the number of ways to place balls into boxes as in the problem
statement and the number of legal arrangements of 5 sets of parentheses as in Problem 10.9. Think of each box as
corresponding to a “(” and each ball as corresponding to a “)”. For each box, starting at B; and ending at Bs, we
first write the left parenthesis corresponding to the box, then we write a number of right parentheses, one for each
ball in the box. For example, if the boxes By, Ba, B3, By, Bs had 1,0,2,1,1 balls in them, respectively, then we would
write the parenthesis-arrangement ()(())()(); the number of balls in each box tells us how many right parentheses
to place after each left parenthesis. The condition that boxes B; through B; can have no more than i balls total is
equivalent to the condition that the parentheses must be balanced.

Thus, there is a 1-1 correspondence between solutions to this problem and solutions to Problem 10.9, so the
answer is .

10.5.3 Note that the first digit must be 1. Delete the first digit and subtract 1 from all the remaining digits;
what remains is a 4-digit sequence in which the i digit is no more than i. This is in 1-1 correspondence with the
previous problem 10.5.2: the digit in position i (reading from left-to-right) in our 4-digit sequence tells us the total
number of balls in boxes B; through B;, for 1 < i < 4, and then we place the remaining ball(s) in box Bs so that we

use 5 balls total. So the answer to this problem is the same as the answer to the previous problem, which is .
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10.54 We experiment with smaller-size versions of the same shape.

The smallest shape has only 1 tiling:

The shape with a side length of 2 has 2 tilings:

The shape with a side length of 3 has 5 tilings:

Seeing the pattern 1,2,5 in the first 3 sizes, we might think to look for the Catalan numbers, and we might
suspect that the answer to our problem is the next number, 14. So we'll look for a Catalan-style recurrence.

Note that each square on the diagonal has to be covered by a different tile, because there’s no Y X
way thata rectangular-shaped tile can cover more than one of the diagonal squares. (In the picture
at right, the diagonal squares are marked with an “X".) Thus, every tile must cover exactly one X
of the diagonal squares; in particular, the tile covers the upper-left square (labeled with a “Y” in
the picture at right) must also cover one of the diagonal squares. This tile will split the rest of [ X
the picture into two parts. In particular, the diagrams below show the possible positions of the tile covering the
upper-left square (marked with a “Y"):

Y Y X Y

The diagram on the left leaves a size-3 picture to tile, which we know can be done in 5 ways; the same is true
for the diagram on the right. The two diagrams in the middle each leave a size-1 picture and a size-2 picture to be

tiled, which can be done in1x2 = 2 ways. Thus thereare 5+2 +2 +5 = possible tilings.

10.5.5 We can first solve this using PIE. There are (152) total paths (without worrying about whether they pass
through any of the X’s). There are (:1")(150) paths that pass through the X at (1,1), and the same number of paths
that pass through the X at (5,5). There are (g)(g) paths that pass through the X at (3,3). There are (f)(g)(g) paths
that pass through both (1,1) and (3,3), and the same number of paths that pass through (3,3) and (5, 5). There are

(‘;')(g)(%) paths that pass through (1, 1) and (5, 5). There are (f)(g)(;_)(f) that pass through all three X’s. Therefore, by
PIE, the number of paths that pass through none of the X’s is:

12 2\(10) (6\(6 2)\(4\(6) , (2\(8\(2\ [2\(4\(4\[2
1265} 66 606+ Y- G -
Noticing that our answer, 132, is a Catalan number (see Exercise 10.5.1 above), we might try to look for a Catalan
recurrence that would explain it. Let Pn be the number of paths from (0,0) to (2n,2n), where we are not allowed
to pass through (2i - 1,2/ — 1) forall 1 < i < 1. We have shown in our PIE calculation above that p; = Cs = 132, so
we conjecture that p, = C,, for all 1. Note trivially by inspection that P1=2=0Cs.
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For any path, let j be the smallest positive integer such that the path passes through (j, j). Note that j must be
even, since the diagonal points with odd coordinates are not allowed. So we have j = 2k, where 1 < k < n. To
get from (0, 0) to (2k, 2k) without touching the diagonal, we must either go entirely below the diagonal or entirely
above the diagonal. Either way, the number of paths is Cy_1, so there are 2Cy_; paths from (0,0) to (2k, 2k) that
avoid the diagonal (except at (0, 0) and (2k, 2k)). Then, by definition, there are Pn—x remaining paths from (2k, 2k)
to (2n, 2n).

Thus, we have the recurrence
n
Pn = Z 2C2k—1pn—k-
k=1
If we assume as our inductive hypothesis that p; = Cy; for all j < n, then we have:

n n
Pu = Z‘ 2Cu1Coprk = Z(sz-qcz"-zr,— + ConkCoi—1).
k=1 P

Writing this out, we see that the first terms of each entry of the sum give
C1Cau2z + C3Con-g + -+ - + Cop1Co,
and that the second terms of each entry of the sum give
Con2Ca + Coy—4Cy + - - - + CoCayp-1.

In particular, the first terms give all terms of the form C,,C,,_1_» Where m is odd, and the second terms give all
terms of the form C,,Cz;-1-, where m is even. When we combine them, we get:

2n-1
Z CmC21=—1—rn = CZu.r

m=0

completing the inductive proof.

Exercises for Section 10.6

10.6.1 By recursion:

Cg = CopCy + C1C¢ + CaCs + C3Cy + C4Cq + C5Co + CeCy + CCy
= (1)(429) + (1)(132) + (2)(42) + (5)(14) + (14)(5) + (42)(2) + (132)(1) + (429)(1)
=429 + 132 +84 +70+ 70 + 84 + 132 + 429
= 1430.

By formula:

1(16) _ 12870 — 1430,

CGs=35ls 9

10.6.2 Letc, be the number of ways that we can place coins on top of a row of n coins,
and let j be the number of consecutive coins on the left edge of the second row. For
example, in the picture at right, n = 5 and j = 2. (If there is no coin on the far left side
of the 2" row, then j = 0.) Then the number of ways to complete the arrangement is
the number of ways to place coins on top of the j coins in the second row, which is ¢;,
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times the number of ways to place coins on top of the # — j — 1 coins on the first row to the right of the row of j
coins, which is ¢,—;-1. This gives the recurrence relation

n-1

Cp = Z CiCn—j-1,

j=0
and since ¢y = ¢; = 1, we recognize that ¢, =|C, |, the n'h Catalan number.
gniz

10.6.3 If Brazil and Germany were never tied, then Brazil was always ahead of Germany, except at the start when
it was 0-0. Then this sequence of goals corresponds to a path from (0, 0) to (8, 6), going only upwards and to the
right, that stays strictly below the main diagonal, except at the point (0, 0).

Note that the first two steps must be to the right, and consider the portion of the path from (1,0) to (8, 6). This
portion of the path stays on or below the line y = x — 1, so by shifting this portion of the path one unit to the left,
we obtain a path from (0,0) to (7, 6) that stays below the main diagonal. But every path from (0,0) to (7,7) that
goes only upwards and to the right and stays on or below the main diagonal must pass through the point (7, 6).
Hence, we have a 1-1 correspondence

{Paths from (0,0) to (8,6) that stay strictly below} - {Paths from (0, 0) to (7, 7) that stay on or below the}
the main diagonal except at (0, 0) main diagonal

The number of paths in each set is

G=35l,

1(14
8

) a0

The number of different orders in which Brazil could have scored 8 goals and Germany 6 is (1;) = 3003. Therefore,
the probability that the score was never tied (except at 0-0) is

29 |1
3003 |7

10.6.4 The root node must be one of the internal nodes (if # > 1). Then, j of the internal nodes will go on the left
branch of the tree and the remaining n — 1 — j internal nodes will go on the right branch of the tree. If we let ¢, be
the number of trees with # internal nodes, this gives us the recurrence

n-1

ty = Z tjtn—l—j-
/=0

This is the Catalan recurrence, and since 5 = 1, we conclude that £, = the nt!* Catalan number.
10.6.5 We list the first few Catalan numbers:

nf|0|1|2|3|4|5|6 |7 | 8 |9
Co [T T2 |5 1442|132 | 429 | 1430 | 4862

We see odd Catalan numbers for #n = 0, 1, 3, 7 so far in our list. This might lead to the conjecture that:

| C, is odd if and only if 7 is one less than a power of 2. |

We can quickly check Cis using our formula:

1 {30
Cis = (

16 15) = 9694845,
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and indeed this is odd.
We can prove our conjecture using induction. The conjecture is true for n = 0. For the inductive step, recall

the Catalan recurrence:
n—1

Cn = Z Cjcrhlfj-
j=0

All of the terms of this sum come in matching pairs: CyC,—y matches with C,_1Cp, C;C,—» matches with C,—2Cs,
and so on, with the exception of the middle term C 11Cua when 7 is odd. So if n is even, then

1-1
Cn =2 [Z Cjcn—]—j] ’
j=0

and thus C,, is even. If n is odd, then

+(Ca)?,

gl
Cu= 2{ Y. CiCuarj

j=0

so C, has the same parity as Cx. Finally, note that 7 is 1 less than a power of 2 if and only if 21 is also 1 less than
a power of 2. This completes the proof.

Review Problems

10.16 We see that a1 = 1, so let n > 2. Choose one of the 2n students arbitrarily. Then there are 2n — 1 other
students that can be paired with that student, and after this pair is formed, there are 2n — 2 students left, from
which we want to form n — 1 more pairs. Hence, a, = (21 — 1)a,-;. Therefore,
ay = (2n = 1)ay
=(@2n-1)2n - 3)a,-2
= (2n—1)(2n - 3)(2n — 5)a,—3

=2n-1)2n-3)2n-5)---3-m
=|@n-1)@n-3)2n-5)---3-1}|

1
Another formula is a, = @n)!
21!

. Do you see why?

10.17

(a) Let’s consider a small case. If we draw three lines as shown, then we form 7 different regions. To maximize
the number of regions that are created when we draw another line, we want this new line to pass through as
many regions as possible.
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The new line can pass through at most four regions, because every pair of successive regions is divided by
a line that is already present, of which there are only three. We can always pick a new line through 4 regions:
we pick a line that does not pass through any existing intersection points and is not parallel to any existing
line. When the new line is drawn, it splits each region it passes through into two new regions, creating a total
of 7 + 4 = 11 regions.

More generally, let R, be the maximum number of different regions formed by n lines. Then R; = 2, and
for n > 2, if there are # — 1 lines in the plane, then a new line can pass through n regions, so R, = R,_; + n.
Therefore,

Ry=n+R,,
=n+(m-1)+R,_

=n+m-1)+m-2)+---+2+R,

n+(n-1)+mn—-2)+---+2+2

=n+m-1)+n-2)+---+2+1+1

=£(”2ﬂ+

n4+n+2
2

1

(b) Asabove, let R, denote the maximum number of regions formed by # circles. Note that R, = 2 and that each
new circle can intersect the other n — 1 circles in 21 — 2 points. Thus the new circle divides 21 — 2 regions in
two. This gives the recurrence relation R, = R,_; + 2(n — 1), and thus:

Ry = 2(" - 1) + Ry
=2n-1)+2(n-2)+ R,

=2(n-1D+m-2)+---4+2+1)+Ry
=2((n-1D+n-2)+--+2+1)+2

(c) Asabove, let R, denote the maximum number of regions formed by n pairs of parallel lines. Note thatR; = 3.
If we already have # — 1 pairs of lines drawn, then we can draw a new nt pair such that each line of our n'
pair will intersect each of the 21 — 2 lines already drawn. Thus, each new line will create 21 — 1 new regions.
This gives us the recurrence R,, = Ru-1 +2(2n — 1). Therefore,

Ry=22n-1)+ R
=22n-1)+2(2n-3)+ R,

=2(2n-1)+@2n—3)+---+3) +3
=2(@n-1)+@n—-3)+---+3+1)+1

=[2241]
10.18  The characteristic equation of this recurrence is c2 — 2¢ — 1 = 0, whose roots (by the quadratic formula) are

212\/521:“/5_
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Therefore, we know that the solution is of the form
a, = A4 (1 + '\/E)" + A (1 — ‘fz-)u .
To determine the unknown coefficient, we use the initial conditions ayp = 2and a; = 3 to get the system of equations

2=A1 +/12,
3=A1(1+\/§)+A2(1—\/§).

This system has the solution A1 =1 + %, Ay =1- %, so the solution to the recurrence is

R T

10.19 More generally, let p, be the probability that the player wins when beginning with n pairs of tiles. We see
that p; = 1, so assume # > 2. After drawing three tiles, the player may keep playing as long as two of the three
tiles he draws match. There are n(2n — 2) ways to draw (without regard to order) 3 tiles that include a matching
pair (1 choices for the matching pair and 21 — 2 choices for the third tile), so the probability of this occurring is

n2n-2)  n@2n-2) 3
(23,1) - z,z(zn-lﬁ)au—z) T oam—-1

At this stage, if the player is still in the game, then he is at the same point as having drawn only one tile after
beginning with n — 1 pairs of tiles. This gives us the recurrence

_ 3
Pn = —27‘! — 1Pu—1

for n = 2. Hence,

10.20 Leta, denote the number of ways to tile a 3 X n rectangle.

First note that if # is odd, then it is impossible to tile: the total number of squares in the rectangle is odd, but
each tile covers 2 squares. So a, = 0 if n is odd.

If n is even, then look at the left column of our 3 X n rectangle. If we tile it with 3 horizontal tiles, then what's left
is a 3 X (n — 2) rectangle that can be tiled in a,,_, ways. Otherwise, we must use one vertical tile and one horizontal
tile. This leaves two untiled spaces in the 2" column. If we tile them with a single vertical tile, then what's left is
a 3 X (n - 2) rectangle. If not, then we tile them with 2 horizontal tiles. After placing another horizontal tile (in the
remaining row), we're again left with 2 untiled squares in the left column. If we tile them with a single vertical
tile, then what's left is a 3 X (n — 4) rectangle; if not, we repeat and we again get back to 2 untiled squares in the
left column.
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n—2 n—2 n—4

This gives the recurrence relation
Ay = Ay +2ap-2 + ay_g + - + a4z + ap),

where the factor of 2 comes from the fact that a vertical tile can be placed in the initial column in 2 different ways.
Noting thatap = 1, we compute:

[15] =ﬂ0+2ﬂ’g=3ﬂn =3,
ag=ay+2(a +ag) =3+23+1) =11,

A =as +2(ag +ay +ag) =11 +2(11 +3+ 1) = 41,

ag =05 +2(ag +as +a +ap) =41 +2(41 + 11 +3 + 1) = 153,

a0 = ag + 2(ag +a5+a4+a2+a0):153+2(153+41+11+3+1):.

10.21 Let T, denote the number of legal n-block towers. Note that if n < 3, then there is no condition on the
order of the blocks in the tower, so T3 = 3! = 6. Forn > 3, given an (n — 1)-block tower, we can create an n-block
tower by placing block n directly on top of the block of size n — 1, directly on top of the block of size n — 2, or at
the bottom of the tower; these are the only legal positions. Furthermore, removing block 7 from an n-block tower
leaves a valid (n — 1)-block tower. Therefore, we have the recurrence T, = 3T, for all n > 3. We therefore see

that T,, = 3"3(6) = 3"2(2) for all n > 3, and in particular Ty = 3(2) = | 1458 |

10.22 Let a(n, k) denote the entry in column k of row #, for all integers 0 < k < n. Note that a(n,0) = 1 for all
1, and more generally a(n, k) = a(n,k— 1) +a(n — 1,k) for all 0 < k < n, where we define a(n — 1,n) = 0. The key
observation is that each entry counts the number of paths to that point on the grid, where we start at the top and
each step is either down or to the right, since each path to a point must come from the point to the left or from the
point directly above. Therefore, the last entry in Row 1 counts the number of paths from the top “1” to that point,
which (rotating the picture 90 degrees counterclockwise) is the same as the number of paths from (0, 0) to (n,n)
which do not go above the diagonal. Thus, the number of paths to that point is C,,.

Challenge Problems

10.23 Leta,, by, and ¢, denote the number of such words of length # that end with A, B, and C, respectively. We
seethatay = by =¢; = 1.

Forn > 2, aword of length n ending with A can be formed by appending an A to a string of length n—1 ending
with A or B (but not C), so a, = a,_; + by_.

A word of length 1 ending with B can be formed by appending a B to any string of length n — 1, so b, =
Ay-1 +bp-1 + cpa.

Finally, a word of length # ending with C can be formed by appending a C to a string of length 1 — 1 ending
with B or C (but not A), s0 ¢; = b1 + Cy1.

We notice that a, = ¢, for all n > 1, because there is a natural 1-1 correspondence
fwords endinginA} «  {words ending in C},

achieved by changing every A to a C and vice versa.
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Hence, we can write the relations above as

Ay = Ay-q + by,
bu = 2‘1:1—1 + bu—l-

We can isolate one sequence in one equation and substitute it into the other. In particular, we can rewrite the
first equation as
by-1=ay —ay_1,

then substitute this into the second equation to get
Qi1 — Ay = 2051 + (@n — Bp-1).
Rearranging, we get '
Ans1 = 20y + Ap-1.
Similarly, b1 = 2by + by_1.

Finally, if we let f, denote the number of allowable words of length n (ending in any letter), thent, = a,+b,+c, =
2a, + by, 50ty = 28, + £, foralln > 2.

We now compute the initial values of the sequence t,. Note that #; = 3 (any letter is allowed) and ¢, = 7 (any
2-letter sequence is allowed except for AC and CA). Hence,
=2+t =2-7+3=17,
=23+t =2-17+7 =41,
t5=2i‘4+t3:2'41+17=99,
te =2t5 + 14 =2-99+41 = 239,
t7 = 2tg + 15 =2-239 + 99 = 577,

tg = 2t + f = 2- 577 + 239 = [1393 |

Note that we could have explicitly solved the recurrence t,,41 = 2t, + t,_1 to get a closed-form formula for t,,
but since we only needed fg it was easy to simply crunch the numbers.

10.24 We can reformulate (and generalize) the problem as follows: call a string of 0’s and 1's allowable if the
substrings 11 and 000 never appear. There is a natural 1-1 correspondence between allowable strings of length 19
and permitted subsets of houses: a 1 represents a house that gets mail, and a 0 represents a house that does not.

Let A, be the number of allowable strings of length n (for n > 2). We'll break up the allowable strings into
cases. For # = 2, let By, C,, and D,, be the number of allowable strings of 0s and 1s of length 1 that end with 00,
01, and 10, respectively. (Since the substring 11 can’t appear, an allowable string can’t end with 11.) We see that
Ay=B,+Cy+D,foralln>2,andthat B, =C, =D, = 1.

Then for n > 3, a string of length n ending with 00 can only be obtained by appending a 0 to a string of length
n — 1 ending with 10 (since the substring 000 cannot appear), so B, = D,_1.

A string of length 1 ending with 01 can be obtained by appending a 1 to a string of length # — 1 ending with
either 00 or 10, so C, = B;,—1 + D,,_1.

Finally, a string of length n ending with 10 can only be obtained by appending a 0 to a string of length 1 — 1
ending with 01, so D,, = C,;.

Thus, we have the following system of recurrence relations for all # > 3:

B, =Dy,
Cn = Bu—l + Drr—l;
D, = Cy1.

110



Challenge Problems

We can now simply make a chart of all the B,, Cy, and D,;:

n [|2[3]4]5]6]7(8[9]10]11]12[13(14[15]1617] 18 | 19
By |111]1]2[2[3[4[5]7 [9[12]16]21(28]37140] &5 | 58
Cul|112|2[3]4[5|7 (912|116 21|28 |37 (496586 | 114 | 151
Dull1[1]2]2]3 4579 [12]16[21 (283749 65| 86 |11z

Thus our answer is Ayg = By + Cyo + Do = 86 + 151 + 114 = -

We notice in our above chart that all three sequences are the same, except shifted to the left or right. So we
might achieve a simple solution by solving for just one of the sequences. If we substitute B, = D, and D, = C,_,
into the recurrence relation for Cy, we get:

Cn = Bn—l + Dn—] = Dn—2 + Dn—l = Cn—S + CH—Z'
This is valid for all # > 5. We can then use this recurrence to get all of the values of C, for n < 19, and then finish

by:
Ap = Bio + Clg + Dyg = Ci7 + C]g + C]g =86+ 114 + 151 = 351.

10.25 Let p, be the probability of an odd number of heads appearing when the coins C;, C,, ..., C, are tossed.
Then p; = 1/3, and for n > 2, we calculate Pn in terms of p,,_;.

The probability of an odd number of heads appearing when the coins Cy, Cy, ..., C,_; are tossed is Pn-1, 50 the
probability of an even number of heads appearing is 1 — p,,;.

Now suppose that an odd number of heads appear when the coins C;, G, . . ., Cy-1, and C, are tossed. If C,
comes up heads, then the number of heads among the first n — 1 coins must be even, and if C,, comes up tails, then
the number of heads among the first # — 1 coins must be odd. Hence,

_ (1- )+ 2n _2n-1 .
Pr= on+1 Bt 2rl+'1p"_1_21f1+1p"_1 2n+1

Multiplying both sides by 21 + 1, we get
@n+Dpy = 2n - L)py—y + 1.
Set g, = (2n + 1)p,.. Then the above equation becomes
On = Gy + 1.

Since g1 = 3p; = 1, we have that qn = n for all n > 1. Therefore,

qn n

2n+1 " | 2n+1

Pn =

foralln > 1.

10.26 Let a, be the number of positive integers whose digit-sum is n, and whose digits are all 1, 3, or 4. Then
ay =1 (the number 1), 2, = 1 (the number 11), a3 = 2 (the numbers 111 and 3), and g = 4 (the numbers 1111, 31,
13, and 4).

Assume that # > 5, and consider a positive integer whose digit-sum is 1, and whose digits are all 1, 3, or 4.
Such a number must end with 1, 3, or 4. If this last digit is truncated, then the digit-sum of the remaining number
mustben —1,n—3,0orn -4, respectively. Hence,

An = Ap-q + Ap-3 + Gy

foralln > 5.
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We could factor the characteristic polynomial, and solve for a, in the usual way. But since this is a quartic
polynomial, it may be easier to list the first few terms of the sequence to see if we can find a pattern:

a1:1,
82=1,
H3=2,
a4:4,

as=as+a+a;=4+1+1=6,
Gg=as+a3+a=6+2+1=9,
Ay =ag+as+a3=9+4+2=15,
ag=ay+as+ay;=15+6+4 =125,
ag =ag+ag+as =25+9+ 6 =40,
a9 =dag +ay +ag =40+ 15+ 9 = 64,

We can verify that a,, is a perfect square whenniseven: a =1=1%,a, =4 = 22,45 =9 = 32, g5 = 25 = 52, and
a1g = 64 = 82. These are the squares of the Fibonacci numbers! With the Fibonacci numbers in mind, we can now
see that the odd terms are the products of consecutive Fibonaccinumbers: a; =1=1-1,a3=2=1-2,85 =6 =2-3,
ay=15=3:5,anday =40=5-8.

We now have a conjecture for a formula for a,,: Foralln > 1, ay;—1 = F;,Fp41 and a3, = Fﬁ 1+ We prove this using
induction. We have already verified that these formulas hold for 1 < n < 2, so assume that these formulas hold
for 1 < n <k, for some positive integer k > 2.

Then

k41 = A + A2 + Aok—3
=F,, +F2 + B F
=F2 | + Fe(Fye1 + Fr)
=F2,, + FiFrn
= Fiyq(Fx + Fie)
= Frs1Frs2,
and

A2k+2 = k41 + Ak + 23
= Fp1Fre2 + FrFraa +F§
= Fey1Frao + F(F + Fry1)
= Fr1Fra2 + FrFra2
= Fiv2(Fx + Fre1)
=F I%+2'

Hence, the formulas hold for 1 < n < k + 1, and by strong induction, they hold for all positive integers n. In
particular, a5, = FZ_, is a perfect square for all positive integers .

10.27 We seek a way of building valid connections on a 2 x  grid from valid connections on smaller grids. This
will give us a recursion that can be used to calculate T,,.

For a 2 X n grid, there are 2n possible outer edges and 7 — 2 possible inner edges. For a valid connection on a
2 X n grid, locate the outer edge that is absent and furthest to the right, which we will refer to as the missing edge.
(If all the outer edges are present, then they would form a loop, so at least one must be absent.) For example, in
the valid connection below, the missing edge is the edge between A and B.
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’r— g

A B

We will count valid connections on a 2 X n grid by grouping them based on the location of their missing edge.

Case 1 The missing edge is the rightmost vertical edge.

In this case, the valid connection can be built from a valid connection on a 2 x (1 — 1) grid by attaching two
horizontal edges at the right, as in the following example:

LT - LT

Thus there is a 1-1 correspondence

{Valid connections on a 2 X n grid whose missing

edge is the rightmost vertical edge } ©  {Valid connections ona 2 x (n - 1) grid}..

Thus there are T,_; valid connections in this case.

Case 2 The missing edge is horizontal.

Let the nodes of the missing edge be A and B, where A is on the left and B is on the right. Let A’ and B’ be
the corresponding nodes on the other side (that is, on the top row if A and B are on the bottom row, and vice
versa). We may conclude that all of the outer edges starting at A’ and going clockwise around the outside
of the grid to B must be present in the valid connection, as follows. First, the missing edge is the outer edge
that is absent and furthest to the right, so all the outer edges from B’ to B must be present. Second, the edge
A’B’ must also be present; otherwise, not all the nodes in the grid could be connected. (In particular, nodes
A and B could not be connected.)

Thus, the valid connection on the 2 x n grid can be built from a valid connection on a 2 X k grid, where
1<k < n—1, by attaching the outer edges from A’ to B. Some examples are shown below:

A P A’
-]
A B ' A
A B A
A B A
_ A! B—I 4’
T
) A B ' T A

We can attach the outer edges from A’ to B to a 2 x k grid in two ways (with the missing edge either on the
top or on the bottom), so each valid connection on a 2 X k grid produces 2 valid connections on a 2 X 11 grid.
Summing over 1 < k < n—1, we find that this case contributes 2T,_; + 2T, + - -~ + 2T, valid connections on
the 2 x n grid.
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Case 3 The missing edge is the leftmost vertical edge.

There is only one possible valid connection in this case:

Adding up over all three cases, we find that

T,, = T,,_l G 2T,,-1 + QT,,_Z Fiee 2T1 +1
=3T, 1 +2T,2 + ZT,,_g ECERE 2T1 +1

for all n > 2. Also, T1 = 1, so this recursion is sufficient to compute Tyy.

However, by substituting # — 1 for # in the formula above, we also have
Ty = 3T,,_2 +2T 3 +---+2T1 +1,

SO
Th1—-Ty2p=2Ty2+2Tp3+---+2T1 + 1.

Substituting this into our formula for T,,, we find that

Ty =3Ty 1 +2T 2 +2T 3+ + 2T1 +1
=3Ty 1+ Tu1 —Tuo
= 4Tn—] = Tn—Zr

for all n > 3.

Since Ty = 1 and T, = 4, we can now compute Ty easily by recursion:

T3 =41, -T; =15,

Ty =413 — T, =56,

T5 = 4T4 == T3 = 209,
Te =4T5 - T, =780,
T7 =4T¢ - T5 = 2911,
Tg =4T; — Ts = 10864,
Tg = 4T3 - T7 = 40545,

Ty = 4Ty — Tg = [ 151316 ]

10.28 Label the colors 1, 2, and 3. Choose one of the triangles, and suppose its color is 1. Then beginning with
this triangle, and going counterclockwise, we read off the colors of the triangles. This generates a string of 1’s, 2’s,
and 3's of length 10, beginning with 1, such that no two consecutive numbers are equal and the last number is not

equal to 1. For example, the sequence could be 1213212312.

