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How to Use This Book

Learn by Solving Problems

We believe that the best way to learn mathematics is by solving problems. Lots and lots of problems.
In fact, we believe that the best way to learn mathematics is to try to solve problems that you don’t
know how to do. When you discover something on your own, you'll understand it much better than if
someone had just told you.

Most of the sections of this book begin with several problems. The solutions to these problems will
be covered in the text, but try to solve the problems before reading the section. If you can’t solve some
of the problems, that's OK, because they will all be fully solved as you read the section. Even if you can
solve all of the problems, it’s still important to read the section, both to make sure that your solutions
are correct, and also because you may find that the book’s solutions are simpler or easier to understand
than your own.

Explanation of Icons
Throughout the book, you will see various shaded boxes and icons.

Concept: This will be a general problem-solving technique or strategy. These are
the “keys” to becoming a better problem solver!

Importérilt:' * This w1llbe_sor_ngt}:un_g important that you should learn. It might bea
v formula, a solution technique, or a caution.

'WARNING!!  Beware if yo'u'séér this box! This will point out a common mistake or
[ XY .
a pitfall.
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Sidenote: This box will contain material which, although interesting, is not part of
the main material of the text. It's OK to skip over these boxes, but if you
read them, you might learn something interesting!

Bogus Solution: Just like the impossible cube shown to the left, there’s something
pid wrong with any “solution” that appears in this box.

Exercises, Review Problems, and Challenge Problems

Most sections end with several Exercises. These will test your understanding of the material that was

covered in the section. You should try to solve all of the exercises. Exercises marked with a * are more
difficult.

Most chapters conclude with several Review Problems. These are problems that test your basic
understanding of the material covered in the chapter. Your goal should be to solve most or all of the
Review Problems for every chapter—if you're unable to do this, it means that you haven’t yet mastered
the material, and you should probably go back and read the chapter again.

All of the chapters (except for Chapter 1) end with Challenge Problems. These problems are
generally more difficult than the other problems in the book, and will really test your mastery of the
material. Some of them are very, very hard—the hardest ones are marked with a *. Don’t expect to
be able to solve all of the Challenge Problems on your first try—these are difficult problems even for
experienced problem solvers. If you are able to solve a large number of Challenge Problems, then
congratulations, you are on your way to becoming an expert problem solver!

Hints

Many problems come with one or more hints. You can look up the hints in the Hints section in the
back of the book. The hints are numbered in random order, so that when you're looking up a hint to a
problem you don't accidentally glance at the hint to the next problem at the same time.

It is very important that you first try to solve each problem without resorting to the hints. Only after
you've seriously thought about a problem and are stuck should you seek a hint. Also, for problems
which have multiple hints, use the hints one at a time; don’t go to the second hint until you've thought
about the first one.

Solutions

The solutions to all of the Exercises, Review Problems, and Challenge Problems are in the separate
solutions book. If you are using this textbook in a regular school class, then your teacher may decide
notto make this solutions book available to you, and instead present the solutions him/herself. However,




HOW TO USE THIS BOOK

if you are using this book to learn on your own, then you probably have a copy of the solutions book,
in which case there are some very important things to keep in mind:

1. Make a serious attempt to solve each problem before looking at the solution. Don't use the
solutions book as a crutch to avoid really thinking about the problem first. You should think /ari
about a problem before deciding to look at the solution. On the other hand, after you've thought
hard about a problem, don’t feel bad about looking at the solution if you're really stuck.

2. After you solve a problem, it’s usually a good idea to read the solution, even if you think vou
know how to solve the problem. The solutions book might show you a quicker or more concise
way to solve the problem, or it might have a completely different solution method than yours.

3. If you have to look at the solution in order to solve a problem, make a note of that problem. Come
back to it in a week or two to make sure that you are able to solve it on your own, without resorting
to the solution.