Thus, we can reformulate the problem as follows: Consider the set of strings consisting of 1’s, 2's, and 3's of
length 7, beginning with 1, such that no two consecutive numbers are equal. Let A, be the set of such strings
that end with 1, and let B,, be the set of such strings that do not end with 1. Let a, = #(A,) and b, = #(B,). Then
the total number of colorings of the decagon is given by 3by. (We multiply by 3 to account for the fact that the

originally chosen triangle can also have colors 2 or 3.)
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To get a feel for these numbers, we list the first few cases.

n l Ay, [ B, | ay [ by,
1 {1} 0 10
2 0 {12,13} 0|2
3| {121,131} {123,132} 2|2
4] {1231,1321}) {1212,1213, 1312,1313,1232, 1323} (2 | 6

We see thata; = 1 and b1 = 0, so assume that 1 > 2. Then we can generate an element in A, by appending a 1 to
an element in B,_;, so ay = by_y.

To generate an element in B,, we can either append to an element in A,_1 or an element in B,_1. If we append
to an element in A,,_;, then we can always append a 2 or a 3, resulting in 2a,_; possible strings. If we append to
an element in B,._;, then the number we append is uniquely determined, because it can’t be the same as the last
number, nor a 1. (For example, if we have the string 123, we can only append a 2 to get 1232.) This results in b,_;
strings. Hence, b, = 20,1 + by_4.

Since a, = b,_; forn > 2, wehavea, 1 =b,_, forn > 3. Substituting into b, = 26,1 + b1, we get
bn = bn—l + 2bn—2

for all n > 3, with initial conditions b; = 0 and b, = 2. We can now compute by recursively, or we can solve the
recursion relation.

The characteristic polynomialis ¢ — ¢ -2 = (¢ - 2)(c+1),s0
by = 412" + A5(-1)"
for some constants 1; and A,. Substitutingn = 1 and # = 2 gives us the system of equations

0=24; - A5,
2= 4/\1 +A.2.

Solving the system, we obtain A1 =1/3 and A, = 2/3. Therefore,

1 om 4 2(-1)"

3
In particular, by = [210 + 2(-1)1%1/3 = 342, so the total number of colorings is 3by = {1026 ],
10.29

2
b, = =2" 4 Zr_1yn —
n + 3( l)

(a) We claim that the largest element of S,, is Fy+1. To prove this by induction, we must make a stronger claim,
namely: The largest element of §,, is Fy+1, and the numbers F, and F,,14 appear as consecutive terms in §,,. It
is easy to check that the result is true forn = 1 and n = 2, so assume that the result is true forall 1 <n<k
for some positive integer k > 2.

In particular, the largest element of Sk-1 is Fy, the largest element of Sk is Fyy1, and Fy and Fiy1 appear
consecutively somewhere in Sy, so Sk is of the form

Sk=‘--ka/ch+ll'--

(The case where Fy,, precedes Fj, is similarly argued.)
Then Sy, is of the form
Ski1 = ..., F, Frep, Fry, ...,
80 Fry1 and Fiy appear as consecutive terms in Sy,. Furthermore, by the construction of Sks1, €ach newly

inserted term in Sks1 is the sum of a term in Sk-1 and a term in Sk, so each term in Sk+1 can be at most
Fy + Fyy1 = Fryz.

Hence, the result is true for all 1 < 1 < k + 1, so by strong induction, the result is true for all positive
integers n.
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(b) Let T, be the sequence that results from reducing every element of S, modulo 2. We list the first few such

sequences.

1
0,1,1,0,1,1

Let B denote the block 1, 0, 1. Then assuming that symbols that are consecutive are concatenated, we can
rewrite the terms as follows:

n Ty

2 B

3 1B1

4 BBB

5 | 1BBBBB1

We claim that T, is of the form BB - B, and Ty,41 is of the form 1BB--- Bl for all n > 1. We prove this by
induction. The result is true for n = 1, so assume that it is true for some positive integer n = k, where k > 1,
so Ty is of the form BB -- - B, and Ty, is of the form 1BB--- B1.

For any sequence P of 0’s and 1’s, let f(P) denote the sequence of 0's and 1’s obtained by applying the
algorithm in the problem to P, and then reducing modulo 2. Note that f((1)) = 1 and f(B) = 1B1. Also note
that for any such sequences P and Q, we have f(PQ) = f(P)Df(Q), where D is the sum of the last number of
P and the first number of QQ, reduced modulo 2.

Using these observations, we can write

Tas2 = f(Tors1)

Also,

= f(1BB---B1)

= (1)(0)(1B1)(0)(1B1)(0) - - - (0)(1B1)(0)(1)
= (101)B(101)B--- B(101)

=BB---B.

Toks3 = f(Tors2)
= f(BB---B)
= (1B1)(0)(1B1)(0)- - - (0)(1B1)
= 1B(101)B--- (101)B1
= 1BB-.--Bl.

Hence, the result is true for n = k + 1, and by mathematical induction, the result is true for all positive

integers n.

So T2, consists of a number of blocks B, for all positive integers n. But each block B consists of two 1’s and
one 0, which means that in S,,, the number of odd terms is equal to twice the number of even terms.

10.30 Consider an arrangement of n left parentheses and 2# right parentheses. Then the arrangement is double-
good if for all positive integers k, as we read left-to-right, at most 2(k — 1) right parentheses have appeared before
the k'™ Jeft parenthesis. If the arrangement is not double-good, then call it k-bad if the first time this condition fails
is after the k™ left parenthesis but before the (k + 1)t left parenthesis. For example, ()))() is 1-bad, (()))))() is 2-bad,
and )()()) is 0-bad. We also extend the definition of k-bad to an arrangement of any number of left parentheses and
right parentheses, not just those where the number of right parentheses is double the number of left parentheses.

First, we prove the following lemma.
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Lemma. For all 0 < k < 5, the number of k-bad arrangements with n left parentheses and 2n right
parentheses is twice the number of k-bad arrangements with n — 1 left parentheses and 25 + 1 right
parentheses.

Proof. If an arrangement is k-bad, then the arrangement begins with a double-good arrangement of k “(”’s and
2k “)”s, followed by a right parenthesis. So, we have used k left parentheses and 2k + 1 right parentheses, which
leaves the last 3n — 3k — 1 parentheses to be determined.

For such an arrangement with # left parentheses and 2n right parentheses, the remaining 1 — k left parentheses

can be arranged among the last 31 — 3k — 1 parentheses arbitrarily, so there are (3";3’,‘:1) possible ways to arrange
the last 3n — 3k — 1 parentheses. Hence there are (3";3’,‘;'1) k-bad arrangements with n “(”s and 25 “)"s that begin

with a given double-good arrangement of k “(”s and 2k “)”s.

Similarly, each k-bad arrangement with n — 1 left parentheses and 27 + 1 right parentheses begins with a
double-good arrangement of k “(”s and 2k “)’s. There are (*"~¥1) possible ways to arrange the last 3n — 3k — 1
parentheses, and thus there are (SIZIff;I) k-bad arrangements with n — 1 “("sand 2n+1 ")"s that begin with a given
double-good arrangement of k “(”s and 2k “)”s.

To finish the proof of the lemma, we compute:

3n-3k-1\ _ (3n-3k-1)!

( n—k )‘ (n—k)!(2n - 2k — 1)1

~ (31— 3k — 1)!(2n - 2k)

T (n—k)(n—k—1)I2n - 2k)(2n — 2k = 1)!
_ 2n-2k (3n—3k-1)!

C on—k  (1-k-1)I2n -2

_ (3n — 3k - 1)!

T (n—k-1)2n-2k)!

_ 2(311 -3k - 1)
n—k-17,

Let D be an arbitrary double-good arrangement of k “("sand 2k “)”s. Our argument above shows that there are
twice as many k-bad arrangements of 1 “("s and 2n “)"s that start with D as there are k-bad arrangements of 1 — 1
“("s and 21 +1 “)”’s that start with D, Since all k-bad arrangements begin with some double-good arrangement of
k “(”s and 2k “)”s, we conclude (summing over all possible D) that there are twice as many k-bad arrangements
of n “("s and 2n “)”s as there are k-bad arrangements of 1 — 1 “(”s and 21 + 1 “)"s.

Thus the Lemma is proved.

Since the Lemma holds for all 0 < k < #, it follows that the number of arrangements with # left parentheses
and 21 right parentheses that are not double-good is twice the number of arrangements with # — 1 left parentheses
and 21 + 1 right parentheses that are not double-good. But all of the latter arrangements are not double-good, and

there are (}?_”1) such arrangements.

Thus, we have shown that the number of arrangements with n left parentheses and 2n right parentheses that

are not double-good is 2(,?_"1). Therefore, the number of arrangements that are double-good is

3n _9 3n ) _ (3n) _s. (3n)! 3 (3n)! (1 2 )

n n-1/" n!(2n)! (m-D2n+1)! ~ -2 \n ~ 2n+1
_ (3n)! . 1 1 _@m 1 (3n
C (n=1)!2n)! nn+ 1) 2n+1 n'Qn) |20+ l(n
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10.31 For each possible sequence of goals, we plot a path in the coordinate plane as follows. We start at the
origin (0,0). Each time Germany scores a goal, we move 1 unit to the right, and each time Brazil scores a goal, we
move 1 unit upward. Hence, if we are at the point (, ), then Germany has scored x goals and Brazil has scored y
goals. Since the final score is Germany n — m and Brazil 1 + m, the final point on the path is (7 — m, 7 + m).

Furthermore, since Germany is never more than 2m goals behind, y — x < 2m for all points (x, y) on the path.
In other words, the path lies entirely on or below the line y = x + 2m. To count the number of such paths, we use
the same reflection argument as in Problem 10.14.

Consider a path that goes from (0,0) to (11 — m, 1+ m) that goes above the line y = x +2m. Circle the first point
on the path that goes above the line y = x + 2m. Since this circled point is one unit above the line y = x +2m, it is
of the form (¢, t + 2m + 1) for some integer .

y y=x+2m y m-m-1n+m+1)

(n—m,n+m) e q/(n—m,n—fm)

(t,t+2m+1) i /

Now, reflect the portion of the path that goes from (¢, t +2m + 1) to (n —m, n +m). This portion of the path goes
# — m — ¢ units to the right and n + m — (£ + 2m + 1) = n — m — t — 1 units upwards. So the reflected portion goes
n —m — t — 1 units to the right and # — m — t units upwards. Hence, the final point of the reflected portion is

(t+n-m—-t-1t+2m+l+n-m—-f)=m-m-1Ln+m+1).
Thus, this process generates a path going from (0,0) to (n —m —1,n+m + 1).

Conversely, given a path that goes from (0, 0) to (n —m — 1,1 +m + 1), we can reverse the process to generate a
path that goes from (0, 0) to (-, n+m) that goes above the line y = x+2m. This establishes a 1-1 correspondence:

{paths from (0, 0) to (1 — m, 1 + m) that

g0 above the line y = x + 2m } & [paths from (0,0) to (n —m —1,n+m +1)}.

The number of paths that go from (0,0) to (n —m —1,n+m + 1) is ( 2" ). Therefore, the number of paths that

-m~1
go from (0, 0) to (1 — m, n + m) and that do not go above the line y = x Y omis

2n 2n _ (2n)! (2n)!
n—m| n—m—l)— (m—mln+m)! (n—m—1)(n-m+1)!

_ (2m)! 1 1

" (n—m—1)n+m)! (n—m B n+m+1)

_ (2n)! 2m+1

T (m—m—1)n+m)! -m)(n+m+1)
2m+1 (2n)!

Thtm+l (n — m)l(n + m)!

| 2m+1 2n
Tn+m+1\n—m)|
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2n
nst

Note that when m = 0, we recover the sth Catalan number -1 (

1032 Throughout this solution, the word “sequence” will mean a sequence that satisfies the conditions of the
problem (all elements are integers less than or equal to 1 and all partial sums are nonnegative).

First, note that for any sequence (ay, ay, . . .,a,), we can add an additional term n+1 = —(a1 + -+ +a,) to create a
Sequence of length 1 + 1 whose sum is 0, This oOperation is reversible, so there is a 1-1 correspondence

{Sequences of lengthn} o {Sequences of length 1 + 1 that sum to 0}.

Let s, be the number of sequences of length n that sum to 0.

For any sequence (ay,4,,. . -+@y) that sums to 0, let k be the point at which the partial sum is first 0; that is
M +ag+-- +ap = 0 bute, +td+--+m#0foralll <k There are two cases.

Case 1: k = 1. Then a1 =0, and (ay,...,a,) is a valid sequence summing to 0.

Case 2: k > 1. Then a1 =1 and a; < 0. In thig case, (ay,...,a; + 1) is a valid Sequence summing to 0.

In either case, (a4, . .. +@n) is also a sequence summing to 0. (This is the empty sequence if k = n.) So the sequence
corresponds to two subsequences, one of length k — 1 and one of length n — k.

This sets up a Catalan recurrence. Setting sp = 1, we see that

n
Sy = Z Sk-184—k-
k=1

Thus we see that su = C,, the n'h Catalan number. Therefore, the answer to the problem is s; = Ce = .
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CHAPTER

I Conditional Probability

Exercises for Section 11.2

11.2.1 If we roll a pair of fair dice, so that neither die shows EI, then there are 5 possible outcomes for each die.
Therefore, there are 25 ways to roll a pair of fair dice and not get a (-] on either die. Four of these outcomes sum

to 7, namely , (=L 3 L4 and =L ] Thus the probability is % :

11.2.2 Let the rolls of the die be a, b, and ¢. Then for a fixed value of ¢, there are ¢ — 1 rolls of the first two dice that
sum to ¢, namely (1,¢—1), (2,¢-2),...,(c—1,1). Summing over2 < ¢ < 6, we find thatthereare 1+2+3+4+5=15
possible rolls such thata + b = c.

Now, of these 15 possible rolls, we count the number in which a 2 appears. Either 2 is the sum of the other
two rolls, or 2 is part of the sum. If 2 is the sum of the other two rolls, then (a, b, c) must be (1,1,2). If 2 is part
of the sum, then (g, b, ¢) must be one of (2,1,3), (2,2,4), (2,3,5), or (2,4,6), or one of these with the first two rolls
reversed. The triples (2,1, 3), (2,3,5), and (2, 4, 6) each give two different rolls, but the triple (2, 2, 4) only gives one.
This gives us a total of 1 + 2(3) + 1 = 8 rolls containing a 2.

Therefore, the desired probability is|8/15|.

11.2.3 On this last flip, the coins must show either heads-heads, heads-tails, or tails-heads, with equal probability.
Hence, the probability that both coins show heads is . (Note that all of the two-tails flips that occur before
the last flip are irrelevant.)
11.2.4 The desired probability is:
#(ways to get 4 Us)
#(ways to get at least 3 Us)’

There are (133) % 39 ways to choose 3 ¥s and a non-9, and (143) ways to choose 4 ¥s. Therefore, the desired probability
is:

@ 75 [5

(@)+39(9) 11869 |83 ]

11.2.5 First, we note that in the set {1,2,3,...,99}, there are 10 numbers that have a units digit of 1 through 9
each, but only 9 that have a units digit of 0. This means there are 49 even numbers and 50 odd numbers.

If x + y is even, then either both x and y are even, or both x and y are odd. The number of ordered pairs (x,y)
where both x and y are even is 49%, and the number where both x and y are odd is 502, for a total of 49 +50% = 4901
ordered pairs.

Now, let xo be the units digit of x, and let yo be the units digit of y. Of these 4901 ordered pairs (x, y), we wish
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to count the number of ordered pairs where x + g < 10. Again, either both xq and y are even, or both xg and v
are odd.

If both xg and yg are even, then (xo, 1/p) must be one of the following ordered pairs:

(0,0),(0,2),(0,4),(0,6),(0,8),
(2,0),(2,2),(2,4),(2,6),
(4,0),(4,2),(4,4),

(6,0),(6,2),

(8,0).

Recall that there are 10 numbers in {1, 2, ...,99) for every units digits except for 0, and there are 9 numbers in the
set with units digit 10. Therefore, the total number of ordered pairs (x, y) with xy and o both even is:

9:949-10+9-10+9-10+9-10
+10-9+10-10+10-10+10-10
+10-9+10-10+10-10
+10-9+10-10

+10-9

= 1401.

If both xg and yy are odd, then (xo, yo) must be one of the following ordered pairs:

(1 1), (1:3)01:5).(1:7)
(3,1),(3,3),(3,5),
(5.1),(5,3),

(7,1).

For each such pair (xo, o), there are 10 - 10 = 100 possible pairs (x, y), so the total number of such ordered pairs
(x,y)is 10 - 100 = 1000.

Therefore, the probability that if x + y is even then xq + 1o < 10 is

1401+ 1000 _ | 2401
4901 T 4901 |

Exercises for Section 11.3

11.3.1 Let A be the event that Bag X is chosen, and let B be the event that the ball drawn is white. We wish to
compute P(A|B) = P(A N B)/P(B).

If Bag X is chosen, then the probability of drawing a white ball is 1/10, so P(A N B) = 1/2-1/10 = 1/20. If Bag
Y is chosen, then the probability of drawing a white ball is 1, so

1
PB)=5 15+5 1= 5.

. 1
10

M| =

Therefore, P(AJB) = (1/20)/(11/20) =[1/11]
11.3.2

(@) We see that A is more likely than B. Also, P(A N B) < P(B) by common sense: the probability of A and B
occurring is certainly less than the probability of just B occurring. If B is such that it occurs only when A

occurs too, then P(A N B) = P(B), and hence the maximum possible value of P(A N B) is .
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CHAPTER 11. CONDITIONAL PROBABILITY

On the other hand, P(A N B) is minimized when A and B are as “disjoint” as possible. This happens when
at least one of A or B always happens, meaning that P(A U B) = 1. Then, by PIE,

P(A UB) = P(A) + P(B) - P(AN B),

giving us P(A N B) = P(A) + P(B) - P(AUB) = %+§ 1= 15_2 .
(b) We know that )
B
P(A|B) = (p(g) )

We are given that P(B) = 2/3, and from part (a), the minimum and maximum values of P(ANB) are 5/12 and 2/3,
respectively, so the minimum and maximum values of P(A|B) are (5/ 12)/(2/3) = and (2/3)/(2/3) =
respectively.

Similarly,
P(ANB)

Py’
and we are given that P(A) = 3/4. Therefore, the minimum and maximum values of P(B|A) are (5/12)/(3/4) =

and (2/3)/(3/4) = respectively.

11.3.3 Let A be the event that the color face-down is red, and let B be the event that the color face-up is red. Then
we wish to compute P(A|B) = P(A N B)/P(B).

P(BIA) =

If the card with two red sides is chosen, then the probability that the color face-up is red is 1. If the card with
one red side and one green side is chosen, then the probability that the color face-up is red is 1/2. Therefore,

1 11 3

For the event A N B to occur, both sides of the card must be red, so P(AN B) =1/2.
Therefore, P(AIB) = (1/2)/(3/4) =|2/3 ]

11.3.4 . There are many examples we could cite. For example, consider rolling a 6-sided die. If A is the

event “an odd number is rolled” and B is the event “a[*]is rolled,” then P(A|B) = 1 (since all rolls of (-] are odd)
whereas P(B|A) = % (since only % of odd rolls are [*}).

In general, we can see this algebraically. We have the formulas
P(ANB) P(ANB)

P(B) PA) -
Therefore, P(A|B) = P(B|A) if and only if P(A) = P(B), which is generally not the case.

11.3.5 Let X be the event that the first ball drawn is red, and let Y be the event that the second ball drawn is
black. Then we wish to compute P(X|Y) = P(X N Y)/P(Y).

If Urn A is chosen as the first urn, then the probability of drawing a white ball is 4/6 = 2/3, and the probability
of drawing a red ball is 2/6 = 1/3. If Urn B is chosen as the first urn, then the probability of drawing a red ball is
3/6 = 1/2, and the probability of drawing a black ball is 3/6 = 1/2. Thus, after the first ball has been drawn, we
have one of the following four scenarios, with their respective probabilities:

P(A|B) = and P(B|A) =

First Urnand ball |  Ballsleft in Umn A BallsleftinUm B | Probability
A white 3 white balls, 2 red balls | 3 red balls, 3 black balls | 1/2-2/3=1/3
A red 4 white balls, 1 red ball | 3 red balls, 3 black balls | 1/2-1/3=1/6
B red 4 white balls, 2 red balls | 2 red balls, 3 black balls | 1/2-1/2=1/4
B black 4 white balls, 2 red balls | 3 red balls, 2black balls | 1/2-1/2=1/4
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For the second ball to be black, the second urn chosen must be Urn B. The probability of drawing a black ball
from Urn B, under the scenarios listed above, are 3/6 = 1/2, 3/6 = 1/2, 3/5, and 2/5, in that order. Therefore,

13 1_3)_1

1
P =3 4'5714'5)71

(11+11+
232762

3 T4

The first ball is red in 2™ and 3™ scenarios listed above, so

(1 1.1 §) =7
6 2 4 5

1
P - =
(XnY) =

2

Therefore, P(X]Y) = (7/60)/(1/4) =[7/15],

Exercises for Section 11.4

11.4.1 Let A be the event that the chosen kernel is yellow, and let B be the event that the kernel is popped. We
wish to compute P(A|B) = P(A N B)/P(B).

The probability of choosing a yellow kernel is 1/3, and the probability that it pops is 2/3, so P(ANB) = 1/3-2/3 =
2/9. The probability of choosing a white kernel is 2/3, and the probability that it pops is 1/2, so

e, & L o
373

P(B) = 5 =5

W=

Therefore, P(A|B) = (2/9)/(5/9) = .

11.4.2 If a permutation does not have first term 1, then there are 5 choices for the first term of the permutation,
and then 5! ways to order the remaining numbers. Therefore, there are 5- 5! permutations with the first term not 1.

If the third term is 3 and the first term is not 1, then there are 4 choices for the first term, and 4! ways to arrange
the remaining four numbers. So there are 4 - 4! such permutations.

.. 4-4 4
Therefore, the fraction is 55 |55
11.4.3 We show possible ordered pairs (7,5) on the Cartesian plane in the picture (0, 1) (1,1)

at the right. The “possible outcomes” region where |r —s| < 1 is lightly shaded: this
is the region between the lines r—s = —1 and r—s = i- Thelinesr = and s = % are

shown as dashed lines in the diagram, and the region r < < s is shaded darkly.

The entire shaded region has area 1 minus the area of the white region. Together,

the two white triangular regions form a square of side length 2, so the white area

is 7, and hence the shaded area is 1 — & = Z. The darkly-shaded “successful (0,0)

outcomes” region is an isosceles right triangle with side length }, so its area is 5.
Therefore, the desired probability is

=N —--

(1,0)

1

14 |

N8l

1144 Let A be the event that the King's right foot has six toes, and let B be the event that four inhabitants say
that the King's right foot has six toes. We wish to compute P(A|B) = P(A N B)/P(B).

123



CHAPTER 11. CONDITIONAL PROBABILITY

If the King does have six toes on his right foot, then the probability that four inhabitants say that he does have

six toes is (2/5)%, so
1 2\ _ 16
PAnE) = 5'(5) 1875
If the King does not have six toes on his right foot, then the probability that four inhabitants say that he does have
six toes is (3/5)*, so
1 2y 2 (3)'_ 178
®=5(5) +3°G) ~ %
Therefore, P(A|B) = (16/1875)/(178/1875) = [ 8/89 |

11.4.5 As in the solution in the text, we will compute
P(a blivet is good | the blivet passes n tests).

The probability that a randomly-chosen blivet is good is 0.85, and a good blivet will always pass any number of
tests. The probability that a randomly-chosen blivet is bad is 0.15, and it will pass n tests with probability (0.90)".
Therefore, the probability that a blivet that passes n tests is good is:

0.85
0.85 + (0.15)(0.90)"

We need this quantity to be at least 0.95, so we must solve the inequality

0.85
0.85 + (0.15)(0.90)"

> 0.95.

This simplifies as follows:
0.85 = 0.95(0.85 + (0.15)(0.9)")
&  0.85=0.8075 + (0.1425)(0.9)"
& 0.0425 > (0.1425)(0.9)"
& I > 0.9).

Therefore, n > log(17/57) ~ 11.48, so we need to test the blivet times.

11.4.6

(a) LetA be the event that you have arachnophobia, and let B be the event that you never shiver when shown a
picture of a black widow spider three times. We wish to compute P(A|B) = P(A N B) /P(B).

If you have arachnophobia, then the probability that you never shiver when shown a picture of a black
widow spider three times is (1/10)® = 1/1000, so

s 1 _ 3
10 1000 ~ 10000

If you do not have arachnophobia, then the probability that you never shiver when shown a picture of a
black widow spider three times is (4/5) = 64/125, so

P(ANB) =

3 1 7 64 3587
P(B)= 15" 1000 * 10 125 ~ 10000°

Therefore, P(A|B) = (3/10000)/(3587/10000) = .

(b) Let C be the event that you always shiver when shown a picture of a black widow spider three times. Then
we wish to compute P(A|C) = P(A N C)/P(C).
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If you have arachnophobia, then the probability that you always shiver when shown a picture of a black
widow spider three times is (9/10)* = 729/1000, so

3 729 2187
A = —r— = —_—
kg 10 1000 10000

If you do not have arachnophobia, then the probability that you always shiver when shown a picture of a
black widow spider three times is (1/5)° = 1/125, so

Poy=2.720 7 1 280
~ 10 1000 ' 10 125 ~ 10000

Therefore, P(A|C) = (2187/10, 000)/ (2243/10000) = | 2187/2243 |.

(c) Let D be the event that you shiver exactly twice when shown a picture of a black widow spider three times.
Then we wish to compute P(A|D) = P(A N D)/P(D).

If you have arachnophobia, then the probability that you shiver exactly twice when shown a picture of a
black widow spider three times is 1/10-9/10-9/10+9/10-1/10-9/10 + 9/10-9/10-1/10 = 243/1000, so

_ 3 243 729
If you do not have arachnophobia, then the probability that you shiver exactly twice when shown a picture
of a black widow spider three times is 4/5-1/5 - 1/5+1/5-4/5-1/5+1/5-1/5- 4/5 =12/125, so

_ 3 243+1.12__1401
~ 10 1000 ' 10 125 _ 10000°

Therefore, P(A|D) = (729/ 10000)/(1401/10000) = | 243 /467 |.

P(D)

Exercises for Section 11.5

11.5.1 Since there are 9 goats and 1 car, the probability that the contestant originally chose the car is 1/10, and the
revealing of the 8 goats does not change this probability. Therefore, the probability of winning if the contestant

switches is .

11.5.2  There are essentially four different strategies: The contestant can choose to switch after the first reveal or
not, and the contestant can choose to switch after the second reveal or not.

Case 1: The contestant does not switch after either reveal.

The probability that the contestant originally chose the car is 1/4, and this does not change after either of the
reveals, so the probability that the contestant wins the car in this case is 1/4.

Case 2: The contestant switches after the first reveal, but not the second reveal.

The probability that the contestant originally chose the car is 1/4, so the probability that the contestant did
not originally choose the car is 3/4. The only way the contestant can win the car is to choose a goat originally
(with probability 3/4), and then switch to the car (with probability 1/2), so the probability that the contestant
wins the car in this caseis 3/4-1/2 = 3/8.

Case 3: The contestant switches after the second reveal, but not the first reveal.

Like in Case 2, the only way the contestant can win the car is to choose a goat originally (with probability
3/4), and then switch to the car (with probability 1), so the probability that the contestant wins the car in this
caseis 3/4-1 =3/4.
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Case 4: The contestant switches after both the first reveal and the second reveal.

If the contestant originally chooses the car (which occurs with probability , then the contestant wins by
switching to a goat (with probability 1) and then switching back to the car (with probability 1). So the
probability that the contestant wins the car if initially he chooses it is 1.

If the contestant originally chooses a goat (which occurs with probability 2, then the contestant wins by
switching to another goat (with probability 1) and then switching to the car (with probability 1 after the
contestant’s initially chosen goat is revealed). So the probability that the contestant wins the car if he initially

o 1
chooses a goat is 3.

Thus the overall probability of this strategyis 1 -1+ 3 -1 = 2.

Thus, the best strategy is to | switch only after the second reveal ], which has a probability of winning of .

Review Problems

11.11 There are only 8 primes from 1 to 20 (namely 2, 3, 5, 7, 11, 13, 17, and 19) and only one of them is even
(namely 2), so the probability that the chosen prime is evenis|1/8 |

11.12 Let X be the event that the marble taken from Bag A is white, and let Y be the event that the marble taken
from Bag B is white. Then we wish to compute P(X[Y) = P(X N Y)/P(Y).

The probability that a white marble is taken from Bag A is 3/5. After it has been placed in Bag B, the bag will
then contain five white marbles and three black marbles. Then the probability a white marble is drawn from Bag
Bis 5/8, so 55 &

The probability that a black marble is taken from Bag A is 2/5. After it has been placed in Bag B, it will then
contain four white marbles and four black marbles. Then the probability a white marble is drawn from Bag B is

4/8 =1/2,s0
D,2 1.2
8 5 2 40

|l w

P(Y) =

Therefore, P(X[Y) = (3/8)/(23/40) =[15/23]

11.13 Let A be the event that the chosen coin has two heads, and let B be the event that when the coin is flipped
9 times, it comes up heads each time. We wish to compute P(A|B) = P(A N B)/P(B).

The probability that the coin with two heads is chosen is 1/500, and if it is chosen, then of course it must come
up heads each time, so P(A N B) = 1/500.

The probability that a fair coin is chosen is 499/500, and if it is chosen, then the probability that 9 heads come
upis 1/2° = 1/512, so
_ 1,49 1 1om
500 500 512 256000

Therefore, P(A|B) = (1/500)/(1011/256000) = |512/1011 |.

11.14 The probability that it is raining and that the Martians are all telling the truth is

P(B)

1x(%)3_£
10 5/ 625
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The probability that it is not raining and that the Martians are all lying is

1XGY_JL
10 “\5/ ~ 1250°

Therefore, the probability that it is raining is

& [192
%, 7 |19
=L |19

11.15  First we look at the size of the region of possible outcomes. If the quarter does not
hang over the edge of the table, then the center of the quarter must be at least 1 ecm from
the edge of the table. Therefore, the center of the quarter must lie within the circle whose
center is the center of the table and whose radius is 4 cm, as in the top diagram at right.

Possible region

If such a quarter is going to overlap the center of the table, then the quarter’s center
must be within 1 cm of the center of the table. Therefore, the center of the quarter must
lie within the circle whose center is the center of the table and whose radius is 1 cm, as in
the bottom diagram at right.

The area of the possible region is 16m cm?, and the area of the successful region is

1 Possible region

2 P l: 2
7 cm?, so the probability is en |6l

11.16 Let L be the event of Louise attending the convention and let T be the event of Successful region
Thelma attending the convention. We wish to compute P(L|T) = P(L N T)/ P(T).

If Louise attends, Thelma has an 80% chance of attending, so P(L N T) = 2.1= % If
Louise does not attend, then Thelma has 50% chance of attending, so

JOESS

Therefore, P(LIT) = (3/5)/(29/40) = [24/29]

Challenge Problems

11.17 Let A be the event that Royals win the World Series and let B be the event that the series went to six games.
Then we wish to compute P(A|B) = P(A N B)/P(B).

Let R and C denote a win by the Royals and Cubs, respectively. If the Royals win in six games, then the series
must have been of the form XXXXXR, where X stands for R or C. There are three Rs and two Cs among the Xs, so
the number of possible series is (g) = 10. The probability of each such series occurring is (2/3)4(1/3)* = 16/729, so
P(ANnB)=10-16/729 = 160/729.

Similarly, if the Cubs win in six games, then the series must have been of the form XXXXXC. There are two
Rs and three Cs among the Xs, so again the number of possible series is 10. The probability of each such series
occurring is (2/3)%(1/3)* = 4/729, so
16 4 200

Therefore, P(A|B) = (160/729)/(200/729) = .
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11.18 Let 7 be Roger’s arrival time expressed in hours after noon, so that (0, 6) (6,6)
0 < r < 6; similarly, let s be Stacy’s arrival time, so that 0 < s < 6. If

they were both at the fair at the same time, then Roger must have arrived
sometime between 1 hour before Stacy arrived and 2 hours after Stacy
arrived. Therefore, we have the inequalities s —1 < r < s + 2. We plot

the region of possible arrival times subject to the condition in the Cartesian S
plane at right.

If Roger and Stacy were both there at 3:00, then2 <r<3and1<s<3.
We draw dashed lines representing these conditions, and darkly shade the
corresponding outcomes, giving us the diagram on the left below. The

probability we seek is the area of the dark shaded region divided by the 0,0) r (6,0)
area of the total shaded region.
(0,6) (6,6) The overall shaded area is the area of the square minus the area of the

two white triangles, which is 36 — 8 — (25/2) = 31/2. The darker shaded
area has area 2. Therefore, the desired probability is 2/(31/2) = [4/31 |

11.19 Since all of the outcomes are equally likely, we can just count out-
L T T e JE comes.

The number of ways that 14 heads appear is just (%2 .

————— E e Now we count the number of ways that 14 heads can appear, such that

! no two tails occur on consecutive flips. Let H and T denote a head and
(0,0) r (6,0) a tail, respectively, and consider 14 Hs in a row. Then we can insert 6 Ts,
where each T is inserted either between two Hs or at the ends of the row.

The number of such ways of inserting 6 Ts is (l(f).

(¥) 5005 [1001

Therefore, the probability is @ = 35760 ~ | 7752 |

11.20 Suppose that the boss rolls k Es. We will compute the probability that the die is loaded.
If the die is the loaded die, then the probability of rolling k E&s (out of 10 rolls) is

(10) (1 )m
kJ\2] ~
If the die is a fair die, then this probability is
10) (1Y (5)'%*
( k )(6) (6) '
Therefore, the probability that the die is loaded is (note that the (1,?) terms cancel):

13)° 3
%(%)m+ %(%)k(%)lo—k T 310 4 4. 510-k7

where the last fraction is the result of multiplying numerator and denominator by 5 - 6'°. Let’s compute some
probabilities (approximated to 3 decimal places) for the values of k:
k| 1w | 9 | 8 | 7 6 5
P(die is loaded given kE¥s) | 99.993% | 99.966% | 99.831% | 99.160% | 95.938% | 82.529%
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So the pit boss must see E’s to be at least 90% sure that the die is loaded.

11.21  Fix the first point (say, A). Then each of B and C is located between ~180° and 180° counterclockwise
from A. If both B and C are a positive number of degrees (counterclockwise) from A, then all three points will
lie on a common semicircle—in particular, they will all lie on the semicircle starting at A and extending 180°
counterclockwise from A. Similarly, if both B and C are a negative number of degrees (counterclockwise) from A,
then all three points will again lie on a common semicircle. Finally, if one point is a positive number of degrees
from A and the other is a negative number of degrees from A, then the points will lie on a semicircle if and only if
the absolute value of the difference of the distances (in degrees) from A is less than 180°.

We can represent the outcomes where all three points lie on a semicircle as the 180°C
shaded region shown in the Cartesian plane at right.

To determine the “successful” region in which triangle ABC has no angle above
120°, we instead think of the complement, that is, the region in which the triangle -180°
ABC has an angle of at least 120°. This is equivalent to the condition that the points
A, B, C all lie on an arc of length 120°, which is just a scaled version of the condition
that A, B, C all lie on a semicircle (an arc of length 180°).

180°

o o e s e e i e b e

—180°"
180°4C _ So we can use the same analysis, and we see that the successful region is the
] complement of a similar region to our possible region, scaled by 120°/180° = 2/3.
The successful region is the darker-shaded region in the picture at left. By similarity,
the light region in the center of the picture has (2/3)* = 4/9 the area of the entire
possible region. Therefore, the ratio of the area of the successful region to that of the

entire possible region, and thus the desired probability, is 1 — (4/9) = .
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CHAPTER

I Combinatorial Identities

Exercises for Section 12.2

12.2.1 By the Binomial Theorem,

n\ oo (n) o ny M n_ n
(O)x +(1)x 1y+(2)x 2y2+“-+(n)y’ =(x+y)

for all real numbers x and y. Letting x = 1and y = -1, we get

)+t

12.2.2
(a) We expand the left side:

n n!
{3 =4
n!
T (k=Di(n-k)!
B (n - 1)!
~ k- Din—h!

_nn—l
S \k-1f
(b) The LHS counts the number of ways to first choose a k-person committee from a club of n people, and then to
choose one of the k committee members to be its president. The RHS counts the same thing, by first choosing

one of the n club members to be the committee president, and then choosing the remaining k — 1 committee
members from the n — 1 club members remaining.

o) G (=

for all real numbers x. Taking x = 2, we get

o)+ i) 2o

12.2.3

(a) By the Binomial Theorem,
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(b) We have n people, and we wish to form a committee from these people. Each person can either be a
junior member of the committee, a senior member of the committee, or not on the committee, and any size
committee is possible (including an empty committee). Since there are three possible states for each person,
the total number of possible committees is 3".

We also count the number of possible committees as follows: First, we choose k people to be on the
committee, where 0 < k < #. This can be done in (}) ways. Then, we designate each person to be a junior
member or a senior member, which can be done in 2¥ ways. Hence, the number of committees with k people
is 2%(})). Summing over 0 < k < n, we get that the total number of possible committees is

(g) . 2(’1") . 22(;‘) s 2(:) _an,

(a) Starting with a club with n members, the LHS counts the number of ways to form an r-person committee
and then form an k-person subcommittee from the committee. The RHS counts the same thing, by first
choosing the k people to be on the subcommittee, and then choosing the remaining r — k people (from the
club’s remaining 7 — k members) to complete the committee.

(b) Expanding the LHS gives:

12.2.4

n! r! n!

ny\(r _ : _ l
(r)(k) T =K —k) K -K)n—r)

Expanding the RHS gives:

n\fn—k\ _ n! (n—k)! _ n!
(k r=k| K-kl -k) -k -F-k)  kKr-in-"
Thus the LHS and RHS are equal.

12.2.5 For every positive integer k,

kn _k n! _ n! _ (n—1) _[n-1
k)~ 'k!(n—k)!_(k—l)!(n—k)!_n'(k—l)!(n—-k)!_n(k—l’

(3*3(;)*5(;)*'--=n(”gl)+n(”;1)+n(”;1)+...
[ S)(T)))

(&) (22

If n = 1, then this sum is equal to (g) =1, so assume that n > 2. By the Binomial Theorem,

n—1 n—1 n—1 n-1 o
( 0 )+( 1 )x+( 5 )x2+( 3 )x3+---:(1+x) L

Taking x = 1 and x = —1 gives the relations
n—1 n-1 n—1 n-1 _onel
R U Py Y e
n-1 [n-1 " n-1) (n-1 e i
0 1 2 3 7

S0

The problem is now to find the sum
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respectively. Adding these and dividing by 2, we get

n-1 (m-1\ (n-1 gk
(o)) ()T

Hence,

(o)t ool =l

forn > 2.

Exercises for Section 12.3

12.3.1
(a) Expand the LHS:
@) _ G@-1
2 2
_ ”("2_1)["("2_]) _ 1]
B 2
_n(n=1)[n(n-1)-2]
B 8
_nn-1)m*-n-2)
B 8
_nn=1)(n+1)(n-2)
B 8
(n+nn-1)n-2)
=3.
4!
n+1
. s( : )
(b) LetPy, P, ..., P, ben points in the plane. Then (3) is the number of line segments formed by these 1 points

when taken as endpoints, and ((g)) is the number of pairs of line segments.

Now, let Q be another point and choose a set of 4 points from the # + 1 points Py, P, ..., P,;, Q. Each such
set of 4 points either contains Q or it does not contain Q. If the set contains Q, then list the three pairs of line
segments formed by the other three points. For example, if the set is {P;, P, P3, Q}, then list

(PP, P1P3), (P1P, PyP3), (P1P3, PyPs).

If the set does not contain Q, then list the three pairs of line segments formed by the four points, such that the
line segments in each pair have no end-points in common. For example, if the set is (Py, P2, P3, Py), then list

(P1P3,P3Py), (P1P3,P2Py), (P1P4, P2P3).

Thus, each quadruple of points generates three pairs of line segments. Furthermore, note that each pair
of line segments appears exactly once: if the pair does not have an endpoint in common, then it will be listed
as corresponding to the set of its 4 endpoints, and if the pair does have an endpoint in common, then it will
be listed as corresponding to the set of its 3 endpoints plus Q. Therefore,

@41}

132



Section 12.3

12.3.2 Let 7 be a permutation of the numbers 1, 2, ..., n + 1, and let f(r1) denote the greatest integer k such that
n(i) =iforall 1 <i < k. For example, if # = 6 and 7 is the permutation (1,2,3,4,6,7,5), then f(nr) = 4. Then for
each 0 < k < n+1, we count the number of permutations 7 such that f(r) = k.

For k = n + 1, there is only one permutation 7 such that f(m) = n+ 1, namely the permutation (1,2,...,n+ 1),
so assume that 1 < k < n. If f(n) = k, then (i) = i for 1 < i < k, and m(k + 1) # k + 1. Hence, n(k + 1) must be
one of the values k + 2,k +3, ..., n + 1, for a total of n — k possible values for m(k + 1). Once ni(k + 1) has been
determined, this leaves 1 — k values that can be assigned to n(k + 2), n(k +3), ..., n(n + 1) in any order, so the
number of permutations 7 such that f(7) = kis (n — k) - (n — k)!.

Finally, for k = 0, we only require that 71(1) # 1, so 7z(1) must be one of the values 2, 3, ..., n + 1, for a total of
n possible values for 7(1). Once 7(1) has been determined, this leaves 1 values that can be assigned to 7(2), n(3),
.--, m(n +1) in any order, so the number of permutations 7 such that f(r) = 1is 1 - n!. Thus, the formula above
works for k = 0 as well.

The total number of permutations of the numbers 1,2, ..., n +1is (n + 1)1, so summingover0 <k <n+1, we
get

fO+fM)+--+ fm)+ f(n+1) = (n+1)!
© n-ul+n-1)-n-1Y+-+1-11+1 = (n+1)!
=3 1-1'+2-214+3-3!+---4+n-n = n+1)! -1

2
12.3.3 Method 1: We notice that each term has the form (17 — k)( kO) for some value of k. Let’s rewrite that in terms

of things that we’ve seen in previous identities. We write:

20 20 20 20 20 20
(D)) £
= 17(2%) - 20(2")

=14(2") = (72" |

Method 2: Write
S= 17(?50) + 16(210) + 15(220) +eeet O(ig) + (—l)ﬁg) + (—2)(?8) + (—3)(28).
Using (3) = (,0°,), we can rewrite S as:
20 20 20 20 20 20 20
S= (—3)( 0 ) - (—2)( 1 ) + (—1)( ’ ) +oeeet 14(17) + 15(18) + 16(19) + 17(20).

Then add the two equations together:

2= 1) 23] e ) i) i) )

0 1 2 17 18 19 20
= 1(5) (3 2+ () Ga) (o) ol

0 1 2 17) " \18) " \19) " \20
= 14(22).

So § = 14(2¥) = | 7(22) |

12.34 Let's take a closer look at what happens when m = 6, n = 8, and r = 10. In this case, Vandermonde’s

identity states that (g)(180) + G)(g) + (g) (2) . (2)@ . (g)(z) A (160)(3) ) (:ﬁ)
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The terms in the middle, from (§)(f) to ($)(}), make sense, but the terms on the outside contain binomial

coefficients such as (130) and (160), where the number on the top is less than the number on the bottom. We need to
make sure these terms make sense as well.

According to the proof, the number (j}) is the number of ways of choosing 10 people from a group of 8
women. This is impossible, so the only way to make sense of this binomial coefficient is to say (180) = 0. In fact, by
convention, we say that ’;) = 0if n < k. Hence, (1{’0) = 0 as well, and all the terms on the outside disappear, and

the equation above becomes (g)(g) + (g) (3) ) (Z) (2) . (g)(g) .\ (2)(2) - Gg)

But if all these terms disappear, then are there any committees we might be missing? In the above example,
we want to form a committee of 10 people from 6 men and 8 women. Since there only 8 women, there must be
at least 2 men. Similarly, since there are only 6 men, there must be at least 4 women. Hence, all the terms in the
equation above do capture all possible committees. Thus, in general, the committee-forming argument still works
when r > m or r > n, and Vandermonde's identity still holds.

12.3.5

(a) Ifa=4andb =6, then we can write

10+6+3+1_Q+Q+Q+Q _©

15 (2) @

where the last step is the application of the Hockey Stick identity. Similarly, if 2 = 4 and b = 7, then we write

7

20+10+4+1 _Q+Q+E+G _Q
35 @ @

(b) We rewrite each term of the sum over the common denominator (E), as follows. For all 1 < k < a, we have

aa-D@=2)-@-(k-1) _ &8
bb-1)(b—-2)---(b—(k-1)) (T'l—’!ﬁ

al
(a—k)!
pt  al(b-a)!
al(b—a)! (b-k)!
al (=R}
(a—k)! al(b—a)!

b!
al(b—a)!
(b—k)!

T=-0)a—k)!

b!
al(b-a)!

)

@

Therefore, the sum that we want to compute is:

a a@-1) a@-D@-2) al G, 6D 6D G

b -1 The-DE-2 " TH-D- G- D O 0 0 T
_ GGG+ + G

)
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By the Hockey Stick identity, the numerator of this is equal to (b _ Z N 1), and thus our sum is equal to

b B!
(hoes1) _ mar) (a1

() =T
_ (b —a)la!
T (b-a+1Dla-1)!
_ a
b—a+1

Plugging ina = 19 and b = 99 gives the answer &, as before.

Review Problems

12.11 Since () = (,"

n=k/*

By Vandermonde’s identity,

12,12 Since (i) = (")), ) "
MHNEYED ¥ N

The sum is a candidate for Vandermonde’s identity, since the sum of the bottom numbers of the binomial
coefficients is constant. We can see the application of the identity more clearly if we make the substitution

Z”: (n . k)(kf 1) - "Z_I‘ (n - (?; + 1))(’;)

k=1 =0

The j = n term is missing from the sum, but note that ("_(:: +1)) = (")) = 0. So the j = n term is 0, so we can extend
the sum to j = 1, and then apply Vandermonde’s identity to give

Llo-onll)-022)

12.13

(@) The LHS counts the number of ways to choose an r-person committee from a club of n people, and then
choose one of the n — r people not on the committee to be club president. The RHS counts the same thing,
by first choosing one of the 7 club members to be club president, and then choosing the r-person committee
from the remaining # — 1 members.
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(b) We expand the LHS:

n !
(n— r)(r) =(n- r)r!(n_—r)!

n!
T Hm—r—1)
5 (n—1)!
B nr!(n -1-n

_ n(” - 1).

12.14
(a) We simply expand each term on the LHS:

(;1) 4 6(;) " 6(;) i Em(nz— 1) . 6n(n — i)(n -2)

=n+3nn—-1)+nn-1)(n-2)
3

=n+3n*-3n+n°-3n+2n=n’.

(b) The RHS counts the number of ordered triples (a,b,c), where 1 < a,b,¢ < n are positive integers. The LHS
also counts those triples, by breaking them into three exclusive cases. The (]) counts those triples in which all
three numbers are the same, and the (3!)(3) term counts those triples in which all three numbers are different.
Finally, the 3 x 2 X (3) term counts those triples in which two of the numbers are the same and the third
is different: there are (3) choices for the two numbers, then 2 choices for which number appears twice and
which appears once, then 3 choices for the slot in which the single number appears.

12.15 We can prove the identity algebraically:

T+ (1+1)(p+1) (a)(p+2)  @+2a+D) (p+2p+1)
) () (P27 - 2D s gy 222

_ GP+3q+2+2p0+2p+2g+2+p* +3p+2
=p2+2pq+q’-+5p+5‘;+6
_ (p+q)2+5(p2+q)+6
=(p+q+3)%p+q+2)

2

_[ptq+3
= i

We can also prove the identity combinatorially, as follows. Let A be a set of p + 2 points in the plane, and
let B be a set of q + 2 points, such that A and B have exactly one point in common, say X. Then #(A U B) =
#(A)+#(B)—#ANB)=(p+2)+(g+2) -1 =p+g+3, so the number of line segments whose end-points are in A
or Bisequal to (¥ +g+3).

We can count the number of line segments in a different way. Every such line segment comes under one of the
following exclusive categories:

e Both end-points are in B.
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¢ One end-point is in B and the other end-point is in A, and neither end-point is X.

e Both end-points are in A.

The set B consists of g + 2 points, so there are ("?) line segments with both end-points in B.

There are g + 1 points in B other than X, and p + 1 points in A other than X, so the number of line segments
with one end-point in B and the other end-point in 4, and neither end-point is X, is (* ‘1“1)(‘71'1).

The set A consists of p + 2 points, so there are (* ;2) line segments with both end-points in A.

Finally, (/) = () = 1, so the total number of line segments is

CR ) (7))

12.16 Let S, denote the given sum. We divide into the cases where n is odd and # is even. If n is odd, then
n = 2m+ 1 for some nonnegative integer m, and
(Zm + 1)
+ ’
m

/2]
n 2m+1 2m+1
=L ()-() ()

=0
This looks like half of the elements in a binomial expansion. In fact, since (2";:'1) =(,
2m+1 2m+1
zs,f=( ; )+( 1 )+

_(2m+1 5 2m+1 4
Lo 1

— n2m+1
=2 ;

2m+1
m+1-k/7

(Zm + 1) (2111 + 1) (2m + 1) (Zm + 1)
o + RS +
m m 1 0

@ 2m+1 5 2m+1 - 2m+1 + 2m+1
m m+1 2m 2m+1

S0 S” = 22m = 2}:—1_

Now if n is even, then # = 2m for some nonnegative integer m, and

11/2]
n 2m\ (2m 2m
= L 0)=() (7))
i=0
By the same argument as above,

R e o B o S G 4
g1 R P R ol 8 4

— 22:11 + (2??1’)’
m

05, =22 4+ JC) = 271 4 1(1)

To summarize,

/2l ~ on-1 if nis odd,
L\ =) o1 4 %("’;2 if n is even.
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Challenge Problems

12.17 To get started on the problem, let’s look at a small case, say with three numbers 4, b, and c. Then the
geometric means generated by these three numbers are

a, b, ¢, Vab=a"p"2, ~ac=a2"?, bc =522, Nabc = alPp P13,
and the geometric mean of these geometric means is
(@-b-c-al2pV2 . gV 2cV2 . pl2EN2 | qUBRUBIBYT — (g7 135713 (713117

— g3pl3 3
= Vabe.

Thus, the result is true for three numbers.

Now, we are set to prove the general result. Let k be a positive integer, where 1 < k < n. Then the (}) geometric
: P g P 8 &
means involving k numbers are
(ma2--- ak—lﬂk)” k; (maz--- ﬂk-lﬂkn)”kr S (ST A R an—lﬂn)”k-

To compute the product of these (;) numbers, we first determine how many times each number 4; appears among

them. For example, the number a; appears in ":1 of these () geometric means, because once we have chosen a;,
P PP k-1 8

there are k — 1 numbers left to choose from the remaining # — 1 numbers. By symmetry, all of the 4; also appear

*"1) times. Therefore, the product of these (}) geometric means is

n-1 n-1 nA!)
= — -1\1/k
(alk z)agx 1 "'ﬂ"k 1 ) / ]

Multiplying over 1 < k < n, we find that the product of all 2" — 1 geometric means is
L =1 n-1 n-1
H(alkﬁz)ag\--l e ﬂ“k-l))lj'k.
k=1

(There are 2" — 1 geometric means because there are 2" subsets of {ay,ay, . ..,a,}, but we must exclude the empty
set.)

The exponent of each number g; in this product is
B
= k\k-1
so the next step is to find this sum explicitly. Note that

1fn-1)\ 1 (n—1)! _ (n=1)! _ 3 n! 1{n
- )

k

Tk k=Dn-k! K@n-k' n Kn-K n
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Hence,

I

e l n
== 2" -1).
Therefore, the product of all 2" — 1 geometric means is

r

" n-1 n-1 n-1 " "__ n
H (as*'l agk- ). a’{lk-l))l,’k _ agz ~1)/n agz D/ @D
k=1

which implies that the geometric mean of all 2" — 1 geometric means is

(aizn_l)!ua(zzu_]_)ht . aslzﬂ—]_”n)]_,{(zu_l) — a}/nﬂ;/u — a}l{/u —

which is the geometric mean of the original n numbers, as desired.

May---ay,

12.18 First, observe that we can let the sum go from k = 1 to 11/2, because the summand for k = 0is 0. As derived

in previous problems, 2k(3;) = n(}i_}), so the given sum is equal to

) R | B 1

k=1
_|aofn—1 gfn=1)  oafn-1
—n[Z( 1 )+2( 3 )+ +?_(ﬂ_1 .
By the Binomial Theorem,

n—1 n-1 n-1 n-1 _ el
( " )+( 1 )x+( 5 )x2+( 5 )x3+ =(1+%)
for all real numbers x. Taking x = 2 and x = -2, we get
n—1 n—1 afn—1 sfn—1 o1
R i T L P (s PR

n-1 n—1 n-—1 n—1 nel _
L e

respectively. Subtracting the second equation from the first, we get

22(";1)+24(";1)+---=3"‘1+1.

Hence,

=|n(3"1+1)|
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12.19 First, we write the sum out:

L G)=(0)-()+ ()~ a)

k=0
By the Binomial Theorem,

99 99 99 M3, %

(0)+(1)x+(2)x2+(3)x+ =(1+x)

for all x. To mimic the given sum, we want to take a value of x such that x> = —1. The values that satisfy this
equation are the complex numbers i and —i. Substituting these values, we get

99\ . [99) (99) (99) 5  _ . .o

(U)+l(1) (2) 1(3)1’3-1— =(1+i)7,

99 99\ (99}, (99 1

(o) ()-(2)+ e
respectively. Adding these and dividing by 2, we get

99\ _ (99, (%9 L _@+)®+a-i)®
0 2 a) T 2 :

Hence, the problem is finding (1 + i) and (1 —#)*°.
Note that (1 +1)? =1+ 2i — 1 = 2i. Hence,

A+)P =1+ -1+1)
=[A+°1¥ - (1+19)
=2)%-(1+1)
=29.% . (1+i)
=29 (1+1i)
=-2% + 2%

Similarly, (1 —i)?> = 1 —2i — 1 = -2i. Hence,
Q-9®=1-)*-(1-9
=[1-9*® - (1-9)
(-2)% - (1-1)
_2%. 49 (1 - )
—2%.i.(1-1)
= 049 _p89;

I

Therefore,

99\ _(99), (%9)_..._ 1+D¥+-9)*
0) 2) (4) N 2

_249 + 2491' _ 249 _ 2491'

2
E
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12.20 Consider a dance class that has n men, » women, and one teacher. If only n people show up for a certain
class (and the teacher might not!), then there are a total of (**') combinations of people that can be present.

We can also count the number of combinations as follows: Assemble the original # men and n women into n
couples. Then among the n people who show up, there will be some people whose partners are also present and
some people whose partners are absent. We count the number of combinations where there are i people whose
partners are absent, for0 <i < n.

First, we choose the couples containing the i people with missing partners. There are a total of n couples, so
we can choose these 7 couples in (}) ways. Next, we want to choose one person from each couple to show up. This
can be done in 2/ ways, so there are 2'("}) ways to choose the i people with absent partners.