Resources
Here are some other good resources for you to further pursue your study of mathematics:

e The Art of Problem Solving books, by Sandor Lehoczky and Richard Rusczyk. Whereas the book
that you're reading right now will go into great detail of one specific subject area—counting and
probability—the Art of Problem Solving books cover a wide range of problem solving topics across
many different areas of mathematics.

e The www.artofproblemsolving.com website. The publishers of this book are also the webmasters
of the Art of Problem Solving website, which contains many resources for students:

- a discussion forum

- online classes

— resource lists of books, contests, and other websites
- a EIgX tutorial

- a math and problem solving Wiki

— and much more!

e You can hone your problem solving skills (and perhaps win prizes!) by participating in various
math contests. For middle school students in the United States, the major contests are MOEMS,
MATHCOUNTS, and the AMC 8. For U.S. high school students, some of the best-known contests
are the AMC/AIME/USAMO series of contests (which are used to choose the U.S. team for the
International Mathematical Olympiad), the American Regions Math League (ARML), the Mandel-
brot Competition, the Harvard-MIT Mathematics Tournament, and the USA Mathematical Talent
Search. More details about these contests are on page vii, and links to these and many other
contests are available on the Art of Problem Solving website.
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A Note to Teachers

We believe students learn best when they are challenged with hard problems that at first they may not
know how to do. This is the motivating philosophy behind this book.

Rather than first introducing new material and then giving students exercises, we present problems
at the start of each section that students should try to solve before new material is presented. The goal
is to get students to discover the new material on their own. Often, complicated problems are broken
into smaller parts, so that students can discover new techniques one piece at a time. After the problems,
new material is formally presented in the text, and full solutions to each problem are explained, along
with problem-solving strategies.

We hope that teachers will find that their stronger students will discover most of the material in this
book on their own by working through the problems. Other students may learn better from a more
traditional approach of first seeing the new material, then working the problems. Teachers have the
flexibility to use either approach when teaching from this book.

The book is linear in coverage. Generally, students and teachers should progress straight through
the book in order, without skipping chapters. Sections marked with a x contain supplementary material
that may be safely skipped. In general, chapters are not equal in length, so different chapters may take
different amounts of classroom time.

Links

The Art of Problem Solving website has a page containing links to websites with content relating to
material in this book, as well as an errata list for the book. This page can be found at:
http://www.artofproblemsolving.com/BookLinks/IntermCounting/links.php

Extral Occasionally, you'll see a box like this at the bottom of a page. This is an “Extra!” and
- might be a quote, some biographical or historical background, or perhaps an interesting
idea to think about.

Vi
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Erné Rubik (1944-present) and his Magic Cube

The diagrams at the start of each chapter depict a Rubik’s Cube.

Ernd6 Rubik was an inventor, sculptor, and architecture professor living in Budapest,
Hungary, when in 1974 he invented a nifty little puzzle that would go on to sell hundreds
of millions of copies. It was originally called the “Magic Cube,” but when it became
available worldwide in 1980, it was known simply as “Rubik’s Cube.”

The Cube itself is about 2 inches long on each side and is divided into a 3 x 3 x 3 array
of 27 smaller cubes. Each of the 6 faces can rotate independently of each other, which
changes the configuration of the colors on the outside of the Cube. Initially, the Cube
starts with a solid color on each of its 6 faces, but rotating the sides will cause the colors
to become mixed.

There are exactly 43,252,003,274,489,856,000 different configurations of Rubik’s Cube!
This is a very difficult number to count: for those of you keeping score at home, it
is 8! x 12! x 37 x 2!%. The goal of the puzzle is to first put the Cube into a random
configuration, and then to try to return it to its original configuration, with each side a
solid color.

Rubik’s Cube became incredibly popular worldwide in the early 1980s. According to
the official Rubik’s Cube website at www. rubiks. com, over 100,000,000 cubes were sold
in the period from 1980 to 1982 alone. In 1983, the immense popularity of the Cube even
led to a Saturday-morning cartoon called Rubik, The Amazing Cube.

As if solving the Cube is not challenging enough, many people enjoy the further chal-
lenge of trying to solve it as fast as possible, in some cases while blindfolded! The
World Cube Association is the official keeper of Rubik’s Cube speed-solving records.
The current world record (as of May 2012) is held by Feliks Zemdegs, who solved a
randomly-configured Cube in 5.66 seconds. A detailed list of records is on the WCA’s
website, which is on the links page referenced on page vi.