We now choose the couples who do show up. Let k be the number of couples who do show up. If the teacher
shows up, then 2k + i+ 1 = n, so k = (n — i — 1)/2. If the teacher doesn’t show up, then 2k +i =n,so k = (n —i)/2.
Either way, k = [(n —1)/2].

Above, we have already selected i people whose partners are absent, leaving n — i potential couples to show
up. Then the number of ways to choose the k couples who show up is (";1) = (L(nn-_ﬂliz ;)- Summing over 0 <i < n,

we get
izi(n)( n—i ) _ (Zn + 1)
if\l(n—1)/2] n )

i=0
12.21 We want the sum of every third coefficient of (1 + x)>. Let w = '“’T‘@ be a primitive cube root of unity, so
that @® = 1. Note that 1 + @ + @? = 0, and more generally 1 + * + @* = 0 for any k that is not a multiple of 3.

Then we apply the Binomial Theorem:
o))
n_ (1 n n) o s ny
(1+w)" = (0) + (1)w + (Z)m +eood (n)w :
(1+a?)" = (g) + (;‘)m"- + (g)m“ SR (z)wz",

and if we add these together, all of the terms on the RHS with coefficients of the form (i), where k is not a multiple
of 3, will cancel out. Thus we have:

2"+(1+m)"+(1+w2)"=3((3)+(g)+(2)+---).

To simplify the LHS of the last expression, note that 1 + @ = —w? and 1 + w? = —w, therefore the LHS is equal
to 2" + (—w)" + (—@?)" = 2" + (-1)"(w" + w?"). We further note that @" + @*" = -1 if n is not a multiple of 3, and
@" + W™ = 2 if n is a multiple of 3.

Therefore, we conclude that:

n _1yn+1
% if n is not a multiple of 3
()t
0 3 6 2!! + 2(_1)1! . i .
— if n is a multiple of 3

12.22 For all parts, we'll define S, = {1,2,...,n}, to make the solutions a bit more concise.
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(@)

(b)

(©

(d)

There is only 1 way to partition S, into 1 non-empty subset: that 1 subset has to be S, itself. So {rlz} = .
Also, there is only 1 way to partition S, into #n non-empty disjoint subsets: each subset in the partition must

have 1 element, so the only partition is {1}, {2}, ..., {n}. Therefore, {::} = .

To partition S, into 2 non-empty disjoint subsets, we want 5,, = AUB with A, Bnonempty and ANB = 0. Each
element of S, can be placed into either A or B, so there are 2 choices for each element of S,,, and thus 2" overall
arrangements. We must then divide by 2, because we don’t care about the order of A and B, and we must

subtract 1, because S,,, 0 is not a valid partition (both sets must be nonempty). Therefore, {g} = .

To partition S, into n — 1 non-empty disjoint subsets, we must have 1 subset with 2 elements, and the
rest with 1 element each. So we simply must choose which 2 elements of 5, are going to be in the 2-element

subset, and therefore{ " } = (n) )
n-1 2

The RHS counts partitions of S,,; into k disjoint subsets. We will also count these partitions by the LHS, in
two cases. If the subset { + 1} appears as a member of the partition, then the rest of the subsets form a valid

partition of 5,, with k — 1 sets, and there are k f 1 of these. Otherwise, n + 1 appears as an element in a
larger subset of the partition. If we delete this element, we get a partition of S, into k subsets. The element
1 + 1 could have been in any of the k subsets of this partition, so there are k {:} partitions of S, withn +1

in a subset of more than 1 element. Adding the two cases together establishes the identity.
Multiply the desired identity by k!, so that we are trying to prove

k
k! {’;} = Z(-l)f(k.)(k - i
=Y

The LHS counts the number of ordered partitions of S, into k non-empty disjoint subsets. We will show that
the RHS counts the same thing, using PIE, as follows. Write out the RHS without the summation notation,
so that it is easier to see what’s going on:

1 k n k n
=B fe-ar -

Imagine that there are k subsets (in order), and place each element of S, into one of the subsets. The number
of ways to do this is the first term, k". However, this may leave some of the subsets empty. The i subset is
empty if all of the elements are placed into one of the other k — 1 subsets, so there are (k — 1)" ways to do this
for all of the elements of S,,, and there are (¥) ways to choose a subset to be left empty. This gives the second
term. But this over-subtracts those arrangements in which two subsets are empty. There are ('2‘) choices of a
pair of subsets, and (k — 2)" ways to place the n elements into the other k — 2 subsets, which gives the third
term. But this overcounts the arrangements in which 3 subsets of empty... and so on.

Therefore, this expression is just the PIE expression for the number of ways to place the 7 elements into k

distinguishable subsets, so that no subset is left empty. As discussed above, this is the same as k! {:}, S0 we

have established the formula.
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I Events With States

Exercises for Section 13.2

13.2.1 There are two intermediate states—we’ll call S the state of standing on a vertex that is one move away from
A, and we'll call T the state of standing on a vertex that is one move away from B. Then we have the following
state diagram, where the numbers indicate the number of moves from one state to the next:

3 2 1
. e W ™
OnA L} T On B

\1_/ \?/

We have three different ways that we can get to B in 5 moves or less; for each of these ways, we multiply the
number of choices in each step to get the total number of possibilities.

We can go directly to B via ASTB. This way has 3 X 2 X 1 = 6 possibilities.
We can go to B via ASASTB. This way has 3 X1 X3 X 2 X 1 = 18 possibilities.
We can go to B via ASTSTB. This way has 3 X2 x 2 x 2 x 1 = 24 possibilities.

Therefore, there are 6 + 18 + 24 = paths to B in 5 steps or less.

13.2.2 Label the vertices of the cube A through H, as shown, and let the bug start at D C
vertex A. From A, the bug can move to one of three vertices, and then from this second
vertex, the bug can move to one of two vertices. Without loss of generality, assume
that the bug goes from A to B to C. (We multiply the answer at theend by 3-2=6t0 A
account for this assumption.) From C, the bug can go to either D or G.

| =

If the bug goes to D, then it must proceed to H, and then traverse around the bottom H
face in one of two directions. If the bug goes to G, then the only way the bug can visit
every vertex is by passing through the vertices F, E, H, and D, in that order. Hence, the
total number of paths (starting at A) that visit every vertexis 6 - (2 + 1) = 18.

E F

Since there are three possible choices at each vertex, the total number of paths (starting at A) is 3”. Therefore,

the probability that the bug visits every vertex is -?- = 2%3- .

13.2.3 We set up a 4 x 4 state diagram, as we did in Problem 13.1:
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Yankees win
5 A7 7
18 103 @108 0
5 17 7 227 227
9 36 18 648 648
&
5 va 2 17 85
6 18 9 108 618
@ g
z
L bk a8
0 0 0 0 A

Each step to the right corresponds to a win by the Red Sox and each step upwards corresponds to a win by
the Yankees. For example, to compute the probability of reaching state (2,3) (which denotes the Red Sox winning
2 games and the Yankees winning 3 games), we look to the two possible previous states, namely states (1,3) and
(22).

The probability of reaching state (1,3) is 17/36, and the probability of reaching state (2,2) is 2/9. In both states,
four games have been played, and the probability that Red Sox win the fifth game is 4/6 = 2/3. Therefore, the
probability of reaching state (2,3) is

-+

wir

wls—'

(<28 |
W=
o N
|

18

The probability that the Red Sox win the series is the sum of the probabilities of the “Red Sox win” states,

which is:
04 L 8 227 324 |1
54 648 648 648 |2

Seeing such a nice answer, we may wonder if there is a simpler solution. It turns out that there is a very clever
solution. Suppose that the series is always played out to seven games, even if one of the teams wins four games
in the interim. The probability that the Red Sox win game n is (1 — 1)/6, but the probability that the Yankees win
game8-nis1—(8—-n-1)/6 =(6—8+n+1)/6 = (n—1)/6. Hence, the series of seven games is symmetric with
respect to both the Red Sox and Yankees, which means that both have a probability of 1/2 of winning the series.

13.2.4 We call a sequence of ants
A2 Ao A3 > oA A

a cycle, where ant A; moves to A,’s spot, ant A; moves to A3’s spot, and so on, finishing with ant A; moving to ant
Ay’s spot. The positive integer d is called the length of the cycle. (In particular, a cycle of length 2 is just two ants
switching places.) If no two ants arrive at the same vertex, then the movement of the ants can be decomposed
into one or more cycles, and we have the following cases.

Case 1 Two cycles of length 3.

A cycle of length 3 corresponds to a triangle, which must be a face of the octahedron. There are 8 faces, and
once a face has been chosen, the other three vertices must form the other cycle of length 3. Note that this
counts each pair of faces twice, so the number of ways of choosing a pair of faces is 8/2 = 4. Then, each cycle
of length 3 has two possible directions, so the number of permutations in this case is 4 -2 - 2 = 16.
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Case 2 One cycle of length 4 and one cycle of length 2.

A cycle of length 2 corresponds to an edge of the octahedron, of which there are 12. Once the edge has
been chosen, the other four vertices must form the cycle of length 4. The edges of this cycle are uniquely
determined, but there are two possible directions, so the number of permutations in this case is 12 - 2 = 24.

Case 3 Three cycles of length 2.

Asin Case 2, a cycle of length 2 corresponds to an edge of the octahedron, of which there are 12. We begin by
choosing one of the 12 edges. This leaves four vertices, and there are two ways to divide them among two
more edges. However, this counts each triple of cycles of length 2 three times, so the number of permutations
in this case is 12-2/3 = 8.

Case 4 One cycle of length 6.

For clarity, we label the vertices:

Consider a cycle of length 6 that begins with vertex A. One of the other five vertices must be the fourth
vertex in this cycle. For example, we count that there are four cycles of length 6 that have B as the fourth
vertex:

A—-C—-D—->B—->F—->E—A,
A—-E—-C—=B—-D—-F-A,
A—-E—->F—2B—->D->C-oA,
A—-F->D—-B—->C—->E-A.

By symmetry, there also four cycles of length 6 that have C, E, and F as the fourth vertex. (The situation for
these vertices is symmetric because they are all adjacent to A.)

We are left with counting the number of cycles of length 6 where the fourth vertex is D. The first half of this
cycle must be of the form
A->X—->Y—-D.

There are four vertices from which to choose X, and then a further two vertices from which to choose Y.
Then the two vertices for the second half of the cycle are uniquely determined, but there are two ways to
order them, so there are 4-2 -2 = 16 cycles of length 6 in which the fourth vertex is D. The number of
permutations in this caseis 4 - 4 + 16 = 32.

Hence, the total number of ways the ants can move so that no two ants arrive at the same vertex is 16+24+8+32 =
80. Each ant has four possible vertices it can move to, so the total number of ways the ants can move is 4 = 4096.

Therefore, the probability that no two ants arrive at the same vertex is 80/4096 = | 5/256 |.
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Exercises for Section 13.3

13.3.1 Letpbe the probability that Carol wins. Then for Carol to even get to her first roll, Alice must roll a number
other than , and then Bob must roll a number other thanl: &. The probability of this occurring is 5/6-5/6 = 25/36.

Then Carol wins if she rolls a l &, and the probability of this occurring is 1/6. Otherwise, she does not roll a2 &, and
we are back to Alice rolling. Hence,

_§(1+§) I
P=36\6 " 6" P=lo1|

13.3.2 Rather than one player taking all his swings and then the other player taking all his swings, we imagine
that the players are alternating swings.

(a) There are 3 possibilities for the result after each player has taken 1 swing.

e Doug could hit a home run and Ryan could strike out, in which case Doug wins. This occurs with
probability 1.

e Doug could hit a home run but Ryan could too, in which case we would be right back where we started
(they’d be tied with 1 home run apiece, and they’d each get to swing again). This occurs with probability
1
g-

e Doug could strike out, in which case he doesn’t win (regardless of what Ryan does). This occurs with
probability 2.

If we let p denote the probability that Doug wins, then we have that p = % + %p. Solving for p gives us the

1
answer p = .

(b) Again, there are 3 possibilities for the result after each player has taken 1 swing.

e They could both strike out, in which case they tie. This occurs with probability 1.

e They could both hit a home run, in which case we get back to where we started (they’d be tied with 1
home run apiece, and they’d each get to swing again). This occurs with probability .

e One of them hits a home run and the other one strikes out, and they don’t finish tied.

; . 2

Let q denote the probability that they finish tied. Then g = § + 14. Solving for g gives us the answer g = .

13.3.3 Let u be the expected number of points necessary. If Homer wins two consecutive points, then we will

need 2 points for someone to win the game, and the same is true if Marge wins two consecutive points. This

occurs with probability % + % = l,_% Otherwise, they each win a point, and we go back to deuce, and we will

expect to need 2 + i points for someone to win the game. This occurs with probability 3. Therefore, we have the
equation

13 12 12

p—2(£)+(2+,u)(£)—2+£y.

50

Solving gives u = &t

13.3.4 Let Hand T denote a head and a tail, respectively, so a sequence of flips corresponds to a sequence of H's
and T’s. Then as the coin is flipped and the sequence of H’s and T's is generated, the part that we are interested
in is the current contiguous block of letters, whether it is a contiguous block of H's or a contiguous block of T's.

For example, suppose the sequence of flips begins THHTHHH. Then the significant part of this sequence
consists of the last three H's. However, if the next flip is a T, then the current contiguous block would reset to
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a single T. With this in mind, we generate the following state diagram, where each state represents the current
contiguous block of letters. Note that the process ends when either of the states HHHHH or TT is reached.

0 -

N=
[

/

[ ]

We can considerably simplify this diagram by consolidating the four intermediate “heads” states on the top row
of the above diagram. Specifically, we consider our intermediate states to be series of flips that end in either T or
HHHH. This produces the state diagram below:

L o

1
[ HHHH | ———| HHHHH |
/

Note that if we are at state T, and we flip between 1 and 3 heads followed by a tail, we end up back in state T.

Let x be the probability of ending at HHHHH starting at state HHHH, and let y be the probability of ending
at HHHHH starting at state T. Then we have the system of equations

.
= zy’

1
y-—x+—y

Solving for x and y, we get x = 9/17 and y = 1/17. Therefore, starting at state @, the probability that a run of 5
heads is encountered before a run of 2 tails is

15 24 3

1
16° 1 16Y T @ean ~ |34

13.3.5 Letp be the probability that in any individual game the person who goes first wins. The first player wins
if the first flip is a head, which occurs with probability 1/2. Otherwise, the flip is a tail, and then it is the second
player’s turn, whose probability of losing is 1 — p. Hence,

2
d-p) = p=3

I\Jll—-‘

L,
p=37

Let a, and b, denote the probabilities that Alfred and Bonnie win the n' game, respectively. Since Alfred goes
first in the first game, a; = 2/3 and b; = 1/3. For all n > 2, we have the recurrence relation
1 2

Ay = gan—l + é‘bn—l-
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Similarly,

2 1
b, = §an—1 w gbu-l-

We can use these relations to generate all the terms up to bg:

nil|{2|3]|4)| 5 | 6
A EEBEEEE
"I13]19|27|81|243 | 729
A BEBEBEIES
31927 |81 | 8 | 729

Hence, the probability that Alfred wins the sixth game is | 364/729 |
We could have reached the answer more quickly by observing that

1 2 2 1 1
ay —by = (_an—l + gbn—l) - (-an—l + gbn—l) = "g(an-l = by-1)

3 3
foralln > 2, and a; — by = 1/3. Hence, a, — b, = —(-1/3)" for all n = 1. But a, and b, are complementary
probabilities, so a, + b, = 1. Therefore,
o= 1-(-1/3)"
n=— 2 .

In particular,

_1-(-1/3)° _ 364

A 2 729

Exercises for Section 13.4

13.4.1 Inall of these parts, we must show that, for every winning position, there exists a move that yields a losing
position (or wins the game immediately), and that, for every losing position, all moves yield a winning position.

@)

(b)

(9

The losing positions are the multiples of 3. If the number of chips is 1 or 2 more than a multiple of 3, then
the player can always take 1 or 2 chips, respectively, to move to a multiple of 3 (or to win the game if there
are only 1 or 2 chips left). On the other hand, if the number of chips is a multiple of 3, then removing 1 or 2
chips will leave a non-multiple of 3, which is a winning position.

The losing positions are the multiples of 7. If the number of chips is between 1 and 6 more than a multiple of
7, then taking that “extra” number of chips will leave a multiple of 7 (or win the game if there are fewer than
7 chips left). If the number of chips is a multiple of 7, then removing any number of chips between 1 and 6
(inclusive) will leave a non-multiple of 7.

Experimenting with low numbers of chips will give the following:

Chips|[ 1 [2]3]4|5]6[7[8]9]10
Win/Lose [W |L |[W |[W|L|W |[L|W|W| L

This suggests that positions that are 1, 3 or 4 (modulo 5) are winning positions, and positions that are 0 or 2
(modulo 5) are losing positions. Indeed, this is the case, as we see in the following chart:
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Number of chips modulo 5 | Move(s)
0 (losing) | Taking 1 chip leaves the winning position 4 mod 5

Taking 4 chips leaves the winning position 1 mod 5
1 (winning) | Taking 1 chip Jeaves the losing position 0 mod 5

2 (losing) | Taking 1 chip leaves the winning position 1 mod 5
Taking 4 chips leaves the winning position 3 mod 5
3 (winning) | Taking 1 chip leaves the losing position 2 mod 5
4 (winning) | Taking 4 chips leaves the losing position 0 mod 5

As we see from the chart, all moves from losing positions lead to winning positions, and there exists a
move from every winning position to a losing position.

(d) This is actually the same as part (a); the losing positions are the multiples of 3. If the stack size is not a
multiple of 3, then the player can take 1 or 2 chips to create a multiple of 3. On the other hand, if the stack
size is a multiple of 3, then removing any power of 2 will create a stack size that is not a multiple of 3.

(e) The losing positions are any odd number (more than 1) of chips. Since all divisors of odd numbers are odd, a
player with an odd stack will be forced to remove an odd number of chips, leaving an even stack size. From
even-sized stacks, simply removing 1 chip will leave an odd-sized losing position (unless there are only 2
chips, in which case removing the 2 chips will win the game).

13.4.2 We works backwards from 1000. Note that 1000/9 = 111§, so any integer greater than or equal to 112 is
a winning position, since there exists a multiple of any of these that is at least 1000. (Throughout our solution,
“multiple” means a multiple by 2 through 9.) Thus, any integer between 56 and 111 (inclusive) is losing, because
all multiples of these integers are at least 112. Continuing backwards, any integer between 7 and 55 (inclusive) is
winning, because for each there exists a multiple between 56 and 111. Then, the integers 4,5,6 are losing, because
all multiples fall between 7 and 55. So 1 is winning, because Larry on his first turn can write 4 (or 5, or 6), forcing

Sean to lose. Thus should win.

13.4.3 The immediate losing position is two piles of size 1; this is the only position in which a move is impossible.
Therefore, any position with either pile of size 2 is winning: the player can remove the other pile and split the
size-2 pile into two piles of size 1.

More generally, the losing positions are those with two piles each of odd size. The player is forced to split an
odd pile, leaving an odd pile and an even pile. The other player can then remove the odd pile and split the even
pile into two odd piles, producing a new losing position for the first player. (If the game starts with two even
piles, simply remove one and split the other into two odd piles.) So the winning positions are those in which

at least one pile is everTI.

1344 We know that two equal piles is losing, and that three piles of sizes (1,n,n+1) Move | Response
is losing for 7 even. We will show that, given any move by the first player, the second "~ (1,4,6) | (1,4, 5)
player can always leave one of these positions for the first player. This will show that the (2,3, 6) | (2,31
initial position of (2,4, 6) is losing. (2,2,6) | (2,2,0)
2,1,6)[ (2,1,3)
(2,4,5) | (1,4,5)
(2,4,4) | (0,44
(2,4,3) | (2,1,3)
As we see, every first-player move has a response that leaves a losing position. There- (2,4,2) | (2,0,2

fore, the | second player |should win. 241) ] (231)

13.45 The|first player | can win by drawing a diagonal between two opposite vertices (that is, vertices that are
50 edges apart). This splits the 100-gon into two halves, and the first player can simply copy any move that the
second player makes, but in the opposite half of the polygon. This ensures that the first player will always be able
to move.

If the first player takes all the chips from any pile, the second player can always then
create two equal piles. So we will only list first-player moves that leave three piles. These
moves, and the second player’s responses, are shown in the table to the right.
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13.4.6

(a)

(b)

The | first player | can win by removing 4 chips from each pile, leaving (1,2). If the second player removes an

entire pile, then the first player wins by removing the other pile; the only other possible move is to remove 1
chip from the larger pile, and then the first player wins by removing 1 chip from both piles.

The smallest losing position is the (1,2) position described above. Any other position of the form (1,n) or
(2,n) is winning, by leaving the (1, 2) position for one’s opponent.

We now look for losing positions with 3 chips. (3,1), (3,2) are winning as described above, and (3, 3) is
an immediate win (just take 3 chips from both piles). (3, 4) is also winning since removing 2 chips from each
pile leaves the (1,2) losing position. But (3,5) is losing: any move will leave a winning position. Also, any
larger position in which the piles differ by 2 chips is a winning position: remove enough chips from both
piles to leave (3, 5). Similarly, any larger position of the form (3, n) or (5, 1) is winning: remove enough chips
from the n-chip pile to leave (3,5).

The next smallest losing position is the position (4, 7), where both piles contain a number of chips not in any
previous losing position, and the difference in the number of chips is larger than any previously-considered
difference. This leads to the winning positions (4, n), (7, ) and (m, m + 3) for any larger # or m.

These examples lead to a recursive method to determine the losing positions (xy, ¥,). We already have
(x1, 1) = (1,2), (x2, 12) = (3,5), and (x3, y3) = (4,7). We recursively define x, to be the smallest positive integer
that does not occur as x; or y; for any 1 < i < n, and then y, = x,, + n. This gives the following chart of losing
positions:

n|1/2(3|4|5|6|7|8|9]|10
x (13|46 | 8|9 (1112|1416
¥a ||2|5]710 |13 [15[18 20|23 |26

Note that every positive integer will appear as exactly one x,, or y,. What is very remarkable (though we will
not prove it here) is that
{1 +v5 J
Xn = n

2

for all positive integers n.

Review Problems

13.13 If Andrea ever flips a T, then she stops when she flips an H, at which point she ends with the sequence
TH. Therefore, Andrea stops by flipping HH if and only if her first two flips are H's, and the probability of this

occurring is .

13.14 There are four distinct types of cubes: corner cubes, edge cubes, face cubes (the cubes

that are at the center of each face), and the center cube. These cubes are labeled C, E, and

E respectively, in the diagram at right. We have the following state diagram that shows the E it
probabilities of moving from one cube to the next: C|E F
E[F|E[B
i % % cE[ck
/"—\
Corner Edge Face Center
\_/ ‘
1 4
2 5




Review Problems

Let yc, pg, and Ur denote the expected number of minutes to reach the cheese when the mouse starts from a
corner, edge, and face cube, respectively. Then using the above state diagram, we have the system of equations:

He=pe+1,
a2 +—1- +1
.uf—zyc SHF+1,

= Zup+1
FF-SFE '

Substituting the third equation into the second equation, we get

1 1/4 1 2 3
b= gpct 3 (5me +1)+1= e+ 2+ 2
S0
3 1 3
BHES gHct 3

Substitut'ing HE = lic — 1, we get
Bhe—1y= Ly ?
sHeT U=kt

SO Uc = .

13.15 For1 < n < 2, let a, be the expected number of replacements needed when starting with n green beads
and 4 — n red beads, until all the beads are red.

First we compute a;. If the bag contains 1 green bead and 3 red beads, then the probability of drawing the
green bead is 1; if this occurs, then we are finished. The probability of drawing a red bead is 2; if this occurs, there
is still 1 green bead and 3 red beads, Therefore,

1 3
H1=Z-1+Z(a1+1) = m=4

Now we compute a,. If the bag contains 2 green beads and 2 red beads, then the probability of drawing a

green bead is % ; if this occurs, we will have 1 green bead and 3 red beads, which was done above. The probability

of drawing a red bead is also 3; if this occurs, we still have 2 green beads and 2 red beads. Therefore,

1 1
azzi(a1+1)+§(a2+1) = a2=a1+2=@.

13.16 On any given point, Bart calls “Let” with probability 1, Homer wins the point with probability z. 2= Z,
and Marge wins the point with probability 2 - 2 = 1. This results in the following state diagram:

Marge Win Ad Marge Deuce Ad Homer Homer Win

[S]1 %}
O-
(631138
O-
21181

a«
{
w«

The loops above the intermediate states represent when Bart calls “Let.”
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Letd, h, and m denote the expected number of points remaining to play at Deuce, Ad Homer, and Ad Marge,
respectively. Then we have the following system of equations:

1 2
m—l+—m+§d,

3
1, 2 4

d—1+§d+§h+i-5-m,
1 4

h=1+ '3-]1 + l—sd

We can multiply this system through by 15 to get rid of the fractions, and move all of the variables to one side:
10m — 6d = 15,
—4m + 10d — 6h = 15,

10h —4d = 15.

Using the first and the third equations, we can substitute m = (15 + 64)/10 and h = (15 + 44)/10 into the second
equation, giving:
—4((15 + 6d)/10) + 10d — 6((15 + 4d)/10) = 15,

which solves to gived = [ 75/13|.

13.17 Let a, denote the expected number of visits to 0, given that the alien is at position n. We get the system of
equations:

ag =a,
m= —;-(ag + 1) + %az,
ay = 1111 * lﬂs,

2 2

1 1
3 = Eﬂz + 5614,

1

g = -2123.

Substituting the last equation into the one above it reduces the system to:
o = M,

1 1
a = E(au + 1) + Eﬂz,

1
ap) = Eal + Eag,

a —la +1a
3= 502+ 73

The last equation gives a3 = 3a,, and substituting this reduces the system to:
g =,

1 1
i = E(ﬂo + 1) + Eﬂz,

a ~1a +lu
2 = i+ 3.

The last equation gives a; = %al, and substituting this give:

ag =,

1 3
a = E(ﬂo +1)+ §ﬂ14
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This last equation is a; = %al + %, soayp = = E

13.18 Note that the following solution is incorrect:

There are (}) = 35 paths to B. There are () = 15 paths to C. Therefore, the probability that a path to B
passes through Cis £ = 2.

This does not work because not all paths to B are equally likely. (If you made this error, go back and try the
problem again, before reading the rest of the solution.)

Instead, we iteratively compute the probabilities of passing through each point. For all points except those
on the bottom or right edges, the probability of passing through that point is 1 times the probability of passing
through the point immediately above (if there is one), plus § times the probability of passing through the point
immediately to the left (if there is one). The bottom and right edges are different, because once on that edge, our
path must go directly to B.

We get the following chart of probabilities:

1 1 1 1
1 2 ! 8 16
1 1 3 1 3
2 2 8 4 16
1 3 3 2 1
4 8 8 16 32
1 5 1 21
8 16 2 32 1
So the probability of passing through C is % . Note that we didn’t need to compute the bottom row of the

grid, but it is a nice check of our work.

13.19 Let's start by looking at a simpler version of the problem. (This is usually a good problem-solving strategy.)
Suppose we play the game, but you're only allowed one strike. The only possible strategy is to decide ahead of
time that you're going to play until you either lose or get n heads, where n is some fixed positive integer.

Using this strategy, we see that with probability (%)ﬂ, you win n($100), otherwise you win nothing. So the
$100

o We need to determine for what positive integer # this is maximized.

If either n = 1 or n = 2, this value is $50. For n > 2, we can check pretty easily that

100(n+1) 100m
2n+l < pL *

expected win is

since 5
M(100(n+1)) < 2"*1(100m)
o MA00) < 2"(100m)
& 1 < n
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So in terms of our expected winnings, it doesn’t matter if we play to get 1 head or 2 heads; either way our expected
win is $50.

Now we can look at the game when we're allowed 2 strikes. This time, the only strategy is to try to get n heads
before the first strike, and then if we get a strike, to default to the 1-strike strategy that we just determined.

So now we have a (%)" probability of getting $100(n), and a (1 — 1/2") probability of getting a strike. But in the
latter case, we're in the 1-strike game, and we already know that the expected win is $50. So the expected win for
a 2-strike n-head strategy is:

50(2" — 1) + 100n
omn *

100n 1
e (1 - F)50 =

Again, we wish to choose # so that this is maximized.
We can plug in some small values of n to get some idea:

n |[1] 2| 3 | 4
E(Win) || 75 | 87.5 | 81.25 | 71.875

It looks like 1 = 2 produces the maximum, which is $87.50. To prove this, we can again compare n with 1 + 1 for
n>1:

5[](2”—21")+100n % 50(2"“-;2:100(”1)
o 2501 —1)+100m) > 27(50(2"* — 1) +100(n + 1))
o (50 +100n) > 27(~50 + 100(n + 1))
o M(100n) > 2"(150)
o 100n 5 150

This last inequality is true for all positive integers n > 1. So n = 2 indeed gives the best expected value for the
2-strike game.

Finally, we look at the originél 3-strike problem. The expected win for an #-head strategy is:

100n (87.50)(2" — 1) + (100)n
on on :
Above, the 87.50 term is the expected win in the 2-strike game.

+(1- o ) 6750) =

Again, we can compute some small values of n:

n | 1| 2 | 3 | 4
E(Win) || 93.75 | 115.625 | 114.0625 | 107.03125

So again it appears that n = 2 is the best strategy. If we do the same calculation as we did in the 2-strike case, we
will get the same expressions, except with 87.50 appearing everywhere that 50 did before. In particular, our last
expression will be 100n > 187.50, which is true for all integers n > 1.

In summary: our strategy is to try to get $200 in the pot by playing for two heads. If we get $200, we take it
and quit. Otherwise, we lose and get nothing.

As a check, we can compute the probability of winning $200. We only lose if we fail to flip two consecutive
heads in 3 attempts. On each attempt, the probability of failure is 2. So the probability of failure on 3 attempts is
(3)3 = %, and hence the probability of winning $200is 1 — 27/64 = 37/64.

1
Thus, the expected win is (37/64)($200) = .

13.20 This looks like a problem that can be handled using a typical block-walking argument, in which we assign
to each vertex the number of paths that reach that vertex, but there is a twist: For each step, the set of possible
directions is dependent upon the previous step.
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To deal with this restriction, we encode each vertex with additional information. More precisely, to each vertex
we assign an ordered triple of numbers, where the first, second and third numbers denote the number of paths
that reach that vertex, whose last step is diagonal, to the right, and up, respectively.

To make this more clear, consider a vertex D, and the adjacent vertices A, B, C, whose triples have already been
generated.

Alay,a2,a3) D

B(b1, by, b3) C(cy,c2,€3)

For every path that reaches D, the previous vertex must have been B, A, or C, and the previous step was
diagonal, to the right, or up, respectively.

There are by + b; + b3 paths that reach B, so this is also the first number at D.

There are a; + 4, + a3 paths that reach A. However, a3 is the number of paths whose last step was up, so these
paths cannot continue to D. Therefore, the second number at D is a; + a».

Similarly, there are c; + c; + c3 paths that reach C, but ¢, is the number of paths whose last step was to the right,
and these cannot continue to D, so the third number at D is ¢; + c3.

Thus, the triple at D is (b; + by + b3, a1 + a2, ¢1 + ¢3).

Alay, a2,0a3) D(by + by + bz, a1 + az,c1 + 3)

B(b1, b2, b3) Cle1,c2,¢3)
Starting with the triple (0, 0, 0) at the origin, we can generate all the triples:

001 (1,04) (417 (8511) (1513,18)(27,28,28)

001 [(103) (314 |(G46) (0999 |[(151813)

(0,01) [(1,02) [(212) |[(333) |[(564) |[(8115)

(0,01) |[(1,01) |(1,1,1) [(221) |(341) [(471)

0,0,1) [(1,0,00 |(1,1,0) ([(1,2,0) [(1,3,0) [(1,40)

0,00 |[(©01,0) (010 [(010) [©010) |(0,1,0)
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Hence, the total number of admissible paths from (0,0) to (5,5) is 27 + 28 + 28 = .

Challenge Problems

13.21 Let p, denote the probability that after # moves, the center card is the queen. In particular, po = 1, so
assume that n > 1. After n — 1 moves, if the center card is the queen, then the queen always gets moved to one
of the edge cards. If the center card is not the queen, then there is a probability of 1/2 that the queen becomes the
center card. Hence,

We can solve this recursion as follows: shifting the index by 1, we get

_11
Pn—1 = 5 zpn—z-

Subtracting, we get
ey = 1 PV T
Pn—Pn-1= 2Pn-2 2Pn-1 Pn = 2Pu—1 ZPu—z-

The characteristic polynomial of this recursion is ¢ — 3¢ — 1 = (c = 1)(c + 3), s0

1 n
Pn=A1+ A2 (—5)

for some constants A; and A;.
Since pg = 1 and p; = (1 — 1) = 0, substituting n = 0 and 1 = 1 gives us the following system of equations:
1= )11 + A,
1
0= 471.1 — 5/‘;2

Solving, we get A1 =1/3 and A; =2/3, s0

for all n > 0. In particular,

1

+ 3 0m |

W=

_1+%(__
P2004—3 3

Note that this is extremely close to 1, which makes intuitive sense: after 2004 moves, the cards are essentially
“randomly” distributed, so the queen is (almost) equally likely to be in any of the three positions.

13.22 Fora = b = 0, let p(a, b) be the probability that the number b is displayed at some point when beginning with
the number 2. When the calculator originally displays a and the button is pressed, the next number displayed is
randomly chosen from {0, 1,...,a — 1}. However, only the numbers greater than or equal to b can possibly lead to
the number b still being displayed, so

p(a,b) = p(a—l,b)+p(u—2,b)+---+p(b,b).

a
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Let b be a fixed nonnegative integer. By definition, p(b,b) = 1. Also,

pb,b) 1

PO+LO =T = et

and fora>b+2,
pla—1,b)+pla—2,b)+---+p(b,b
(a,b) ( ) (: ; ) (b,b)

_pa-1b)+I[pla-20b)+p@a-30b)+---+pbb)]

a
—2,b)+p(a=3,b)+--+p(bb)
a-1

_pla-1,b)+@-1)- =

a
_ pla—1,b)+ (a—1)pa —1,b)
a

=pla—1,b).

Hence, p(a,b) = 1/(b + 1) for all @ > b + 1. (Since this value is so nice, we might look for a simpler explanation,
and indeed there is one. At some point, we must get one of the numbers in the set {0,1,2,..., b}, and each of these
numbers is equally likely to appear first. If any of the numbers other than b appears first, then b cannot appear at
some later point. Therefore, the probability that it is b that appears firstis 1/(b + 1).)

Since the sequence of numbers displayed is strictly decreasing, in order to hit all of 1000, 100, 10, and 1, we
must first start at 2003 and hit 1000, then we must start at 1000 and hit 100, and so on. Therefore, the probability
that the numbers 1, 10, 100, and 1000 all appear when starting with 2003 is

1 1 1 1 1

13.23 For 0 < k < 6, let p;. denote the probability that, when starting with k peas at the top, all six peas are on the
top before all six are on the bottom.

By definition, ps = 1 and pp = 0. Now, suppose that 5 peas are at the top, and 1 is at the bottom. Then the
probabilities that 0, 1, or 2 of the peas at the top sink are all 1/3, and the probability that the pea at the bottom
floats up is 1/2. It follows that the probabilities that 6, 5, 4, and 3 peas are left at the top are 1/6, 1/3, 1/3, and 1/6,
respectively, so

1 1 1 1
P5 = gPst 3Ps+ 3P4+ ps.
Further relations can be computed similarly:
1 2 1 2 1
P4 = gPe * gPs + 3P4 * gPs + gP>
1 2 1 2 1
P3 = gPbs + gPs + 3P3 + gP2 + gPv
1 2 1 2 1
P2 = gh4 + gfs + 3P2 + gh + gPo
1 1 1 1
P1=gPs + 32t 37 + gPo-

We can simplify this system by taking advantage of symmetry. For example, the states corresponding to p;
and ps are opposites, with the top and bottom reversed. This means that p; = 1 — ps. Similarly, p, = 1 — p4, and
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p3 = 1/2. Substituting, we get

1 1 1 1
Ps=gtapstapty = 8 =3+dp
1 2 1 1 1
pa=gtgpstapatgtgl-p) = 7ps=3+2ps

Solving, we get psy = .

13.24 For 0 < n < 28, let a, denote the expected number of flips until one of us runs out of money, when I start
with n dollars and you start with 28 — # dollars. Then by definition, ap = a3 = 0, so let 1 < n < 27. There is a
probability of 1/2 that I win a dollar, or lose a dollar, so

1 1
ay = E(an—l +1)+ E(anﬂ +1) = a4y =20, -a,1-2.

Shifting the index by 1, we get a, = 24, 1 — a,_» — 2. Subtracting, we get

Ans1 = 3y — 3ay—1 + Ay-3.

The characteristic polynomial of this recursion is ¢® = 3¢ + 3c — 1 = (c — 1), so
a, = }Lgnz + Ain+ Ag
for some constants A3, A1, and Ag. In other words, 4, is a quadratic in n. Since ag = 423 = 0, 4, must be of the form

ay = Aan(n — 28).

We can then derive the value of A; using the relation a,41 — 2a, + 4,1 = =2:
Ays1 — 20y + Ay = Aa(n + 1)(n — 27) — 2A3n(n — 28) + Ax(n — 1)(n — 29) = 24, = -2,
so A2 = -1, and a, = —n(n — 28) = n(28 — n). In particular, a;4 = 14- 14 =|196 |
There is an alternate solution. Write the system of equations:
2[11 =da; + 2,
20, = a1 + as+ 2,
203 =a,+as+2,

2a56 = ag5 + ap7 + 2,
2857 = azg + 2.
Summing them all and cancelling like terms will give
ay + a7 = 54,
and since a4, = ay; by symmetry, we conclude that @ = ay7 = 27. Then, we may recursively solve for the other 4;'s:
A =2m —2=>52,
a3 =20—m —2=75,
a4 =2a3;—a; —2 =96,

eventually getting 214 = 196.

13.25 Starting from a winning position, with at least one of A or B odd, we must show that it is always possible
to make a move that either immediately wins the game, or leaves a losing position.
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e If A and B are both odd, take a chip from one of the 2-chip piles. This lowers A by 1 and increases B by 1.

e If A is odd and B is even, take both chips from one of the 2-chip piles. This lowers A by 1 and leaves B
unchanged.

o If Ais even and B is odd, remove a 1-chip pile if one exists; otherwise remove a chip from an even pile with
at least 4 chips. This lowers B by 1 and leaves A unchanged.

In all 3 cases, A and B are now even, leaving a losing position (or possibly immediately winning the game if both
A and B are 0).

If a player is in a losing position, with A and B both even, we have the following possibilities:

© She takes a chip off an even pile with at least 4 chips. This reduces B by 1, and leaves A unchanged.

She takes a chip off an odd pile with at least 5 chips. This increases B by 1, and leaves A unchanged.

She takes a chip off a pile with 3 chips. This increases A by 1, and leaves B unchanged.

She takes a chip off a pile with 2 chips. This changes both A and B by 1.

She takes 2 chips from a pile of 2 chips. This decreases A by 1.
o She takes 1 chip from a pile with 1 chip. This decreases B by 1.

In all cases, she cannot leave A and B both even, so she must leave her opponent with a winning position.

13.26 If the number of 1's in each digit space is even, then any move must change the positions of the 1's in one
of the piles, thus making at least one digit space have an odd number of 1's. So any move from a losing position
must leave a winning position. (And since there must be more than one pile in any losing position, the player
cannot win the game immediately.)

What's left to show is that in any winning position there is a move that either wins immediately or leaves
a losing position. If there is only one pile remaining, then of course we just take that pile and win the game.
Otherwise, if there is more than one pile, we find the left-most digit position that has an odd number of 1’s, and
we take from a pile that has a 1 in that digit position. We take chips so that we change that pile’s digit in exactly
those positions in which the piles collectively have an odd number of 1’s. This is always possible, so we can
always leave a losing position.
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CHAPTER

I Generating Functions

Exercises for Section 14.2

14.2.1 The generating functions for Marilyn’s, John's, and Bill’s portion of the tip are x + x* + x*, x + ¥ + 2%, and
x + x2, respectively, and their product is

(x+22+22)(x+ 22+ 20 (x + %) = 2 + 32 +52° + 52 + 3% + 5.

Therefore, the number of ways they can leave a $6 tip is the coefficient of x®, which is .

14.2.2 The generating functions for @ and d are each (1 + x + x* + 2® + x*). The generating function for b is
(1+ x% + x*). The generating function for cis (x + x°). Therefore, the generating function for the possible values of
a+b+c+dis

Q+x+22+2 +2PA+22 +x)x+ %) = (1 + 20 + 3% + 4% + 5x* +42° + 328 + 207 + B (x + 23 4+ 24° + X7).

We only care about the coefficient of x” in this product, so rather than multiply the entire expression, we'll restrict
ourselves to terms that can produce an 27 term in the product:

(1+32 452 +30)(x+22 +2@ +%7) — 204,

so there are solutions.

14.2.3 The generating function for each friend is (x 2 +x~1 +1+x+x2), so the generating function for the combined
amount that the four friends win is:
2+l +1+x+20%

We are looking for the constant term in this product (which is the coefficient of x%). Note that
24+ w1+ 2P =t + 20 + 30 2 + A + 5+ dx 4 302 + 25 + 1Y),
so when we square this and look at just the constant term, we get:
12+22+32+42+52 + 42 +32 +22 +12 =[85]
We can also solve via a counting argument using casework, based on the number of individual friends who
break even.

If they all break even, then of course they collectively break even. This can happen in 1 way.

If 3 of them break even, then they cannot collectively break even (since the fourth friend will either win or
lose).
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If 2 of them break even (and there are (g) = 6 choices for the two that break even), then one friend has to lose (2
choices) and the other has to win. There are also 2 choices for the amount lost and won. So this case can happen
in 6 x2 X2 =24 ways.

If 1 of them breaks even (4 choices), then 1 has to win or lose $2 (3 choices for the friend times 2 choices
for winning or losing), and the other two have to lose or win $1 each to compensate. This case can happen in
4 X 3 X2 =24 ways.

If none of them break even, then two have to win ((g) = 6 choices). If they win an equal amount (2 choices),
then the other two have to lose the same equal amount. If they win different amounts (2 choices), then the other
two have to lose different amounts (another 2 choices). So this case can happen in 6 X (2 + 2 X 2) = 36 ways.

This gives a total of 1 + 24 + 24 + 36 = 85 possible ways to break even.

14.2.4 If the numbers on one die are a1, 4y, . .., dg, and the numbers on the other die are by, b, ..., bs, then the
generating function of the sum of the rolls is given by

(X + X2 4o XY+ 2 2,
In particular, the generating function for a pair of standard dice is
(x+22 4+ +2+ - +25).
Hence, the problem is to find all sets of positive integers a; and b; such that

(x4 AP a2 ) = (P ) (2P +20).

Let f(x) = x™ +x +--- + x% and g(x) = x" + 2 + ... + x%. First, note that (x + x> + - -+ + x®)(x + 2> + -+ - + x%)
factors as
(x+22 4+ + 1)+ 22+ + 28 = 2+ 1P —x + 122 +x + 1)

To see which factors should go to f(x) and which factors should go to g(x), we look at some of the properties these
polynomials have.

Since the a; and b; are positive integers, taking x = 0, we get f(0) = g(0) = 0. Hence, one factor of x must
go to f(x), and the other factor of x must go to g(x). Taking x = 1, we get f(1) = 1" + 1% 4+ --- + 1% = §,
g(1) =1 +1%2 4 ... + 1% = 6, and

x=1,
x+1=2,
PZ-x+1=1,
©+x+1=3.

Hence, to obtain a product of 6 when x = 1, each of f(x) and g(x) must contain a factor of x + 1 and 2 + x + 1. So
far, we have that f(x) and g(x) are of the form

f@)=x(x+1D)E+x+1)---,

g =x(x+1)F +x+1)--.

The only part left is to the assign the two factors of x* — x + 1. If one factor goes to f(x) and the other factor
goes to g(x), then f(x) = g(x) = x(x + 1)(x? + x + 1)(x2 —x + 1) = x + 22 + 2% + x* + x° + x5, which corresponds to a
pair of standard dice. The only other possibility is that both factors of x* — x + 1 go to one polynomial, say f(x),
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and we get
fx) = x(x+ 1) + 2+ 1)(x% — x + 1)?
=x+22+x+ 0 +2%+48,
2(x) = x(x + D +x + 1)
=x+22+28° + 2t
=x+22+2+ 0+ 20+ 24

Hence, a die labeled with the numbers 1, 3, 4, 5, 6, and 8 and a die labeled with the numbers 1, 2, 2, 3, 3, and 4
produce the same distribution of sums as a pair of standard dice, and this is the only possible pair of unfair dice
whose sides are positive integers.

Exercises for Section 14.3

14.3.1 There is a total of 15 choices of toppings: Joe can have ketchup, mustard, relish, onions, or sauerkraut on
his first hot dog, and the same for his second hot dog, and the same for his third hot dog. Joe must choose 6 of
these toppings. Hence, the number of different ways that Joe can choose toppings is (165).

14.3.2 The generating function for each boy is (1 + x2) and the generating function for each girl is (1 + x°). So the
generating function for the whole group is
(1+ 2051 +23)8.

We want the coefficient of x* in this function. The x?° term is equal to:

(6 )5k) () )

so the coefficient is ()(%) + ()() = (6)(28) + (15)(70) = [ 1218],

14.3.3 The generating function for each of the first 29 people is (1 + x), and the generating function for the last
person is (1 + x2 + x°), so the combined generating function is

1 +22P1+22 +2°).

We want the coefficient of the x? term of this product, which is the sum of the coefficients of the x22, ¥, and x”
terms of (1 + x)®. Thus, the answer is

29 29 29
) ) B) - )

14.3.4 The generating function for the number of “yes” votes from the Chief Justice is (1 + x°), and the cor-
responding generating function for each Associate Justice is (1 + x). So the overall generating function for the
number of “yes” votes is

1+ 2121 +2°).

We want the coefficient of the x® term, which is the sum of the coefficients of the x® and x° terms of (1 + x)'2.

Therefore, the answer is
12 12
(8)+(5)_ 1287 |.

14.3.5 Consider the identity
(1 + x)m(l + x)u - (1 + I)"H".
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The coefficient of x" must be the same on both sides, and we see that this coefficient in the RHS is ("'").

When the LHS is expanded, we see that each term of degree r is the product of a term of degree k in (1 + x)™”
and a term of degree r — k in (1 + x)", for some 0 < k < r. The coefficient of x* in (1 + x)™ is (}/), and the coefficient
of x*in (1 + x)" is (,",). Summing over 0 < k < r, we derive Vandermonde'’s identity:

L))
Exercises for Section 14.4

1441 Lety=x",s0
1 1

(1 — xnr)n = (1 = y)n F

1 S (n+i-1\; x> (n+i=-1) .
(1—y)”:;‘( n—1 )_,/:ZO‘( n-1 )x '

1=

We know that

To find the coefficient of x¥, we set k = mi, so i = k/m. Then
n+i—1\ [n+k/m-1
n-1) \ n-1 [
Note that such an index i exists if and only if k is a multiple of m. So to summarize, the coefficient of x* is

(n +k/m— 1)

n-—1
if k is a multiple of m, and zero otherwise.

14.4.2 The generating function for each of the kids who will take only an odd number of candies is

x4+ 40+ =x(1+2+xt+--) = T

The generating function for the kid who will take any number of candies is

1
T+x+22 4= —.
1-x

The generating function for the kid who will take 0 or 1 candies is 1 + x, and the generating function for the kid
who will take 0 or 5 candies is 1 + x°. Hence, the generating function for all five kids is

(1 +x)(1 +x°)

(1= ] = %)
XA+ +x)

T (14 x)2(1-x)2(1 -2
o 2(1+0)

T (1+x)(1-x)3

2 1
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We can factor 1+ x° = (1 + x)(1 — x + 22 — ® + x*), so our generating function is:

P1+x) 2PA+x)l-x+x2-23+x4)

(1+x)(1-x3 (1+x)(1—x)3
_P(1l-x+x2 -2 +aY)
- (1-x)
x? x xt v %6

- O-xp  (A-xp A-2  aA-2p

The coefficient of x'% in —£ is the coefficient of ¥*® in —L=, which is (*%°). Similarly, the coefficients of x1° in
(1-x) - 2 Y

; 99y 9By (97 96 -
ui il (]’_‘1)3, (1f5x i and (1f1)3 are(S) (o) ((‘; ), and (), respectively.

Hence, the number of different ways of distributing the 100 candies is

(120) - (929) + (928) = (927 ) + (926) = 4950 — 4851 + 4753 — 4656 + 4560 = | 4756 |.

14.4.3 The text shows how to generate a distribution of 100 candies from a division of 101 candies into 3 piles.
We want to show that the reverse is possible.

Let the middle kid receive a candies. Let the first young kid receive b; candies, and let the first old kid receive
c1 candies, where by is 0 or 1 and ¢; is odd. Similarly, let the second young kid receive b; candies, and let the
second old kid receive ¢; candies, where b, is 0 or 1 and ¢; is odd.

Take the a candies from the middle kid, add one candy, and put the 2 + 1 candies in the first pile. Then, take
the b; candies from the first young kid and the ¢; candies from the first old kid, and put the by + ¢; candies in the
second pile. Finally, take the b, candies from the second young kid and the c; candies from the second old kid,
and put the by + ¢» candies in the third pile. Since a + 1 + by + ¢1 + by + ¢ = 101, this gives us a division of 101
candies in 3 piles.

Reversing these operations as described in the text gets us back to the original distribution of the 100 candies
to the 5 kids. This establishes the 1-1 correspondence.

1444 The generating function for each of the childrenis 1+ x +x* +--- + x5, and the generating function of each
of the adults is 1 + x + x% + - - - + x17, so the generating function of the four children and three adults is

(L4+x+22+ -+ 21 +x+ 22+ 4+ x10)1
1-27\* {121\’
- =)
_(1—a7)A(1 — 2113
 —a)”

-a-sra-re [+ (e« e

We want to find the coefficient of ™ in this expression. It would be very complicated to expand it completely,
but we can simplify the calculations as follows. Note that

(1-2) =1 -4 +6x'* — 42! + %,
The terms —4x*! and x?® are irrelevant for our purpose, since they cannot affect the coefficient of 2. Similarly,

(1-x)° =1-3¢" +3x2 — 2%,
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and we can ignore the terms 3x*2 and —x**. Hence, we want the x2 coefficient of

o)) + (e

= (1 — 4" — 32" + 6xM + 12x'8 — 18+%) [(g) + (Z)x + (g)xz - (z)x—" + ] :

(1 - 427 + 6214)(1 — 321)

To obtain a term of degree 20, the term 1 must be multiplied by (%Sﬁ')xm. Similarly, the term —4x” must be

multiplied by (169)x13, and so on. (We may ignore the term —18x% since its power of x is too large to contribute to
x%0.) Hence, the coefficient of x% is

26\ {19\ .(15\. (12 . . (8
(6)-(e)-{c)+ <)+ =l
= 230,230 - 4(27,132) - 3(5,005) + 6(924) + 12(28)

14.4.5 The generating function for the sum of Tina’s two numbers is

P+ 2+ + )+ 2+t + )+ 2 O+

=+t 420 + 248 + 207 + 28 + 4.

For 3 < k < 9, if Tina gets a sum of k, then for Sergio’s number to be greater, it must be a number from k + 1
through 10, for a total of 10 — k possibilities. Hence, summing over 3 < k < 9, we find that the total number of
outcomes in which Tina’s sum is smaller than Sergio’s numberis1-7+1-6+2-5+2-4+2-3+1-2+1-1=40.

The total number of possible outcomes is (3) - 10 = 100, so the desired probability is 40/100 = .

Exercises for Section 14.5

14.5.1 The generating function for the pennies is

1
I+x+x>+--)= =
Similarly, the generating function for the nickels is
A+ +x0+..)= 1
1-x5
and the generating function for the dimes is
1+ 1U+x2”+---)—;
(1+x T 10

1

. . tion i |
Therefore, the desired generating function is A-9d =D -0

14.5.2 We take the generating function for partitions:

1
A== -3
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and delete the terms in the denominator that correspond to odd parts. Therefore, the desired generating function
is:

oo

1 1
(1—22)(1 —xH)(1 - x)--- =E1~x2" i

14.5.3 The generating function for the number of partitions of n in which no part appears more than twice is:

_ b {0
f(x):(1+x+x2)(1+x2+x4)(1+13+x5)_,.=ll_x:-i_;.i_;“

and the generating function for the number of partitions of # in which no multiple of 3 appears is:

1 . 1 - 1 - 1 - 1 -
1-x 1-22 1-2* 1-25 1-x7 °

glx) =

Note that every factor of the form 1 — x* appears as a denominator of f(x), but that for those values of k that are a
multiple of 3, the factor 1 — x* will get canceled with the corresponding factor in the numerator of f(x). Therefore,
after canceling, we see that f(x) = g(x), and therefore the corresponding numbers of partitions of # are equal.

1454 Letc, be the coefficient of x" in f(x). Then f(x)(1 —x — 2% — x> — x* — x° — x6) = 1, which implies that ¢y = 1
and for all n > 0,
Cn — Cn—1 — Cy-2 — Cn—3 — Cy—g — Cy—5 — Cn—g = 0,

where we say that ¢, = 0 for all m < 0. This gives a recursive definition:
Cp = Cy—1 + Cy2 + -+ + Cys.

Each term in the sequence c, depends on the previous 6 terms. This suggests a die, since rolling a die has
the 6 possible outcomes [-] through 1 We conclude that ¢, counts the number of ways to roll any number of

distinguishable dice to get a sum of n, since if the first die is E], D, ey , then the number of ways to roll
additional dice tosumton—-1,n-2,...,n1—6, respectively, is ¢;-1, Cu—2, - - ., Cu—s, TESpeCtively.

Thus f(x) is the generating function for the number of ways to roll any number of distinguishable dice to sum
ton.

14.5.5 If the three sides of a triangle with perimeter n have integer lengths a, b, ¢, with 0 < a < b < ¢, then we must
havea+b+c = n. So (a,b,c) is a partition of n into 3 parts. Recall from Problem 4.19 that the number of partitions
of n into 3 parts is equal to the number of partitions of # in which the largest part is 3. We established this using
a Ferrers diagram: if we have 3 rows of dots of lengths c, b, and a (reading top-to-bottom), then the columns give
us a partition of 7 into 3's, 2’s, and 1’s, and the first column (of 3 dots) guarantees that there will be at least one 3.

But we cannot take every such partition; we also need to satisfy the Triangle Inequality, meaning that we must
have a + b > c. If i, j, k are the number of 3's, 2s, and 1’s, respectively, in our corresponding partition of n with
largest part 3, then we see thati = a, j = b—a, and k = c—b. We can rewrite theseas b = i+ jand ¢ = i + j + k, which
converts the Triangle Inequality to i + (i + j) > i + j +k, or i > k. In other words, our partition of n with largest part
3 must have more 3's than 1’s.