If you don’t have a Rubik’s Cube at home, there’s a Java applet allowing you to play
with a virtual Cube; this applet is also available via our links page.
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A bad review is like baking a cake with all the best ingredients and having someone sit on it. — Danielle Steele

CHAPTER

Review of Counting & Probability Basics

1.1 Introduction

Before beginning with new material, we’ll spend this chapter making sure that you have a good grasp
of the basics of counting and probability. This chapter is basically a one-chapter review of the contents
of Introduction to Counting & Probability. If a lot of the material in this chapter is unfamiliar to you, then
you should probably start with the Introduction book, before tackling this book.

The chapter will consist of some problems selected from Introduction to Counting & Probability together
with their solutions.
- Iml-)o-r-t_a-r_lt:- * You should feel confident that uyou- are able to solve most or all of the
W problems in this chapter before continuing on to the rest of the book.

Itis important that basic counting and probability computations of the type that we do in this chapter
are as natural and familiar to you as arithmetic and basic algebra are. As a child, you wouldn't trv to
learn how to multiply three-digit numbers together without having absolutely mastered multi DLa‘ion
of 1-digit numbers. In the same way, you shouldn’t plunge into the more advanced counting techniques
in this book without having the basics mastered.

Also, there is one brief section at the end of this chapter (namely, Section 1.6) that includes new
material that is not in the Introduction book. This section discusses summation notation, an example of
which is the left side of the equation below:

Zn: i n(n+1)

i=1 .
If vou are not familiar with this notation, please make sure that you read this section before continuing
on with the book.
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1.2 Basic Counting Techniques

Problem 1.1: My city is running a lottery. In the lottery, 25 balls numbered 1 through 25 are placed in
a bin. Four balls are drawn one at a time and their numbers are recorded. The winning combination
consists of the four selected numbers in the order they are selected. How many winning combinations
are there, if:

(a) each ball is discarded after it is removed?

(b) each ball is replaced in the bin after it is removed and before the next ball is drawn?

Problem 1.2: On the island of Mumble, the Mumblian alphabet has only 5 letters, and every word in
the Mumblian language has no more than 3 letters in it. How many words are possible? (A word can
use a letter more than once, but 0 letters does not count as a word.)

Problem 1.3: The Smith family has 4 sons and 3 daughters. In how many ways can they be seated in
a row of 7 chairs, such that at least 2 boys are next to each other?

Problem 1.4: How many 3-digit numbers have exactly one zero?

Problem 1.5: Our math club has 20 members and 3 officers: President, Vice President, and Treasurer.
However, one member, Ali, hates another member, Brenda. In how many ways can we fill the offices
if Ali refuses to serve as an officer if Brenda is also an officer?

Problem 1.6: How many possible distinct arrangements are there of the letters in the word BALL?

Problem 1.7: In how many different ways can 6 people be seated at a round table? Two seating
arrangements are considered the same if, for each person, the person to his or her left is the same in
both arrangements.

Problem 1.8: Consider a club that has n people. What is the number of ways to form an r-person
committee from the total of n people?

Problem 1.9: Each block on the grid shown at right is 1 unit by 1 unit.
Suppose we wish to walk from A to B via a 7 unit path, but we have to stay on
the grid—no cutting across blocks. How many different paths can we take?

A

Problem 1.10: In how many ways can a dog breeder separate his 10 puppies into a group of 4 and a
group of 6 if he has to keep Biter and Nipper, two of the puppies, in separate groups?
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Problem 1.1: My city is running a lottery. In the lottery, 25 balls numbered 1 through 25 are
placed in a bin. Four balls are drawn one at a time and their numbers are recorded. The winning
combination consists of the four selected numbers in the order they are selected. How many winning
combinations are there, if:

(a) each ball is discarded after it is removed?

(b) each ball is replaced in the bin after it is removed and before the next ball is drawn?

Solution for Problem 1.1: (a) We have 25 choices for the first ball. After the first ball is drawn and
discarded, there are 24 balls left in the bin, so there are 24 choices for the second ball. Similarly, there
are 23 choices for the third ball and 22 choices for the fourth ball. Hence the number of winning
combinations is 25 x 24 x 23 x 22 = 303,600.

(b) We have 25 choices for each of the four balls, since when each ball is drawn, all 25 balls are in the

bin. Hence there are 25 x 25 x 25 x 25 = 25* = 390,625 winning combinations. O

Concept: Inanevent with multiple stages, we multiply the number of choices at each
—==5 stage to get the total number of choices.