We now show a 1-1 CO].'I’ESPOI\CIEIICG:

{partitions of n with largest part 3} o {partitions of n using only 2's, 3’5,}
with more 3’s than 1's and 4’s, with at least one 3 ’

If we have a partition in the left set above, we can add all of the 1’s to 3's, creating 4’s. There will also be at least
one 3 left over, as there are more 3's than 1's to start with. Conversely, if we have a partition in the right set, we
split a 1 off from each 4 term. This will leave a partition with 1s, 2’s, and 3’s, which has fewer 1’s than 3's: each 1
will have come from a 4 in the original partition, which is now a 3 in the new partition, but there was at least one
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“extra” 3 in the original partition which is still a 3 in the new partition as well. (We leave it to you to check that
these two procedures are the reverses of each other, thus giving a 1-1 correspondence.)

Finally, we can write the generating function for this last set of partitions shown on the right above. We have
partitions consisting of 2's, 3’s, and 4’s, with at least one 3. The generating function is:

Uy

(L2 o+ )P+ 2t )Lt 2+ 2 o) = (1-x2)(1-2B)(1 -4 |

Review Problems

14.19

(a) Since

10

NS TR +een,
1-x

the coefficient of x10 is .

(b) Since
10

=1+2+xt+- x4,

1-—2x2

1 1 2 3 11

the coefficient of x'? is (1) = .

(d) Since
(1+x°)° = ((5)) + (i)xs + (i)xw 4ot (g)xzs,

the coefficient of ¥\ is () = .
(e) We can write

the coefficient of x° is .

(c) Since

6
(l+x+xl+---+x6)6=(1_x7)

l=x
B (1__’.7)6
C (1-x)

= =2 | (3 (g (e + ]
4]

To obtain a term of degree 10, the term 1 must be multiplied by (¥)x'°, and the term —6x” must be
multiplied by (3)x®. The term 15x™ and other terms of higher degree do not affect the coefficient of x'°, so the

coefficient of x1? is
(155) - 6(?) = 3003 - 6-56 =|2667 |

=(1-6x" +15x"% —--)
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(f) Lety=x% Then
1 1
-2~ (A-yp

=) G (e + e o

Hence, the coefficient of x'° is (}) = .

14.20 The generating function for the number of ways to place people in each room is

X+ =
1—x

Therefore, the generating function for the number of ways to place people in all three rooms is

(1 fx)3 - i}y

We want the coefficient of x2 of this function, which is the coefficient of x% in
& = 78]

14.21 The first child must get at least two toys, so his generating function is

1

W. This coefficient is

T—% The generating function for

each of the other 3 children is ﬁ So the combined generating function is Ty We want the coefficient of
1

x® of this function, which is also the coefficient of x of Ao This coefficient is () = .

14.22 The generating function for each penny is (1 + x), and the generating function for each nickel is (1 + x°).
Since there are 3 types of pennies and 2 types of nickels, the combined generating function is

(14231 +2°)%|

14.23 The generating function for each of Sara and me is

+2 40 4= N .y
x x(1+x"+x*+---) -2
The generating function for Krishna is
1
1+B 4B ooz
+2°+ T3
The generating function for Shyster is
4. o l4x+a?
l+x "+ =—F—.
x

Hence, the generating function for the whole group is
( x )Z 1 1+x+22 2(1+x+77)

1-2) 1-2 2 (1-221-2)2
o 14x+x?
B 1+x+22
T (- 2R - 21 +x+x2)
1

T A-2P-x)
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To simplify the denominator, we can multiply top and bottom by 1 + x to get

1 _ 1+x
(1-x222(1-2)  (1-222(1-2)(1+2)
_ 1+x
T (1-ax2)p3
1 5

T a2 -y

R

so the coefficient of ¥ is (¥/), and
X [z 3 4y 4 .
T—xp " [(2) ' (2)"2 * (2) ' ] '

All the terms have odd degree, so the coefficient of x*° is 0. Hence, the total number of ways of paying the bill is
(1;_.7 )= . (A simple answer might mean a simple counting explanation. Can you come up with one?)

Then

14.24 The generating function for the ten indistinguishable candies is 1 + x + x* + -+ + x'°, and the generating
function for the 21 different candies is (1 + x)*!, so we seek the coefficient of x!° of the generating function

(I+x+x2+---+x1”)(1+x)21=(1+x+x2+---+x1”)[(201)+(211)x+(221)x2+---].

To obtain a term of degree 10, the term 1 must be multiplied with (3)x'?, the term x must be multiplied with
()2, and so on. Therefore, the coefficient of x' is

.’21+21+21+21+21+21+21+21+21+21+21
10 9 3 7 6 5 4 3 2 1 0
= 352,716 + 293,930 + 203,490 + 116,280 + 54,264 + 20,349 + 5985 + 1330 + 210+ 21 + 1

=|1,048,576 |
A more clever finish would be to notice that %) + -+ + (3) = .
14.25 The generating function for Superman is

A+ +0+ =21+ 42+ ) = T
1-x
The generating function for Batman is

1-x"
14x422 44210 = :
1-x

The generating function for Mighty Mouseis 1 +x + x2. Hence, the generating function for all three superheroes is
x(1+x+ x2)(1 — x41)
(1= -2
_x(1+x)(1 + x+ 22 (1 - x)
T 1-)1-x)1+x)
(x + 222 + 22% + 2h)(1 - x*)
) (1- 222

:(x+2x2+2x3+x4—x42—?_x43—2x44-x45)[(1)+(i)x2+(?)x4+---].

x 1-aM
@ g L=
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(a) We want to find the coefficient of x* in the expression above. All the terms in the second factor have even
degree, so to obtain a term with degree x*”, we only need to consider the terms in the first factor whose degrees
are odd and at most 37. The term x must be multiplied by (})x*, and the term 2x> must be multiplied by

(118)3634 . Hence, the coefficient of ¥ is (119 )+ 2(118) = '

(b) We want to find the coefficient of x¥ in the expression above. All the terms in the second factor have even
degree, so to obtain a term with degree x%, we only need to consider the terms in the first factor whose
degrees are odd. The term x must be multiplied by (414)x85, and so on. Hence, the coefficient of x¥ is

(414)+2(413)—2(213)—(212)=44+2-43—2-23—22:.

14.26 The generating function for each y; is

1_x12
x+ 2+ rx =l x4+ x) =x- 12"
so the generating function for the sum y; + y2 + y3 + y4 is
4
x.l_xn :x4'(1_x12)4
1-x (1—x)t
= 4(1—4x12+6x24—4x36+x43)[(§)+(§)x+('Z)xz+---}.

We seek the coefficient of x**. Because of the factor of x*, the coefficient of ¥* in this expression is the same as
the coefficient of x% in

(1—4x12+6x24—43:36+x43)[(§)+(§)x+(§)x2+---].

To obtain a term of degree 26, the term 1 must be multiplied by (5)x%, the term —4x'? must be multiplied by
()x™, and the term 6x?* must be multiplied by (3)x%. Hence, the coefficient of x? is

(239)—4(137)+6(§):3654—4-680+6-10: 1994 |

1427 Leta=y+z Then

(x +y+ 2)2006 + (JC -y- 2)2006 — (x + a)ZODnS + (x _ a)2006

. s [xzoos + (2006)x2°°5a + (2006)xzoo4a2 P azuos]
1 2

% [xzoos _ (20106)3:20"5;1 & (?-0205)xzou4az ok azoos]

= 952006 2(20206)x2“°4a2 e g 02006

2006

— 006
= 2x2 +2( p

)x20”4(y +2)* + 2(20406)x2m(y +z) o+ 2y + Zfe,

In this sum, each term has the form

b= 2(2226)x2006—2k(y +z)2k,




Challenge Problems

where 0 < k < 1003. If we were to expand # for each k, then no term in f; could be equal to another term in a
different t;, since each term of #; shares a unique number as the degree of x, namely 2006 — 2k.

Expanding #;, we obtain

S e

which contains 2k + 1 terms.

Therefore, the number of terms in the sum, when expanded and simplified, is

1003 1003 1003
E(2k+ 1) = 2Zk+Z1
k=0
5z 100321004 —

Challenge Problems

14.28 We have the identity

1 o (k+1
_(1_x)2=;;( ; )x" Z(k+1)x"

k=0

Multiplying both sides by x, we get
S =Y e ) =) ek
¥ o= k=0

In particular, for x = 1/3,
> +3) = 2 =i
= 1- 1/3)2 4

14.29 Factor (1 +x + 22 + x®) as (1 + x2)(1 + x), so that Q(n, k) is the coefficient of x* in (1 + x*)"(1 + x)". We can
write this in terms of generating functions as:

i Qn, k) = (1 + x3)"(1 +x)"
k=0

n n
n\ o n\ ;
_ j i
B0 56K
j=0 i=0
M n
S50k
j=0 i=0
We can now see that to get an x* term in this last sum, we must have 2j +i = k, so i = k — 2j. The sum of these

coefficients will be: .
n\f n
w502
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and to finish, note that if j > k, then k — 2j < 0, so we can delete the terms with j > k and write

a5

j=0

Note that this generating function solution can be reinterpreted to give a counting solution. The function
(1 +x + 2% + 2%)" is the generating function for how many ways a group of n people can pay a bill if each person
gives 0, 1, 2, or 3 dollars. Thus, the coefficient of x* is the number of ways the people can pay a total of k dollars.

We pay our bill by first choosing j people to pay $2, then choosing k — 2] people to pay $1. Some people will
be chosen both times, and end up paying $3. Some people do not get chosen and pay nothing. In fact, as we sum
over all possible j, we count every possible way of making payment exactly once, as for any given arrangement
of paying, we can determine the j people who get selected to pay $2 and the k — 2j who get selected to pay $1.
Hence,

S (n\( n
L)
must be the coefficient of x* in the expansion of (1 + x + x? + x3)".
14.30
(a) We prove the result by induction on . For the base case n = 1, we have:

1 1/x

_1_ _
(x+y) Tx+y l+y/x

1 1.4 .
x 2 xF
=1 —x Pty a7y -

The coefficient of x" 9y is (~1)F = (~1)¥(}) = (~1)¥(**}™), establishing the base case of the induction.
Now assume that the result is true for some positive integer n. We compute (x + y)~®* as follows:
(n+1) =

x+y)x+y™

- (x—l _ x—:lbr % x—3y2 R ) ((ﬂ - 1)x—u _ (n)x—(:l+1)y + (-"’I + 1)x—(n+2)y2 .. )
0 1 2
- ey ][ A An+j—=1\ e
= (_l)rx (l+1)yl] (_1)}( g )x (n+j)y] .
The x~ "Dy term of this product arises from terms of the sums with i + j = k. Therefore,

e = Z(—l)*‘(—l)i(“;' 1)

i+j=k

X))
: [i (n " j - 1)] 1y

=0

(x+y)"
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(b)

We can apply the Hockey Stick identity to the sum of binomial coefficients in the last line above:
i(nﬂ'—l) _Zk:(nﬂ'—l) _ (n+k)_((n+1)+k—1)

= j = n—1 n k

Therefore, we conclude that

s (_1)k((n + 1)k+ k- 1)’

completing the induction.
We could also have used the identity

1 . [n=1 n + n+1l B
T-z \n-1"\n-1f" n—l)x

Then
-n 1
(x+y) _(x+y)n
1 1
_x” (1+y/x)"
1 1
X" [1_(_y/x)]u
_1[n-1 n\(_Y\ L (rE LYY,
ot (4 K ) R [ - )
_1fm=1\ ( n\y (n+1\¥*
_x"[(n—l) (n—l)x+(ﬂ—1)x2+ ]
N CL | IR (R | B e n+1) e
-(n—]_)x (ﬂ—l)x y+(n—1)x y2+ .
Thus,

_ s ®k=1Y . qfntk=1
w37k

We think about how we normally compute binomial coefficients. If # and k are both positive, we write:
ny n! _nn=-1)mn-2)---(n—k+1)
k) K-k k! '

The numerator is the product of k consecutive integers, the largest of which is #, and the denominator is k!.
Let’s simply do the same procedure with —n: put the product of k consecutive integers, the largest of which
is —n, in the numerator, and put k! in the denominator:

-\ _ (~n)(-n—-1)=n—-2) (= -k +1)
(k)_ k! '

There are k negative terms in the numerator, so we can factor (-1) out and simplify:

-n\ _ 1,\.(1'1)(1'1+1)(i'1+2)---(n-|-k—1)
k)= k!

_ k-1
=D ki — 1)!

_ o ak[ntk=1
=( 1)( K )

= f.
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14.31 The generating function for the nonnegative integers is

1+t+t2+-~:i,
1-¢

and the generating function for the nonnegative integers of the form 3y is

1

1+8+88+8 +... =2 ——,
1-8
so the generating function for the nonnegative integers of the form x + 3y is

11 |
1-t 1-8 (1-H1-8)

In particular, the number of solutions of x + 3y = 2k — 1 is the coefficient of *~1.
In general, for 1 < m <k, the m™ equation in the system is given by
2m-1x+ 2m+ 1)y =2k - (2m - 1).
The generating function for the values of the LHS of the above equation is:

1 1
1 — f2m=1 ’ 1 — f2m+1
_ 1
- (1 — $2m=1)(1 — f2m+1)’

(142714 £20mD) (1 4 24 4 20D Ly =

and the number of solutions is the coefficient of #*~?"~1)_ This means that as m varies, the degree of the term
whose coefficient we seek varies as well.

We can set all the degrees to be equal as follows: the coefficient of {#~@"-1) jn

1
(1 — thFI)(l = t2m+l)

is equal to the coefficient of ! in
t2m—2

(1 e th-l)(l = t2"'+1) 5
Hence, since no ordered pair (x, ) can be the solution to more than one of the equations, we can sum the generating

functions for the number of solutions to each equation, and conclude that the total number of solutions is equal
to the coefficient of t*~! in

k th—Z

— (1 = th—l)(]_ = f2m+l)'

m
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Let Si denote this sum. We compute S; for small values of k:

B 1

T -pa-py

_ 1 2
Ta-pa-p)  a-Aa-n
_ 1-P+2(1-1)

T (1-H1-P)(1-1)

. 1+£2-P-P
C(1-H1-8)(1-P)
Q-8+

T (-1 -B)(1-P)

3 1+ 2

T (1-H1-8)

S. = 1+ # 5 #

T A-na-8) " a-m)I-F)
1+ -F) (1 -1t
T A-HA-B)1-)  (1-H1-P)(A-¥F)
142+ PP
T (1-pA-B)(1-7)
1+ +H(1-P)
C(1-HA-H)1-1)

_ 1+2+#
T -H-Fy

51

52

Based on these values, we guess that

S = 1T+ 82+t 400+ 26D
T - - )

Since 1+ 2+ #* + --- + 267D = (1 — %) /(1 — #2), we can rewrite this formula as

11—
(1-1)(1 = 2)(1 — 21y’

S =

We now prove it by induction.

It is easy to verify that our formula is correct for k = 1, which establishes the base case. Now assume that our
formula is correct for some positive integer [, so that
1=#
(1-H(1 - )1 - 241)

Sy=
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Then
2
S =S+ (1 — 2HT)(1 — 12143)
1- g2 el
= (1—- B - 2)(1 - 2+1) * (1 — (2+1)(1 — 1243)
(1- tZI)(l _ t2I+3) tZI(-l — t)(l — tZ)

(1-t(1 - fz)(l - t21+1)(1 - t21+3) (1-6H(1- tz)(l — t21+1)(1 — 521+3)
(1 -1 -2y 4+ 211 - (1 - 2)
(1 =851 = 2)(1 — 2H+1)(1 — 12+3)

1 — 2 — f2+3 A3y g2l 201 2042 42043
T A-HI-A)a- AL - 2)
3 1 — p2H1 _ f2042 4143
- (1—1)(1 — 2)(1 — 2+1)(1 — £243)

(1 — t21+1)(1 _ t21+2)
(1-85)(1 = £2)(1 — 2+1)(1 — £2143)
T = t2r+2
(L-DIL~ B~y

Hence, our formula holds for k = I + 1, and by induction, it holds for all positive integers k.

To find the coefficient of ! in "
1-t

(1 =81 = £2)(1 — 2+1)’

we use the same techniques as in previous problems. We have:

1% 3 (1-t)(1+1¢)
(1-8(1-2)1 - 2+1) (1 =£)(1 - 2)(1 = Z+1)1 +9)
(1= +1)
T (1 - 2)2(1 — 1241)

1 1
=(1—f2’f)(1+t)-(1_1{2)2-1_1}2,(+1

:(1+t—t2k—t2"“)[1+(§)t2+(i’)t4+---l(1+t”‘*l+t2(2’“”+---).

Look at the factor 1 + {2*1 4 2@&+1) ... The terms *+1, 2%+1) and so on all have degree greater than 2k — 1,
so they cannot affect the coefficient of -, so they can be dropped. Similarly, the terms —t* and —#%*! in the first
factor can also be dropped, leaving us with

aoofte B (]

Now, each term in the second factor has even degree, and we seek the coefficient of 1Z-1 which has odd degree.
Hence, the only way to obtain a term with degree 2k — 1 is to multiply the ¢ in the first factor with the term of
degree 2k — 2 in the second factor. Every term in the second factor is of the form (i + 1)#¥, so setting i = k— 1, we
find that the coefficientis i + 1 = k, as desired.
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14.32

(@)

(b)

()

What is the coefficient of x" in (C(x))?*? Recalling that
Cx)=Co+ Cix+Cox® + -+,
we see that if we multiply C(x) x C(x) out, the coefficient of x" is
CoCp + C1Cyq +--- + C,Co.

Does this look familiar? It should—it’s the recurrence relation for the Catalan numbers! The above sum is
equal to C,;41. So the coefficient of x" in (C(x))? is Cys1. However, in our generating function for the Catalan
numbers, we have the coefficient of x"*! equal to C,41, so we need to multiply (C(x))? by x.

Finally, since the resulting polynomial has no constant term, but Cy = 1, we add 1 to get that
C(x) = x(C(x))* + 1.

Move everything in C(x) = x(C(x))* + 1 to one side:
0 = x(C(x))* - C(x) + 1,
We can view this as a quadratic function in terms of C(x). Then the quadratic formula gives us

) e “21‘4".

How do we know whether we want the + to be + or —? Actually, we don’t know, but we can check that in
fact the — works and the + doesn't, as we’ll see in the next problem.

In order to get a handle on the function
1-v1-4x
g
we need to remember that we can use the Binomial Theorem even with non-integer exponents. In particular,

(1+y)r:1+(;)y+(;)y2+(g)y3+---,

where

¥\ _ #r-1ir—2)---{#-k+1)
k|~ k! '

So in our case, the coefficient of x" in C(x) is equal to the coefficient of x**! in (1 — 4-,x)%, divided by —-2. This

coefficient is thus . G0 e i
n—
__1 2 (_4)u+1 — _15(_5)(_7 sl - 2 )(_4)n+1
2\n+1 2 (n+1)! '

This is a bit ugly but can be simplified with not too much effort. To start, let’s collect the 77 + 1 2’s from the
denominators of the factors in the numerator, and divide them into the 4’s:

C1WD(E3)- (<2n 1)
2 (n+1)!

(_2)r1+1 )

Next, notice that there are # + 1 minus signs that cancel with the minus sign inside (-2)"*!, giving:

1MOE)---@n-1) 4 _ 10)6)---@n-1),,
2 (n+1)! a (n+1)! :
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Multiply numerator and denominator by 7!, and distribute the 2" factors amongst the terms of n!, so we have:

1B)5)---(2n —1) (2)(4)(6) - - (2n)
(n+ 1)! n! '

The numerator of the entire expression is now (2n)!, so the expression is

@n! 1 @) 1 (211)

n+1)n!  n+lnn!  n+lln

our closed-form formula for the Catalan numbers.
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CHAPTER

Graph Theory

Exercises for Section 15.3

15.3.1 Let E denote the number of edges, and for any nonnegative integer , let V,; denote the number of vertices
with degree n. Each such vertex contributes # to the number of edges, so

Vi+2V, +3V3+“' =2E.
The coefficient of E is 2 because each edge is counted twice, once for each of its endpoints.

Reducing this equation modulo 2, we get
Vi+V3+Vs+---=0 (mod 2).
But Vi + V3 + V5 + - - is precisely the number of vertices of odd degree. Hence, this number is even.

15.3.2 Let the graph have n vertices. For the sake of contradiction, suppose that every vertex has a different
degree.

The degree of each vertex must be a nonnegative integer from 0 to n — 1, and there are exactly n such numbers,
so if every vertex has a different degree, then there must be a vertex with every degree from 0 to n — 1. However,
a vertex with degree 0 is not connected to any other vertices, and a vertex with degree 1 — 1 must be connected to
all other vertices, so two such vertices cannot co-exist within the same graph, giving a contradiction.

Therefore, there must be two vertices that have the same degree.

15.3.3 Consider the airline network as a graph. The only vertices of odd degree are New York and San Diego.
Let G be the subgraph of all cities that it is possible to fly to from San Diego (including San Diego itself). If New
York is not in G, then G has only 1 vertex of odd degree, which is not possible since every graph must have an
even number of vertices of odd degree. Therefore, New York must be in G, so it is possible to fly between New
York and San Diego.

15.3.4 Consider the train system of Graphdom as a graph, where each city is a vertex and a direct train line is an
edge. Let V and W be any two vertices. If there is an edge between V and W, then there’s no problem. Otherwise,
let S and T be the set of vertices that are adjacent to V and W, respectively, so that both S and T contain exactly
6 vertices. Then V cannot be in T, nor can W be in S. But we count vertices: V, W, the vertices in S, and the
vertices in T give us 14 vertices, and there are only 13 vertices in the graph. Hence, 5 and T must have a vertex U
in common, and we can travel by train from V via U to W.

15.3.5

(a) Consider a graph where each vertex corresponds to a line segment, and there is an edge between two vertices
if the two corresponding line segments intersect. Then in this graph, there are 7 vertices, and each vertex has
degree 3. But then the number of edges would be 7 - 3/2, which is not an integer. Therefore, such a graph
cannot exist, which means it is impossible to draw 7 such line segments.
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(b) Itis possible to draw 6 such line segments, as shown in the figure below:
/ A\
15.3.6 Choose one person, say A. First, we claim that A knows everyone, except possibly for two people. Suppose

that there are three people that A does not know, say B, C, and D. Then the quadruple {A, B, C, D} violates the
given condition, so the number of people that A does not know is at most 2.

If A knows everyone, then we are done. If A does not know some person, then call this person B. Let C and D
be two people other than A or B. Then in the quadruple {A, B, C, D}, the person who knows everyone else in the
quadruple cannot be A or B, so it must either be C or D; in particular, C and D always know each other. This tells
us two things. First, since C and D were chosen arbitrarily, every pair of people, not including A or B, knows each
other. Second, one of C or D must know both A and B. Therefore, one of C or D knows everyone.

15.3.7 Suppose that every pair of vertices in G has an odd number of neighbors in common. We will show that
this leads to a contradiction.

Let V be a vertex in G and let Wy, Wy, ..., Wi be its neighbors. Consider the subgraph G’ of G consisting just
of the Wi's together with any edges between them. We are assuming that V and each W; have an odd number
of neighbors in common; this means that the degree of W; in G’ is odd. Thus every vertex in G’ has odd degree,
which means that k is even (otherwise, G’ would have an odd number of vertices of odd degree, which cannot
happen). So every vertex in G has even degree.

Consider the set
S={(X)|1<i<kand X is a neighbor of W;}.

Each W; has an even number of neighbors, so S has an even number of elements. Also, pairs of the form (i, V)
appear k times (once for each 1 < i < k), and pairs of the form (i, W;) each appear an odd number of times, so the
total number of such pairs is even (since there are an even number of W;’s). The remaining elements of S are

T={iX)|1<i<kand X ¢ (V,Wy,..., W} is a neighbor of W},

and T has an even number of elements. On the other hand, there are an odd number of such vertices X (since G has
an even number of vertices, and we’ve thrown away V and W, ..., Wy), and each one appears an odd number of
times in T, since X and V have an odd number of neighbors in common. Thus T has an odd number of elements,
giving a contradiction.

Thus G must have a pair of vertices with an even number of neighbors in common.

Exercises for Section 15.4

15.4.1 We know that a tree with n vertices must have between 2 and 7 — 1 leaves (inclusive). Therefore a tree
with 3 vertices must have 2 leaves, a tree with 4 vertices can have 2 or 3 leaves, and a tree with 5 vertices can have
2, 3, or 4 leaves. We can indeed draw one tree with 3 vertices, two trees with four vertices, and three trees with
five vertices, as shown in the diagram below.
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154.2 Choose a pair of vertices, say A and B, that are not connected by an edge. (If every pair of vertices is
connected by an edge, then any four vertices form a 4-cycle.) Let S and T be the set of vertices that are adjacent to
A and B, respectively, so Aisnotin T and B isnot in S.

Since every vertex has degree at least 40, #(S) > 40 and #(T) > 40. Furthermore, #(S U T) < 78, since neither A
nor B belong to S U T. Therefore, by PIE,

#SNT)=#S)+#HT)—#SUT)>40+40-78 = 2.

In other words, sets S and T must have at least two vertices in common. Let these vertices be C and D. Then
vertices A, C, B, and D form a 4-cycle.

15.4.3 We prove a stronger result: A minimal path between A and B cannot visit the same vertex twice.

Let p be a path between A and B. Suppose that p visits some vertex twice, say V. Then we can delete from p
the portion of the path between the two times that V is visited. This produces a shorter path between A and B. So
any minimal path cannot visit any vertex twice. It follows that no edge can be repeated.

15.4.4 First, we show that we can assume that paths p and g don’t overlap.

If they do overlap, then let V" be the last vertex that paths p and g have in common when traversing the path
p from V to A. Subsequently, let p’ be the portion of the path p going from V’ to A, and let ¢’ be the portion of the
path g going from V' to B.

Then by construction, p’ cannot overlap with any part of g, so it does not overlap with ¢’. Thus, we can proceed
in the proof by using paths p’ and ¢’ instead of p and g. (It is as if we chose vertex V’ originally, instead of vertex
V)

Now we show that we can assume that paths p and g do not include the edge ¢ between A and B, supposing
such an edge exists. Since paths p and g do not overlap, both paths cannot include e, which means that at most
one of these paths includes e. With loss of generality, let path p include edge e.

Since p is a minimal path from V to A, e must be the last edge in p. Let p’ be the portion of the path going from
V to B. Then going from V to B along p’, and then back to V by going along g in reverse creates a cycle. Let ¢
denote this cycle.

Since path p has even length, path p’ has odd length. Also, path g has even length, which means that cycle ¢
has odd length. However, this contradicts the fact that G has cycles of odd length. Therefore, the edge ¢ cannot
exist.

1545 Let G be a connected, bipartite graph. Since G is bipartite, the vertices of G can be partitioned into two
sets 5 and T, such that every edge of G connects a vertex in S to a vertex in T.

For the sake of contradiction, suppose that G contains a cycle of odd length. Let the vertices in this odd cycle
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be v1, Vs, ..., Uy, V1, where n is odd. Without loss of generality, let v; be in S. Since v; is connected to v; by an
edge, v, must be in T. Similarly, since v; is connected to v3 by an edge, v3 must be in S, and so on.

Subsequently, all the vertices with an odd index must be in §, and all the vertices with an even index must be
in T. Since # is odd, v, is in S, which means v, is in T. However, v; is in S, which is a contradiction. Therefore, G
cannot contain any odd cycles.

15.4.6 First, we prove that if the graph G contains no odd cycles, then G is bipartite.

Let Gy, Gy, ..., G be the connected components of G. Since G does not contain any odd cycles, neither does
any of its connected components. Therefore, each connected component G; is bipartite, meaning that the vertices
in G; can be partitioned into two sets S; and T}, such that every edge of G; connects a vertex in §; to a vertex in T;.

Now, let S = 51US,U---US,and T = T UT, U---UT,, so sets S and T partition the vertices of G. Furthermore,
each edge in G belongs to some connected component G, and each edge in G; connects a vertex in S; to a vertex
in T;. Hence, every edge in G connects a vertex in S to a vertex in T. Therefore, G is bipartite.

Next, we prove that if G is bipartite, then G contains no odd cycles.

Since G is bipartite, the vertices of G can be partitioned into two sets S and T such that every edge of G connects
a vertex in S to a vertex in T. For the sake of contradiction, suppose that G contains a cycle of odd length. Then
this odd cycle must belong to one of the connected components G;.

Let S; be the set of vertices in both S and G;, and let T; be the set of vertices in both T and G;, so the sets S;
and T; partition the vertices of G;. Furthermore, since G; is a connected component, every edge in G; connects a
vertex in S; to a vertex in T;. Hence, the graph G; is bipartite, which means that it cannot contain an odd cycle, a
contradiction. Therefore, G has no odd cycles.

15.4.7 Let V be the vertex of maximum degree in the graph, and let d be this degree. Let S be the set of vertices
that are adjacent to V, so #(S) = d. Finally, let T be the set of vertices other than those in S, so #(T) = 10 — 4.

Note that no two vertices in S can be connected by an edge (because such an edge would create a triangle), so
every edge of the graph has at least one endpoint in T. Every vertex in T has degree at most d (by definition of d),
so the the number of edges in the graph is at most

d(10 — d) = 10d — 4% = 25 — (4% — 10d + 25) = 25— (d — 5)* <| 25|

Now, we construct such a graph with 25 edges. Let 5 be a set with 5 vertices, and let T be a set with 5 vertices.
Connect every vertex in S to every vertex in T by an edge. Then this graph contains 5 - 5 = 25 edges, and is by
definition bipartite, so it cannot contain any odd cycles, and in particular it does not contain any triangles.

Exercises for Section 15.5

15.5.1 This graph is actually the graph K5, which we showed in Problem 15.13 is .

15.5.2 Label the vertices with the numbers 1 through 6, as shown below. If we delete the edge connecting vertices
2 and 3, and the edge connecting vertices 5 and 6, then we obtain the same bipartite graph examined in Problem
15.15, as shown below.
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5 % 5 6 4 5 6

If the original graph was planar, then we could draw a planar representation, delete the two edges, and obtain
a planar representation of our bipartite graph. But we know that this bipartite graph is not planar, from Problem

15.15, so the original graph is .

15.5.3 Suppose K,, was planar for some n > 5. Then we could draw a planar representation of K, and delete n -5
of the vertices and all of the edges connected to at least one of these n — 5 vertices. This would produce a planar
representation of K5, which we know does not exist. Therefore, K, is not planar for n > 5.

15.5.4 Let G be a planar graph, and suppose that every vertex in G has degree at least 6. If G is not connected,
then consider just one connected component of G, so that we may assume that G is connected. Then 2E > 6V,
since every edge has two endpoints, so V < E/3. Also, since G is connected, planar, and has more than one edge,
we have F < 2E/3.

Then . -
=i < - - —_—=
V=E+F=< 3 E+ 3 0,
but V - E + F = 2 for every connected planar graph, giving a contradiction. Therefore, G must contain a vertex
with degree less than 6.

15.5.5

(@) Ifa knight is on a white square, then it can only move to a black square, and vice versa. Therefore, every
edge in the graph connects a white square to a black square. Hence, the graph is bipartite, with the two
underlying sets being the set of white squares and the set of black squares.

(b) First, label the squares of the 4 X 4 checkerboard with the numbers 1 through 16, as shown. The figure on
the right depicts a subgraph of the graph in the problem, where each vertex is identified by the label of the
corresponding square. (In other words, we obtain the graph on the right by removing certain edges from the
graph in the problem.)

2

15 10
11234 6
56|78 ‘}/
9 (10(11|12 /""\
13|14|15|16 7

8 9 11

If we “remove” the vertices labeled 1, 3, 4, 5, 6, and 7, then we obtain a graph that is the same as K33,
the bipartite graph from Problem 15.15. (We call it K33 because it has 3 vertices in each half of the graph,
and it is “complete” in the sense that it has every possible edge between the two halves.) We can then argue
as follows: If the graph in the problem was planar, then we could draw it in the plane and remove the
unnecessary edges and the six vertices listed above, to obtain a planar representation of K33. However, we

know that K33 is not planar, so the graph in the problem is .
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15.5.6

(a) Since every vertex has degree d and every edge has two endpoints, 2E = dV, so V = 2E/d. Similarly, since
every face has b boundary edges and every edge borders two faces, 2E = bF, so F = 2E/b. Therefore,

_ _2E 2E _ (2b+2d —bd)E
2=V-E+F= 7 E+ e b ’
SO
E= 2bd
T 2b+2d—bd’
which means
V—§— 4b
T d " 2b+2d-bd
and
P—E— 44
T b 2b+2d-bd

(b) Since E is positive, 2b +2d — bd > 0, so
d-2)b—-2)=bd-2b-2d +4 < 4.

(c) Sinced >3andb >3, (d—2)(b—2)is a positive integer. By part (b), (d —2)(b — 2) is less than 4, so (d — 2)(b - 2)
isequal to 1,2, or 3.
If(d-2)(b—2)=1,thend—-2=b-2=1,s0d = b = 3. These parameters are satisfied by the following
graph.

If(d-2)(b-2)=2,thend-2=1andb—-2=2,0rd-2=2and b—2 =1, which leads to the solutions
(d,b) = (3,4) and (4,3), respectively. These parameters are satisfied by the following graphs.

If(d-2)(b—2)=3,thend—2=1andb—2=3,0rd -2 =3and b -2 =1, which leads to the solutions
(d,b) = (3,5) and (5,3), respectively. These parameters are satisfied by the following graphs.
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Exercises for Section 15.6

15.6.1

(a) There are 8 vertices of degree 3. A connected graph has an Eulerian path if and only if the number of vertices
of odd degree is at most 2, so this graph does not have an Eulerian path, nor does it have an Eulerian cycle.

(b) Label the squares of the 4 X 4 checkerboard with the numbers 1 through 16, as below:

112134
5(6|7|8
9 (10(11{12
13]14|15|16

We say that numbers i and j are adjacent if a knight on square i can move to square j. Note that 1 is adjacent
only to 7 and 10, and 16 is also adjacent only to 7 and 10. Therefore, if square 1 is not the first square nor
the last square on the Hamiltonian path, then its neighbors on the path must be squares 7 and 10. But the
same is true for square 16, which means that one of squares 1 or 16 must be the first square or the last square.
Without loss of generality, assume that square 1 is the first square in the Hamiltonian path.

Furthermore, if square 1 is the first square, then either square 7 or 10 must be the second square, square 16
must be the third square, and then square 7 or 10 (whichever was not the second square) must be the fourth
square. Without loss of generality, assume that square 10 is the second square and square 7 is the fourth
square.

Note that 4 is adjacent only to 6 and 11, and 13 is also adjacent only to 6 and 11. Therefore, by the same
argument, one of the squares 4 or 13 must be the last square. Without loss of generality, assume that square
4 is the last square in the Hamiltonian path.

Furthermore, if square 4 is the last square, then either square 6 or 11 must be the second-last square,
square 13 must be the third-last square, and then square 6 or 11 (whichever was not the second-last square)
must be the fourth-last square. Without loss of generality, assume that square 11 is the second-last square
and square 6 is the fourth-last square.

With squares 1, 4, 6, 7, 10, 11, 13, and 16 already used up, the following graph shows the remaining edges
that can be used in a Hamiltonian path:

2 8
9 15
1 10 16 7 6 13 11 4
14 12
5 3

The graph illustrates that if the Hamiltonian path passes through any of the squares 2, 8, 9, or 15, then
it cannot pass through any of the squares 3, 5, 12, or 14, and vice versa. Therefore, there is no Hamiltonian
path.

15.6.2 We prove the result using strong induction.

First, we prove the result for the base case n = 1. Let G be a graph with 2 vertices of odd degree. We must show
that there is a path that includes all the edges. But this is an Eulerian path, which we know exists. Therefore, the
result is true for n = 1.
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Now, assume that the result is true for all positive integersn =1, 2, ..., k — 1, for some positive integer k > 2.
Let G be a graph with 2k vertices of odd degree.

Let V1 and V;, be two vertices of odd degree in G, and let p be a simple path from V; to V. If we delete every
edge in p, then we are left with a graph G’ with 2k — 2 vertices of odd degree. The remaining graph G’ may not be
connected, so let the connected components of G’ be Gy, Gy, . . ., G,. For 1 < i < ¢, let 2n; be the number of vertices
of odd degree in G, so 2ny + 2np + -+ + 2n, = 2k — 2.

First, we deal with the case that some n; is equal to 0. If #; is equal to 0, then the connected component G; has
an Eulerian cycle. Furthermore, since the graph G was connected, the path p and graph G; must have some vertex
in common, say V. We can “absorb” the graph G; into path p as follows: Start at the first vertex of p and go along
p until you hit V. Then go along the Eulerian cycle of G; that begins and ends at V, and then traverse the the rest
of p. This new path is still simple. We can absorb any graph G; where #; = 0 in this way, and so we can assume
that #; > 1 for all i.

Since 2n; + 21y + -+ + 2n. = 2k — 2, we have 2n; < 2k for all i, so by the inductive hypothesis, G; can
be decomposed into #; disjoint paths that include all of the edges of G;. Thus, G’ can be decomposed into
11+ 1y +---+n, = (2k—2)/2 = k— 1 disjoint paths that include all of the edges of G’. Then including p, the original
graph G can be decomposed into (k — 1) + 1 = k disjoint paths that include all of the edges of G.

Therefore, the result is true for n = k, and by induction, for all positive integers 1.

15.6.3 There are many possible Hamiltonian paths: one example is shown at right. The path
shown at right cannot be extended to a Hamiltonian cycle, because the two ends of the path are
not adjacent.

Notice that we have 5 “outer” vertices and 5 “inner” vertices, with 5 “bridge” edges connecting
an outer vertex with an inner vertex. In any possible Hamiltonian cycle, two bridges cannot be
consecutive in the path (since there is only 1 bridge at each vertex), therefore every outer vertex must be connected
along the path with another outer vertex, and every inner vertex must be connected along the path with another
inner vertex. The example above at right shows that the 5 outer vertices cannot all be connected consecutively in
a Hamiltonian cycle, and by symmetry neither can the 5 inner vertices. Thus, the outer vertices must be divided
along the path into a group of 3 consecutive vertices and a group of 2 consecutive vertices. The graph below
shows one possible example; by symmetry, all of the other examples are essentially the same.

But from here, there is no way to complete the cycle: in particular, the top inner point, which is not yet
connected to the path, must be connected to both of the lower inner points, but this would create a cycle with 5
points that can not link up with the rest of the path:

Thus there is no Hamiltonian cycle.

15.6.4 We prove the result by induction on n.
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First, we prove the result for the base case. For n = 2, we have the Hamiltonian cycle (0,0), (0,1), (1,1), (1,0),
(0,0).

Now, assume that the result is true for some positive integer n = k = 2. Let vy, vy, ..., s, v; be a Hamiltonian
cycle on a k-dimensional cube.

For 1 < i < 2¥, let a; be the point that is obtained when the coordinate of 0 is added to the end of v; (so for
example, the point (1, 0, 0, 1) would become (1, 0, 0, 1, 0)), and let b; be the point that is obtained when the
coordinate of 1 is added to the end of v;. We claim that the sequence of points

a, 4z, 4as, ..., A, bzk, bZ"—]t s v b], 1751

is a Hamiltonian cycle on a (k + 1)-dimensional cube.

First, we show that any two adjacent points in this sequence differ in exactly one coordinate. Let 1 <i < 28 —1.
Then 4; and a;,; differ in exactly one coordinate, because they are obtained by adding a 0 to the end of v; and v;,1,
respectively, and v; and v;,; differ in exactly one coordinate. Similarly, b;;1 and b; differ in exactly one coordinate,
because they are obtained by adding a 1 to the end of v;,; and v;, respectively.

Finally, a and by differ in exactly one coordinate, because they are obtained by adding a 0 and a 1 to vy,
respectively, and a4, and b, differ in exactly one coordinate, because they are obtained by adding a 0 and a 1 to v,
respectively. Therefore, any two adjacent points in this sequence differ in exactly one coordinate, which means it
is a cycle on a (k + 1)-dimensional cube.

To prove that it is a Hamiltonian cycle, we must show that every point in the (k + 1)-dimensional cube appears
exactly once in our sequence. Letp be a point in the (k+ 1)-dimensional cube, and let 4 be the point obtained when
the last coordinate of p is deleted. Then g is in the k-dimensional cube, so § = v; for some 1 < i < 2¥. Then pis
equal to a; or b;, depending on whether the last coordinate of p is 0 or 1, respectively, and each a; and b; appears
exactly once in our sequence. Hence, our sequence is a Hamiltonian cycle on a (k + 1)-dimensional cube.

In other words, the result is true forn = k+ 1, so by induction, it is true for all positive integers n = 2.

Review Problems

15.20

(a) . The problem is equivalent to determining if there is a graph with 50 vertices, such that each vertex has
degree 3. It is not difficult to construct such a graph. For example, arrange the 50 vertices in a circle. Then
connect each vertex to its two neighbors, and to the vertex that is diametrically opposite.

(b) . The problem is equivalent to determining if there is a graph with 35 vertices, such that each vertex has
degree 3. In such a graph, the number of edges would be 3 - 35/2, which is not an integer. Therefore, no such
graph exists.

15.21 We rephrase the problem in graph-theoretic terms. Let G be a graph with 17 vertices. There is an edge
between every pair of vertices, and each edge is colored either red (if the people are friends), yellow (if they are
enemies), or blue (if they don’t know each other). We must show that there is a monochromatic triangle (that is,
we must show that there are three vertices such that all of the edges connecting these three vertices have the same
color).

Choose one vertex, say v. This vertex is connected to 16 other vertices. By the Pigeonhole Principle, at least 6
of these vertices are connected to v with edges of the same color, say blue. Let these 6 vertices be w;, ws, . . ., w.
If any pair of these six vertices are connected by a blue edge, then we are done.

Otherwise, every pair of these six vertices is connected by a red edge or yellow edge. Then by Problem 15.4,
there is either a red triangle or a yellow triangle among these six vertices, as desired.
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15.22 Recasting the problem in terms of graph theory, we are given a graph with 6 vertices (the students) and
7 edges (the games). The other condition on this graph is that given any 3 vertices, there must be at least 1 edge
between some 2 of them. Now we can try to prove the two statements in terms of our graph.

(@) There exists a vertex with degree at least 3. There doesn’t seem to be a clear way to attack this directly. But the
statement that we are trying to prove is equivalent to the statement “It is impossible for every vertex to have
degree less than 3.” This we can attack directly: if every vertex had degree at most 2, then the graph would
have at most 6(2)/2 = 6 edges. But we are given that the graph has 7 edges, so this is impossible. Therefore,
there must exist a vertex with degree at least 3.

(b) There exists a subgraph that is a triangle. This should remind you of Problem 15.4. Indeed, Problem 15.4 proves
this immediately, as we know from Problem 15.4 that our graph either must have a triangle or it must have 3
vertices with no edges between them. But the latter is impossible—the conditions of our problem specifically
prohibit it. Therefore, there must be a triangle.

15.23 To construct a path of length 2 (which has three vertices), we choose the middle vertex, say v;. Then there
are d; choices for the first vertex, and d; choices for the third vertex, for a total of d? total choices. (Note that the
first and third vertices could be the same—this would give us a path with a “u-turn.”) Hence, summing over all

vertices, we find that there are|d2 +d3 + -+ + d3 | paths of length 2.

15.24 There exists a path from A to B with length d(A, B), and a path from B to C with length d(B, C). Combining
these paths produce a path from A to C with length d(A, B) + d(B, C), which means the minimal path from A to C
cannot be any longer than this one. Hence, d(A, C) < d(A, B) + d(B, C).

15.25 Let V be the number of vertices. Every vertex has degree four, and every edge has two endpoints, so
2E =4V, or E =2V. Also, F =10, so
V—-E+F=V-2V+10=2,

which means V = .

15.26 Let P be the number of faces bordered by 5 edges, and let H be the number of faces bordered by 6
edges. Then the number of faces is F = P + H, and the number of edges is E = (5P + 6H)/2. (We divide by 2
because every edge borders 2 faces.) We are given that every vertex has degree 3, so the number of vertices is
V =2E/3 = (5P + 6H)/3. Then by Euler’s formula,

5P+6H_5P+6H+P+H=P

2=V-E+F= 3 2 3

Therefore, P = .

15.27 We rephrase the problem in graph-theoretic terms: let G be a graph with n vertices, such that every vertex
has degree at least 1. For any subset of vertices, the number of edges among these vertices is never exactly two.
Prove that there is a vertex that is connected to every other vertex.

We use the extremal principle, by focusing on the most “extreme” vertex. Specifically, let V be the vertex of
maximum degree in the graph, and let d be its degree. If d = 1, then every vertex in G has degree 1. If there is only
one edge in the graph, then there are only two vertices, and the condition in the problem is satisfied. Otherwise,
take any two edges. Since every vertex in G has degree 1, these two edges cannot have any endpoints in common,
so the set of four vertices that are the endpoints of these two edges violates the condition that no subset of vertices
has 2 edges among them. So we have d > 2.

Let S be the set of vertices that are adjacent to V, so d = #(S), and let S = SU {V}. Let A and B be 2 arbitrary
vertices in S. The number of edges connecting vertices V, A, and B is not exactly two, so vertices A and B must also
be connected by an edge. Since vertices A and B were chosen arbitrarily, any pair of vertices in S are connected
by an edge. Furthermore, since the maximum degree of a vertex in G is d, each vertex in 5’ can only be connected
to the other d vertices in §’. In other words, the vertices in §’ form a copy of Ky.1, the complete graph with d +1
vertices, and are a connected component of G.
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If there is another vertex C in G but not in §’, then since the degree of C is at least 1, C must be connected to
some other vertex D also not in §’. But then if A and B are any two vertices in §', then the set {4, B, C, D} has
exactly 2 edges (the edge between A and B and the edge between C and D), contradicting an assumption of the
problem. So §” must be the only connected component of G, which means that G = Kj,;.

The conclusion is that not only does there exist a person who is friends with everybody else, but that in fact
everybody is friends with everybody else.

=l
N

15.28 Let G be the graph with vertices corresponding to the squares on the checker-
board and edges corresponding to all possible knight moves. Then a knight can travel
around the checkerboard, making every possible move exactly once, if and only if
the graph G has an Eulerian path. To see if G has an Eulerian path, we must count
the number of vertices of odd degree. The vertex V shown at right has degree 3.
Furthermore, by rotating and reflecting the checkerboard, we find that there are (at
least) eight vertices of degree 3. Therefore, the graph does not have an Eulerian path.

?-:

Challenge Problems

1529 Consider the ham radio club as a graph, where each vertex corresponds to a member, and a pair of vertices
is connected by an edge if the corresponding members are friends. Then the degree of every vertex is between 52
and 77 inclusive, so there are 26 different possible degrees. To show that there are four members with the same
number of friends, we must show that there are four vertices with the same degree.

Suppose that there are at most three vertices of each possible degree. Since 3 - 26 = 78, each degree from 52 to
77 inclusive must occur exactly three times. There are 13 odd numbers from 52 to 77 inclusive, which means the
number of vertices of odd degree is 3 - 13 = 39, which is an odd number. However, the number of vertices of odd
degree must be even, giving a contradiction. Therefore, there are four vertices with the same degree.

15.30 Define a conflict to be a pair of enemies within the same group. There are only a finite number of ways to

split the people into two groups, so consider the split that minimizes the total number of conflicts. We claim that
in this minimal split, each person has at most one enemy in his or her group.

For the sake of contradiction, suppose that some person has at least two enemies in his group. Let the two
groups be S and T, and let A be a person with at least two enemies in his group. Without loss of generality, assume
that A is in group S. Now suppose that A is moved to group T. There are a number of cases to consider. If A only
has two enemies, then they are both in S, so the total number of conflicts decreases by 2. Otherwise, A has three
enemies. If A’s third enemy is also in S, then the total number of conflicts decreases by 3. Otherwise, A’s third
enemy is in T, and the total number of conflicts decreases by 1.

In every case, the total number of conflicts must decrease. However, this contradicts the fact that we initially
chose the split with the smallest number of conflicts. Therefore, in this particular split, each person has at most
one enemy in his or her group.

1531 We construct a graph G, where each vertex corresponds to a citizen, and we draw an edge between two
vertices if the two corresponding citizens do not know each other. The condition of the problem states that any
subset of 1 vertices in G must have fewer than edges. In particular, this means that G has no cycles, because a
cycle of length 1 would give a subset of 1 vertices with at least n edges.

Since G has no cycles, in particular it has no odd cycles, so it is bipartite. Thus we can partition the vertices
of G into two sets A and B, so that every edge in G is between a vertex in A and a vertex in B. This means that if
there are two citizens that do not know each other, then one is in A and one is in B. Hence, everyone in A knows
everyone else in A, and everyone in B knows everyone else in B, as desired.

15.32  Let b be the boy who danced with the most number of girls. Since no boy dances with every girl, there is
a girl, say g’, that b did not dance with. Since every girl danced with at least one boy, there is a boy, say I, that g’
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danced with.

There must be at least one girl, say g, that b danced with but that " did not dance with (otherwise, b’ would
have danced with more girls than b). Then the boys b and b’ and girls g and g satisfy the given conditions.

15.33 Let v4, ¥2, ..., ¥y be an arbitrary ordering of the vertices, and set v,,417 = v;. We say that there is a gap
between consecutive vertices v; and vj4; if there is no edge connecting them. Consider the ordering that has the
smallest number of gaps. (Since there are only a finite number of orderings, one of them has to have the smallest.)
We claim that the number of gaps is 0.

For the sake of contradiction, suppose that there is a gap. Without loss of generality, assume that this gap is
at the end, between v, and v,+1 = vy, so there is no edge between v; and v,. We will show that it is possible to
rearrange the vertices to make this gap disappear. In particular, we are looking for a vertex v; with2 <i<n-2
such that v; is connected to v, and v is connected to v;. This will allow us to reorder the vertices as:

U1, 025+« 4 0i-1, Vi, Uny Up—1, U2, -+ + , Vi1, U1

In doing so, we break up the consecutive pairs (v;, vi+1) and (,,v1), and form the consecutive pairs (v;, v,) and
(vis1,v1). We know that there is no edge connecting v, and v;, and we will have an edge between v; and v, and an
edge between v; and v;;;. Hence, by reordering the vertices, we will have reduced the number of gaps by at least
one.

So it remains to find i with 2 < i < n — 2 such that v; is connected to v, and v;4; is connected to v1. Define the
sets

S={2<i<n-2|uv;is connected to v,},
T=(2<i<n-2]|0v1 is connected to v1}.

Since every vertex has degree atleast n1/2, we see that #5 > £ ~1and #T > 5 —1. ButSUT C {2,3,...,n—2}, hence
#SUT) <n-3. Thus,

#(SnT):#S+#T—#(SUT)2(g-1)+(§—1)—(:1—3):1,

so there must be some i in both S and T. This gives us the vertices v; and vy; that we need to rearrange the
sequence as described above to reduce the number of gaps. But we chose the ordering with the smallest number
of gaps, which gives us our contradiction.

Hence, there is an ordering of the vertices that has no gaps, which produces a Hamiltonian cycle.

15.34 Each domino can be considered as an edge of the graph at right. For
example, the 3-4 domino is the edge connecting vertices 3 and 4, and the double-
six domino is the loop connecting vertex 6 to itself. Furthermore, two dominoes
can be adjacent if and only if their corresponding edges share a vertex. Hence,
an arrangement of the 28 dominoes in a circle corresponds to an Eulerian cycle in
this graph.

Each vertex in the graph has even degree, namely 8. Therefore, there is an
Eulerian cycle, which means that it is possible to arrange the 28 dominoes in a
circle such that neighboring dominoes have the same number of dots.

15.35 First, we rephrase the problem in graph theoretic terms. Consider the
complete graph K,,, where each edge is colored either red or blue. We wish to show that for each vertex V, there is
a color (either red or blue) such that every other vertex can be reached from V by traveling along at most 2 edges
of that color. We prove this result by using induction on n.

The result is trivial for the base case n = 2, so assume that the result is true for some positive integern = £ > 2.
Consider a graph K1, where each edge is colored red or blue.
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Let V be one of the ¢ + 1 vertices. Then choose a vertex W other than V, and consider the complete graph on
the t vertices other than W, including V. By the inductive hypothesis, there is a color (either red or blue) such that
every vertex other than V and W can be reached from V by traveling along at most 2 edges of that color. Without
loss of generality, let this color be blue. If the edge between V and W is also blue, then we are done, so assume
that the edge between V and W is red.

Let S be the set of vertices that are connected to V by a blue edge. If any edge connecting W to a vertex in S
is blue, then again we are done, since we then have a blue path of length 2 from V to W via the vertex in S. So
assume that every edge connecting W to a vertex in S is red.

But now every vertex in the graph can be reached from V by a red path of length at most 2: W and all the other
vertices not in S are connected directly to V by a red edge, and all of the vertices in S can be reached by ared path
of length 2 from V, via W.

Therefore, V has the desired property. Since the vertex V was chosen arbitrarily, every vertex in the graph has
the desired property. Therefore, the result is true for n = ¢ + 1, and by induction, the result is true for all positive
integers 7.
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I Challenge Problems

Challenge Problems

16.1 The plane with 3 engines crashes if 2 or 3 engines fail, and the probability of this occurring is

3 3
(2)P2(1 -p+ (3)P3 =3p* - 2p°.

The plane with 5 engines crashes if 3, 4, or 5 engines fail, and the probability of this occurring is

5 5 5
(3)P3(1 -py+ ( 4)p"‘(l -p)+ (5)p5 = 10p® — 15p* + 6p°.
So the two probabilities are equal if and only if

3p? - 2p® = 10p® - 15p* + 6p°
o 6p°-15pt+12p° -3p> =0
> 3p*p - 1)*(2p-1) =0.

Hence, the two probabilities are equal if and only if p = | 0,1, or 1/2|

See if you can think of an intuitive reason why this answer should be true. In particular, if we had an airplane
with 2007 engines, it would crash with the same frequency as a plane with 3 engines if and only if p = 0,1, or 1/2.
Why?

16.2 Since 2004/6 = 334, the values of # than can produce a roll of 2004 are 334 < n < 2004. There is a 1-1
correspondence between rolls that sum to 2004 and rolls that sum to 7n — 2004, given by replacing each individual
die roll of r with 7 — r. Therefore, the possible values of X are the elements of the set

{7n — 2004 | 334 < n <2004} = (334 + 7k | 0 < k < 1670}.

16.3 Let the first box contain b; and w; black and white marbles, respectively, and let the second box contain b,
and w, black and white marbles, respectively. Lets; = by +w; and s; = by +wy. Then by +wy +by +wy = s1+5, = 25,
and the probability that both randomly chosen marbles are black is

by b, 27

' =55 =27 e
bi+w; b+ws 50 = 50bib, (bl + zul)(bZ + wz) 275182

Without loss of generality, assume that s; < so. We see that 50 must divide 27s1s,. Since 27 is relatively prime
to 50, we have that 50 must divide s;s;. In particular, one of s; and s, must be divisible by 5. Since s; + s, = 25,
either (s, s2) = (5,20) or (s1,s2) = (10, 15).
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Case 1. s; =5 and s, = 20.