Concept: It is important to distinguish selecting without replacement from selecting
=5  with replacement. When choosing k items, in order, from a group of n,
with replacement, we have n* choices. When choosing k items, in order,

from a group of n, without replacement, we have

nn-1)n-2)---n—-k+1)

choices. Selecting k items from a group of # items, without replacement,
where order matters, is called a permutation. The number of permutations
of k items from a group of n items is sometimes denoted P(n, k) or ,,Py.

Problem 1.2: On the island of Mumble, the Mumblian alphabet has only 5 letters, and every word
in the Mumblian language has no more than 3 letters in it. How many words are possible? (A word
can use a letter more than once, but 0 letters does not count as a word.)

Solution for Problem 1.2: For this problem, it makes sense to divide the words into cases, based on the
number of letters in each word.

Case 1: 1-letter words
There are 5 1-letter words (each of the 5 letters is itself a 1-letter word).

Case 2: 2-letter words
To form a 2-letter word, we have 5 choices for our first letter, and 5 choices for our second letter. Thus
there are 5 X 5 = 25 2-letter words possible.

Case 3: 3-letter words
To form a 3-letter word, we have 5 choices for our first letter, 5 choices for our second letter, and 5
choices for our third letter. Thus there are 5 X 5 x 5 = 125 3-letter words possible.
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To get the total number of words in the language, we add the number of words from each of our
cases. (We need to make sure that the cases are exclusive, meaning they don’t overlap. But that’s clear
in this solution, since, for example, a word can’t be both a 2-letter word and a 3-letter word at the same
time.)

Therefore, there are 5 + 25 + 125 = 155 words possible on Mumble. O

_E(;ﬁcépt: ‘Casework is the -géﬁéﬂa—i"téchniq{ié of Bréaking upthe_ _géssibilities into
- (O==  two or more categories. We can then add the possibilities of the various
' cases to get the total number of possibilities.

Concept: When using casework, it is important that the cases be exclusive, meaning
()% that they don’t overlap. Otherwise, you'll end up counting some outcomes
multiple times. (Although, later in this book, we’ll see some techniques
for dealing with overlapping cases.)

' Problem 1.3: The Smith family has 4 sons and 3-cl'aug_h_t_ér-s.' In how many ways can fhey; be _se;t(;d
in a row of 7 chairs, such that at least 2 boys are next to each other?

ERA et T i T R R S T R e P R S e B S A AT IS R S L BT L e L N e e S ) )
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Solution for Problem 1.3: It will be fairly difficult to try to count this directly with casework, since there
are lots of possible cases (for example, two possibilities are BBBBGGG and BGGBBGB, where B is a boy
and G is a girl). But there is only one way to assign genders to the seating so that no two boys are next
to each other, and that is BGBGBGB. So we use complementary counting: we count the items that we
don’t want.

If we seat the children as BGBGBGB, then there are 4! orderings for the 4 boys, and 3! orderings for
the 3 girls, giving a total of 4! x 3! = 144 seatings for the 7 children.

These are the seatings that we don’t want, so to count the seatings that we do want, we need to
subtract these seatings from the total number of seatings without any restrictions. Since there are 7 kids,
there are 7! ways to seat them.

Therefore, the answer is 7! — (4! x 3!) = 5040 — 144 = 4896. O

Concept:  Often, complicated casework means that you should think about trying
‘ complementary counting: that is, counting what we don’t want and sub-
tracting this count from the number of possibilities (without restriction).
If it’s hard to count all the cases that we want, then it may be relatively
easy to count what we don’t want.

Concept: When a problem asks “How many are not?”, we might think instead to
count “How many are?” When a problem asks “How many have at least
one?”, we might think instead to count “How many have none?”
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Problem 1.4: How many 3-digit numbers have exactly one zero?

Solution for Problem 1.4: We could do this by casework.

Case 1: 3-digit numbers with 0 as the middle digit
There are 9 choices for the first digit and 9 choices for the last digit, for a total of 9 X 9 = 81 numbers in
this case.

Case 2: 3-digit numbers with 0 as the final digit

There are 9 choices for the first digit and 9 choices for the middle digit, for a total of 9 x 9 = 81 numbers
in this case.

Therefore, there are 81 + 81 = 162 such numbers.