In this case, 50b1b, = 27 - 5 - 20, so b1b, = 54. Since b1 <51 =5, we can test every value from 1 to 5 for by, and
find that the only solution is b; = 3 and b, = 18. Then W =51—b1 =2,and wy = 8, — by = 2, s0 the probability of
drawing two white marbles is

w wy _2 2 1
s1 s 5 20 25

Case 2. s; =10and s; = 15.

In this case, 50b; b, = 27-10-15, so byb, = 81. Since b1 <s;=10and b, < s, = 15, the only solutionisb; = b, = 9.
Thenwy =5, —b; =1,and wy = s, — b, = 6, s0 the probability of drawing two white marbles is

wowp_ 1 6 _1
s1T s 10 15 25

In either case, the probability of drawing two white marbles is | 1/25 |,

16.4 . Suppose that we want the dice to be equally likely to sum to 1,2, 3, ..., 12. Then each sum must be
the outcome of 36/12 = 3 possible rolls. This suggests letting one die have 3 faces with one number and 3 faces
with another number, and having the other die have six different numbers, each of which sums with a number on
the first die to give a different result.

Specifically, let the numbers on one die be 0, 0,0, 1,1, and 1, and let the numbers on the other die be 1,3,5 7
9,and 11. Then there are exactly three rolls that produce each sum of 1, 2, 3, . . . » 12, so each sum is equally likely.

16.5 Atany given moment, let N denote the number of cards in the suit with the maximum number of cards. We
claim that if we follow the given instructions, then the number of suits that we guess correctly will be at least N.

For example, suppose that the suit with the maximum number of cards is spades, so for the next card, we guess
spades. If the next card is not spades, then there are still N spades left in the deck. If the next card is spades, then
we have correctly guessed the suit, and the quantity N may decrease by 1, or it may stay the same. (It will stay
the same if there were N cards of another suit in the deck.) Hence, the quantity N decreases only if we correctly
guess the suit. At the end, when there are no more cards, N is equal to 0. Hence, we must have correctly guessed
the suit at least N times.

To finish off the problem, by the Pigeonhole Principle, in a deck of 52 cards, there must be 13 cards in some
suit. Therefore, we guess correctly at least 13 times.

16.6 First, we make a table that shows the distribution of people in the first few minutes:

time (minutes) | Room1 Room?2 Room3 Room 4
0 1000 0 0 0
1 999 1 0 0
2 998 ) 0 0
3 997 2 1 0
4 996 2 2 0
5 995 2 2 1
6 994 2 2 2

We see that after n minutes, there are 1000 — 1 people left in the first room. Furthermore, if 1 is odd, then there
are people in the next (n + 1)/2 rooms, and if 1 is even, then there are people in the next 1/2 rooms. (This is true
as long as there are at least 2 people in the first room to feed the remaining rooms.)

So, after one hour (or 60 minutes), there are peoplein1+60/2 = different rooms.
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16.7 Suppose that the board is composed of all points in the set
{(a,b,c)|0<a,b,c<3).

Winning sets come in 3 types:

Case 1 4 points on a line perpendicular to one of the coordinate planes.

These are sets of the form {(a, b,0), (a,b,1), (a, b, 2), (a, b, 3)} for some fixed 0 < a,b < 3, which are on segments
perpendicular to the xy-plane, and the similar sets of segments perpendicular to the xz-plane and the
yz-plane. Since there are 4 x 4 = 16 choices for a and b, there are 16 such winning sets forming segments
perpendicular to the xy-plane, and the same number for each of the other two planes, giving 48 total winning
sets in this case.

Case 2 4 points on a line parallel to a coordinate plane, not included in Case 1.

These are segments that form a diagonal of a plane in which we fix one of the coordinates. For example, the
set {(2,3,0),(2,2,1),(2,1,2),(2,0,3)} is a diagonal in the x = 2 plane. There are 3 choices for which coordinate
to fix, then 4 choices for the value at which the chosen coordinate is fixed, then 2 choices for a diagonal. This
gives 3 X 4 x 2 = 24 total winning sets in this case.

Case 3 4 points on a line not parallel to any coordinate plane.

These are the “space diagonals” of the cube. There are 4 of them, one for each pair of opposite corners.

Thus, there are 48 + 24 +4 = winning sets.

There is a very clever way to arrive at this solution via a 1-1 correspondence. Imagine that our 4 X 4 X 4 cube
sits inside a larger 6 X 6 X 6 cube. Then every winning line on the 4 X 4 X 4 can be extended by 1 unit in each
direction so that it intersects the 6 X 6 X 6 cube. This gives a 1-1 correspondence:

{Winning lines on the 4 X4 x 4 cube} «  {Paris of points on the outside of the 6 X 6 X 6 cube}.
Thus, the number of winning lines is equal to the half of the number of points on the outside of the 6 X 6 X 6 cube,
which is £5% = 76.

16.8 The generating function for Alice’s sum is (x + x2 + x> + x*). Let the numbers in Betty’s first bag be ny, 1,
n3, and 14, and let the numbers in her second bag be m;, my, m3, and m4. Then the generating function for Betty’s
sum is (x™ + x" + x™ + x™)(x™ + x"2 + x"™ + x™). So for the two distributions to be equal, we want
(xm + x4 xn;)(xml +xmz + xm3 + xun) = (x +x2 + x3 + I4)2
=22(1+x+22 + 23
=221 + 22 (1 + %)%

Let f(x) = 2™ +x™ + 2™ + x™ and g(x) = x™ + x™ + x™ + 2™, Since the n; and m; are positive integers,
both f(x) and g(x) must be divisible by x. Also, taking x = 1, we get f(1) = 1" +1™ + 1™ + 1™ = 4 and
g(1) =1" 4 1™ + 1™ + 1™ = 4, Taking x = 1 in the factors above, we get

1+x=2,
1+x*=2.
So, to satisfy f(1) = g(1) = 4, either both factors of 1 + x go to one polynomial and both factors of 1 + x* go to the
other polynomial, or each gets one factor of 1 + x and 1 + x%. In the former case, the polynomials are
xA+xP=x(1+2x+x) =x+22 +x>=x+2x>+x*+x°, and
1+ =x(1+22 +2) =x+ 22+ =x+ 22+ 22 +2°,
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and in the latter case, both polynomials are x(1 + x)(1 + %) = x + 2% + x® + x*. This second case recovers Alice’s
numbers, so Betty’s numbers are 1, 2, 2, and 3 in one bag, and 1, 3, 3, and 5 in the other bag.

16.9 For a positive integer 1, let S,, denote the set of ordered sums of 1s and 2s that sum to 7. We list 5, and f(n)
for the first few values of n.

n[ Sii |f(n)
1 1 1
2 2,1+1 2
3 2+1,1+2,1+1+1 3
4124+2,2+1+1,1+2+1,1+1+2,1+1+1+1 5

The sums in 5, can be divided into two categories: those that end with 1, and those that end with 2. The sums
in 5, that end with 1 can be generated by adding a 1 to the sums in S,,_;. The sums in S, that end with 2 can be
generated by adding a 2 to the sums in S,_5. Thus, f(1) = f(n — 1) + f(n — 2). This is the same as the Fibonacci
relation. Furthermore, f(1) = 1 = F; and f(2) = 2 = F3, so it follows that f(n) = F,,41 foralln > 1.

Now, let T, denote the set of ordered sums of integers greater than 1 that sum to n. We list T,, and g(n) for the
first few values of 7.

n T, g(n)
1 1] 0
2 2 1
3 3 1
4 4,2+2 2
5 53+2,2+3 3
6164+2,3+3,2+4,2+2+2 5

Each sum in T), can be obtained by adding a number (that is at least 2) to a sum that appears earlier in the
table. For example, the sums 4 + 2 and 2 + 2 + 2 in T can be obtained by adding 2 to the sums 4 and 2 + 2 in Tj.
The exception is the sum n itself. Hence,

gm)=gn—-2)+gn—-3)+---+g(3) +2(2) + 1.
Shifting the index by 1, we get
g+1)=gn-1)+gn—-2)+---+gB) +g2) +1

=gn-1)+[gn—2)+---+ g(3) + g(2) + 1]
=g(n-1)+ g(n).

This is again the Fibonacci relation. Furthermore, g(2) = 1 = F; and g(3) = 1 = F;, so it follows that g(n) = Fyq
foralln > 1.
Therefore, f(k) = g(k +2) = Fy,1 for all positive integers k.

16.10 More generally, let p be the probability of getting heads, and let g be the probability of getting tails, so
in this case, p = 2/3 and g = 1/3. Then the probability of getting k heads out of 50 tosses is (so,)p*¢>*, so the
probability of getting an even number of heads is

50\ 50, (90) s 2 (90) 464, .., (50) 50
o s W
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By the Binomial theorem,
50} 50, (90} 40 50\ 45 » 50\ 5o _ 50
(O)P +(1)P Gl P 0 + g7 =P+,
50 50 _ 50} 49 50} 4 2. 50 50 _ (4, _ 150
(O)p (1)P q+l, Fa gt =@ -

Adding and dividing by 2, we get

50) 50, (50) 48 2 (50) 46 4. . (50\s0_ (PH+)*+(p—g)*
(ot o[- 228500

Therefore, in our problem, the probability of getting an even number of heads is

1+3@

(2/3+1/30°+(2/3-1/3)° |1 1
2 B 2( )

16.11 We can use casework based on the number of elements in the set.

If the set has only 1 element, then we can choose any of the 15 elements (since none are less than 1). Thus there
are (115) possible sets.

If the set has 2 elements, then we must choose 2 non-consecutive elements from {2,3,...,15}. We can think
of this as a distribution problem, where we must distribute the 12 non-chosen elements into 3 groups: those less
than the first chosen element, those between the two elements, and those greater than the last chosen element.
The middle group must be positive, since the two chosen elements must be non-consecutive. Thus, the number
of ways to choose the 2 elements is equal to the number of solutions to a + b + ¢ = 12, where a, c are nonnegative
integers and b is a positive integer. Solutions to this are equivalent to solutions toa’ + b+ ¢’ = 14, where a’, b, ¢’ are
all positive. This is the same as inserting 2 dividers into 13 slots, so there are (123) solutions, and hence (123) such
sets.

If the set has 3 elements, then we must choose 3 non-consecutive elements from {3,4,...,15). Again, we can
think of this as a distribution problem, distributing the 10 non-chosen elements into 4 groups. This corresponds to
solutions toa +b + ¢ +d = 10, where b, c are positive and , d are nonnegative; this in turn corresponds to solutions
toa’ + b+ c+d’ =12, where all the variable are positive. This equation has (]3}) solutions.

Similarly, the number of sets with 4 elements is (3), and the number of sets with 5 elements is (;), using the same
reasoning. There can be no sets with 6 or more elements: it is impossible to select 6 non-consecutive elements
from (7,8, ...,15).

Thus, the total number of sets is
15 13 11 9 7
(1)+(2)+(3)+(4)+(5) =15+ 78+ 165+ 126 + 21 = 405
More generally, the number of subsets of {1,2,...,1} with the desired property is
" i n—2 & n—4 i
1 2 3

16.12  Let p, be the probability that in a tournament of Pushover with 2"*! competitors, players 1 and 2" face
each other in the last round.
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Before computing p,, we compute another probability: Let g, be the probability that in a tournament of
Pushover with 2"*! competitors, players 1 and 2" + 1 face each other in the last round. Note that when the 2"+
competitors stand in a circle, players 1 and 2" + 1 are diametrically opposite.

If n =0, then 2" + 1 = 2, and players 1 and 2 are the only players in the tournament, so gy = 1. Now consider a
tournament of Pushover with 2"*! competitors, where # > 1. Take players 1 and 2" + 1, and call them players A
and B instead. Then for players A and B to face each other in the last round, each must win his respective game of
Pushover, which occurs with probability 1/2-1/2 = 1/4. Furthermore, if both players A and B win their games,
then no matter how the referee pairs off the players, players A and B will still be diametrically opposite, taking
the place of players 1 and 2"~! + 1 in a tournament with 2" competitors. Therefore, g, = g,-1/4. Since gy = 1, we
see that g, = 1/4" for all n > 0,

Now we return to the original problem of computing p,. To compute p;, consider a tournament of Pushover
with 4 competitors. If the referee pairs up players 1 and 2, then one of them must win and they cannot face each
other in the final round. However, if the referee pairs up players 4 and 1, and players 2 and 3, and if both players
1 and 2 win, then they will face each other in the final round. Therefore, py =1/2-1/2-1/2 = 1/8.

Now consider a tournament of Pushover with 2"+ competitors, where n > 2. This time, take player 1 and
2", and call them players A and B. As before, for players A and B to face each other in the last round, each must
win his respective game of Pushover, which occurs with probability 1/2-1/2 = 1/4. If the referee pairs players
1 and 2 together, and so on, then players A and B will take the place of players 1 and 2" in a tournament with
2" competitors, reducing to the probability of p,_1. But if the referee pairs players 2"*1 and 1 together, and so on,
then players A and B will be diametrically opposite, reducing to the probability of g,;. Hence,

Lt .1 1. . 3
Pn = 5 4pn-l ) 4%—1 = Spu—l 2.4

We can solve this recursion, or we may test the first few values:

1 15 241

It looks like p, = (2" - 1)/8", which we prove by induction. This formula is correct in the base case 1 = 1, s0
assume that it is true for some positive integer 1 = k, so
2-1

gk

Pk =

Then
1 1 2x—-1 1 k-1 2k gkl _ g

1
PA=BPy o dm —8 & T & gn T g

Hence, the formula is correct for n = k + 1, and by induction, it is correct for all positive integers n. Therefore, the
desired probability is

_ 2" -1
Pn = g |

16.13 Let the pirates, in order from shortest to tallest, be Py, P, P3, Py, and Ps.

197



CHAPTER 16. CHALLENGE PROBLEMS

Consider the situation where there are only two pirates left, Py and Ps. Then pirate P, can distribute the coins
in any way he wants to, since his vote constitutes at least half the votes, 50 in this situation, pirate P; would give
himself all 500 gold coins and give pirate Ps nothing.

Next, consider the situation where there are only three pirates left, P3, P4 and Ps. Pirate P; must secure at least
two votes, including his own vote. Pirate P5 can secure pirate Ps’s vote by giving him only one gold coin, because
if P5 does not vote for P5’s plan, then P; walks the plank, and it will be down to pirates P4 and Ps, in which case
Ps gets nothing. (And P; could only secure P,’s vote by giving him all the gold coins.) Therefore, P5’s best plan is
to give 499 coins to himself and one coin to Ps.

Next, consider the situation where there are only four pirates left, P, P3, P, and Ps. Pirate P, must secure at
least two votes, including his own vote. Pirate P, can secure pirate Py’s vote by giving him only one gold coin,
because if P; does not vote for P;’s plan, then P, walks the plank, and it will be down to pirates P3, Py and Ps, in
which case P4 gets nothing. Therefore, P,’s best plan is to give 499 coins to himself and one coin to Py.

Finally, consider the situation with all five pirates. Pirate P; must secure at least three votes, including his own
vote. Pirate Py can secure pirate P3’s and Ps’s vote by giving each only one gold coin, because if P; and P5 do not
vote for Py’s plan, then P; walks the plank, and it will be down to pirates Py, P3, P4 and Ps, in which case P; and
P5 get nothing. Therefore, P;’s best plan is to give 498 coins to himself, one coin to P3, and one coin to Ps.

Therefore, the shortest pirate P; should receive coins.

16.14 Since the first student knows how to solve at least one problem and can choose any problem he likes, the
first student can successfully present a solution with probability 1. Let1 <k <n - 1. By the time the (k + 1)t
student selects his problem, k problems have already been solved, so he has # — k problems to choose from.

Suppose this student knows how to solve r problems. If 7 > k + 1, then at least one of the problems he knows
how to solve has not been taken yet, so he can successfully present a solution with probability 1. If » < k, then we
compute the probability that he cannot successfully present a solution.

If he cannot successfully present a solution, then all 7 problems he knows how to solve must be a subset of the
k problems that have already been taken, and this occurs in (f) ways. The set of 7 problems the student knows
how to solve can be chosen in (%) ways, so the probability that he cannot successfully present a solution is (’:) /().
Therefore, the probability that he can successfully present a solution is 1 — G/O.

The probability that r is equal to any of the values 1,2, ...,nis 1/n, so the probability that the (k + 1)t student
can successfully present a solution is

k n k
1 M) 1 k 12(r n—k
-— [1___]+; 1_;_;1. T+ _1_

n
" r=1 (")

=

2l
T:Ma-
[
|~
T

To make this expression easier to sum, we modify it as follows:

G mey Ko -
(_','5_ o al(k - 1)

ri(n—r)!

K (n—=7)! (n-k)

_ ki(n—k)! (n—r)
B n! . (n =)k —1)!

G

198



Challenge Problems

Hence,

By the Hockey Stick identity,

50

n!
(n=k+1)I(k-1)!
- - n!
kl(n—k)!

ki(n — k!
"~ k=D (n—k+ 1)!
i
nn—k+1)
_nn-k+1)-k
T onmn—-k+1)
P —kn+n—k
Tn(n—k+1)
_nn—-k)+(n-k)
T onm-k+1)
_(n+1)(n-k)
T onn-k+1)°

=1

Therefore, the probability that every student can successfully present a solution is

n-1

H (n+Dm-k @+ T n-k

=, nn—k+1) gl £ B =kF]
4+ n-1 n-2 2 1
T w1l 4 n-1 32
|yt

n n

16.15 Letn be the number of players. Let us call a player weak if he is one of the ten lowest scoring players, and
strong otherwise, so there are n — 10 strong players.

Collectively, there are (1??) = 45 points up for grabs over all games played between weak players. Since half of
the points for each player came from games against weak players, it means that among all games played between
a weak player and a strong player, an additional 45 points were won collectively by weak players.

However, there are a total of 10(1 — 10) points up for grabs over all games played between a weak player and a
strong player, so 10(n — 10) — 45 points were won collectively among these games by strong players. Collectively,
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there are ( - 10) _ (1=10)(n-11)

5 points up for grabs over all games played between strong players. Hence,

10(n - 10) - 45 = 2= 10 =11

2 _
10n — 145 = - —21n +110

20n —290 = n%2 — 21n + 110
n?—41n+400=0
(n—16)(n - 25) = 0,

T80 3

so 71 must be 16 or 25.

However, a tournament with 16 people is impossible. If there were such a tournament, then there would be 10
weak players and 6 strong players. Collectively, the weak players win 90 points, so some weak player must win
at least 90/10 = 9 points. Hence, every strong player must win at least 9 points, so collectively the strong players
win at least 6 - 9 = 54 points. However, according to our reasoning above, they collectively score only 2 - (g) =30
points, which is a contradiction.

Therefore, there are players in the tournament. (We leave it as an exercise to show that such a tournament
is possible.)

16.16 If you choose 1 balls, then the probability that each ball lands in a different slot is

59 58 61-n

pu:l.@.@... %0 ,

and your expected winnings, in dollars, is np,.

To maximize this expression, we compare np, and (1 + 1)p,.1:

hpy < (n+ 1)Pn+1

n Pn+1
= <
n+1 Pn
1.29 .58, 6l-n 60-n
PN n 60 " 60 60 60
59 58 6l-n
n+1l 1'60 60 60
n 60 —n
= <
n+1 60
= 60n < 60 + 591 — n?

= n? +n < 60.

This inequality is satisfied for n < 7, but not n > 8. In other words, np, is increasing from n = 1 to 8, but
decreasing from 8 onwards, so the expected winnings are maximized for | 8 | balls.

16.17 To each student, we assign a 10-tuple of 0’s and 1’s, where the i" element is 1 if the student is a member of
the it club, and 0 otherwise. For example, if a student was a member of clubs 1, 2, and 10, then the corresponding
10-tuple would be (1, 1,0, 0,0, 0, 0, 0, 0, 1). According to the first condition, no two 10-tuples are alike.

To get started on the problem, let’s consider three example 10-tuples:
x=(1,10,1,1,0,1,0,0,0),

y=(,1110,11,1,0,1),
z=(1,0,1,0,1,1,0,1,0,1).
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Note that these three 10-tuples violate the second condition, because for every 1 < i < 10, the number of 1’s that
appear in the i place among x, y, and z is either 0 or 2. (To satisfy the second condition, the number of 1's that
appear in the i" place must be 1 or 3 for some i.)

Another way to express this is to say that x + y +z = (0,0, ..., 0), where addition is element-wise, and reduced
modulo 2. Note that this is equivalent to saying that x = y +z, y = x + z, and z = x + y. We use this observation as
follows.

First, there are a total of 2'° = 1024 possible 10-tuples. Choose a student who belongs to some club, and let
his 10-tuple be v, so v is not all 0’s. (If no such student exists, then the college can have at most 1 student.) Then
the set of all possible 10-tuples can be divided into pairs {x, y}, where x + y = v. (Note that this relation between
x and y is symmetric.) One of these pairs is going to be {v, g}, where v is the 10-tuple containing all 0’s (which
corresponds to the student who does not belong to any clubs), so the remaining 1024 — 2 = 1022 10-tuples can be
divided into 1022/2 = 511 pairs as follows:

for, ), (2, vy), ..., (vsu, Uk}

For each i, at most one of v; and '{J; can appear among the 10-tuples of the students, because v; + v; = v, so the
presence of both v; and v} would violate the second condition. Therefore, counting v and vy, the number of
students at the college can be at most 2 + 511 = 513. (We can include both v and vy, because in the condition
X 4+ y = v, we assume that x, y, and v are distinct.)

We can construct an admissible set of 513 10-tuples, by taking vy and all the 10-tuples where the first element
is 1. This gives a total of 1+ 27 = 513 10-tuples. Clearly, the first condition is satisfied. To check that the second
condition is satisfied, we must verify that the equation x + y + z = (0,0, .. .,0) never holds, where x, y, and z are
distinct. If one of x, y, and z is vy, then the other two must be equal, so we may dismiss this case. Hence, the first
element in each of x, ¥, and z is 1, which means the first element in x + y + z is 1, so in particular, x + y + z cannot
be equal to (0, 0, ... ., 0), so the second condition is satisfied.

Therefore, the maximum number of students at the college is .

16.18 The coefficients (p), ("), etc. in the sum should remind you of the Hockey Stick identity. So let’s look for
a block-walking argument on Pascal’s Triangle similar to the block-walking proof of the Hockey Stick identity.

Consider the example where n = 3. At right is a picture of Pascal’s
Triangle with the points corresponding to (g), (‘{), (g), and (g) shown as o o
large dark circles. Note that every path to the left side of Row 7 (boxed
at right) must pass through one of the dark points, and also must pass
through one of the circled points corresponding to (3), (), (5), and (3).

We count paths to the left half of Row 7 based on which of the circled

points gets passed through first. For example, a path to Row 7 that passes ° @ @ o o o
through the (g) point before any of the other circled points must pass e ¢ @ @ ° o o
through (S), take a step down and to the left, then take any 3 steps down [¢ o « @
to Row 7. Thus, there are 2°(}) of these paths. Similarly, a path to Row 7
that passes through () before any of the other circled points must pass through (%), take a step down and to the
left, and then take any 2 steps down to Row 7, so there are 2%(3) of these paths. Similarly, there are 21(2) paths that
have the (g) point as the first circled point, and 20(2) paths that have the (g) point as the first circled point.

Adding these up, we see that there are a total of

(o)) 23243
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paths to the left side of Row 7. But we know that there are 27/2 = 26 total paths to this half-row, therefore
3 4 5 6
3 2 1 0[®) = 06
2 (0)+2 (1)+2 (2)+2 (3)—2 ;
i 3+k ( 1 )" _
k J\2 '

k=0

and dividing by 23 gives our identity

This argument generalizes to arbitrary n. We count the number of paths to the left half of Row 2n + 1, based
on which of the points ("3"), ("), ..., (***") the path passes through first. To first pass through (**1*), the path

n

must go through (":k), take a step down and to the left, and then take any n — k steps down to Row 2n + 1. Thus,
there are 2" (":k) such paths, and summing all paths to the left half of Row 2n + 1, we get

i ‘rznﬁk(?I + k) o 22n‘
k=0 k
Dividing both sides by 2" gives us our desired identity.

16.19 Number the coins 1 through 8 around the circle. For 1 < i < 8, let ¢; be the number of times that we flip
coins i and i + 1 (where coin #9 as the same coin #1, so that cg is the number of times that we flip the pair consisting
of coins #8 and #1). Note that the ¢; are all nonnegative integers and thatcy +c; +--- 4+ ¢cg = 6.

First, we consider the case where all of the odd numbered coins end up tails. If we can count the number of
sequences flips that lead to this case, then we can simply double our count to get the final answer.

Note that once the parity (odd or even) of one ¢; is determined, then the parities of all the ¢; are determined.
For example, if c; is odd, then since coin #2 must end up heads, we must have c; odd as well. But then coin #3
must end up tails, so c3 must be even, and so on. We see that we must have one of the following two cases:

Case 1 cy,¢3,¢5,C6 are odd and c3, ¢4, €7, Cg are even.

Case 2 ¢1,0,Cs,Ce are even and c3, ¢y, €7, Cg are odd.

It is clear that these two cases give the same number of solutions to ¢; + --- + ¢g = 6, so let’s focus on case (1).
Since c1, c2, 5, ¢ are all positive, we only have two possibilities.

Case 1.1 One of ¢q,¢3,¢5,¢c518 3, therestare 1, and c3 = ¢y = ¢y = ¢cg = 0.

There are 4 choices for which flip is done 3 times. Then, we can arrange the flips into a sequence in 6!/3! = 120
ways (we divide by 3! since the same flip gets done 3 times). So there are 4 X 120 = 480 sequences in this
case.

Casel.2 ¢ =0 =c5 =cg =1, one of ¢3, ¢4, c7,cg is 2, and the rest are 0.

The are 4 choices for which flip is done twice. Then, we can arrange the flips into a sequence in 6!/2! = 360
ways (we divide by 2! since the same flip gets done twice). So there 4 x 360 = 1440 sequences in this case.

This gives a total of 480 + 1440 = 1920 sequences of flips in case (1), and hence 2(1920) = 3840 sequences of flips
which leave the odd-numbered coins as tails. The same number of sequences of flips leave the even-numbered

coins as tails, so the final answer is 2(3840) = | 7680 |.

16.20 These sorts of problems—where every other card gets removed from a stack—are often easier to analyze
for powers of 2. So instead of a stack of 2000 cards, we will first consider a stack of 2!! = 2048 cards, hoping that
this case is easier to analyze and that our analysis can be extended to the original 2000-card problem.
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Let the labels on our 2048-card stack, from top to bottom, be xi, x2, ..., X2043. After one pass through the
stack, the cards lying on the table are x3, x3, ..., Xz047 (in other words, all the odd-indexed cards), and the cards
remaining in the stack, from top to bottom, are x5, x4, .. ., X2045 (in other words, all the even-indexed cards).

After another pass through the stack, the cards x3, xs, . . ., X2046 are placed on the table, and the cards remaining
in the stack, from top to bottom, are x4, xg, ..., Xoq4g. If we continue this process, we see that the last two cards
placed on the table are x1024 and X04s.

Now let’s try to use our analysis of the 2048-card stack to solve the problem for the 2000-card stack. The first 48
cards of the 2048-card stack that get placed on the table are x4, x3, .. ., X95. After these 48 cards have been removed
from the stack, the 2000 cards remaining in the stack, from top to bottom, are

Xg7, Xog, X99, ..., Xa047, X2048, X2, X4, Xe, ..., Xog.

Suppose that we continue the given procedure with this stack of 2000 cards, and from these we obtain the cards
1,2,3,...,1999,2000, as described in the problem statement. Because we are just continuing the procedure started
with the 2048-card stack, the next-to-last card placed to the right is x1924. Thus, x1p24 = 1999. The cards above this

card in the stack of 2000 cards are xg7, Xgg, . . . , X1023, and the number of these cards is 1023 - 97 +1 = .
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