On the other hand, we can also solve the problem directly, by thinking about the steps necessary to
construct such a 3-digit number, and counting the number of choices that we have at each step.

When doing such a construction, we usually want to start by dealing with the most severe restriction
in the construction. In this problem, the restriction is that the number must have exactly one zero.

So when attempting to construct such a 3-digit number, our first choice should be: where do we put
the 07 We have 2 choices—the zero can go in the middle (tens) digit or in the rightmost (units) digit.
Note that a number cannot begin with a 0, so we can’t put the zero in the leftmost (hundreds) digit.

Now that we’ve placed the zero, we need to choose the other two digits. Each of the other two digits
can be any digit from 1 through 9 (but cannot be 0). So we have 9 choices for each of the other two
digits.

Therefore, there are 2 X 9 x 9 = 162 such 3-digit numbers. O

Concept: This general idea—thinking about how to construct the items that we
(O== wish to count, and then keeping track of the choices that we have to make
during the construction—is known as constructive counting.

Concept: Deal with the restriction first. Considering the restriction first usually
helps when solving constructive counting problems.

Problem 1.5: Qur math club has 20 members and 3 officers: Présideﬁt, Vice President, and Treasurer.
However, one member, Ali, hates another member, Brenda. In how many ways can we fill the offices
if Ali refuses to serve as an officer if Brenda is also an officer?

Solution for Problem 1.5: The best way to approach this problem is to use complementary counting.

We know that there are 20 x 19 x 18 ways to choose the 3 officers if we ignore the restriction about
Ali and Brenda. So now we want to count the number of outcomes that we don’t want: both Ali and
Brenda serving as officers.

To count the outcomes we don’t want, we will use constructive counting. We need to pick an office
for Ali, then pick an office for Brenda, then put someone in the last office.
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We have 3 choices for an office for Ali, either President, VP, or Treasurer.

Once we pick an office for Ali, we have 2 offices left from which to choose an office for Brenda.

Once we have both Ali and Brenda installed in offices, we have 18 members left in the club to pick
from for the remaining vacant office. '

So there are 3 X2 X 18 ways to pick officers such that Ali and Brenda are both in an office. Remember
that these are the cases that we want to exclude, so to finish the problem we subtract these cases from
the total number of cases. Hence the answer is:

(20 19 x 18) — (3 x 2 X 18) = ((20 x 19) — 6) x 18 = 374 x 18 = 6732.

[

W(fonce_pmt:“ Méﬁ{};roblér_r-{s will i‘éqiiire nyu to use more than one countiﬁé method.
In the previous problem, we used both complementary counting and
constructive counting.

Problem 1.6: How many possible distinct arrangements are there of the letters in the word BALL?
et titat tall N R S R S A S N e e B e B e R T N USRS 2

Solution for Problem 1.6: First, note that the answer is not simply 4!:

Bogus Solution: We have 4 ways“f:c-)_pic'k the first letter, é-ways to pick the second,
@ and so on, for a total of 4! possibilities.

This method overcounts. The reason for this is that two of our letters are the same.

Let’s pretend that the two L's are different, and call them L; and L,. So our word BALL is now really
BAL;L;. In making the expected 4! arrangements, we make both BAL;L, and BAL,L;. But when we
remove the numbers, we have BALL and BALL, which are the same.

With 4!, we've overcounted, and we need to correct for this.

Every possible arrangement of BALL is counted twice among our arrangements of BAL,L,. For
example, LLAB is counted as both L;L,AB and L,L; AB, LABL is counted as both L;ABL; and L,ABL,,
and so on for every possible arrangement of BALL. We can see this in Figure 1.1:

BAL;L,,BAL;L; = BALL BL,AL;,BL1AL, = BLAL
BL]LQA,BLleA = BLLA ABLle,ABL2L1 = ABLL
L1BAL,,L,BAL; = LBAL LiBL,A,L;BLLA = LBLA
AL;BL,,AL;BL; = ALBL L1ABL,,,ABL; = LABL
LleBA,LleBA = LLBA ALleB,ALleB = ALLB
L,AL;B,L,AL1B = LALB L;L,AB,L;L;AB = LLAB

Figure 1.1: BALL's with different L's
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Thus, the number of arrangements of BAL,L; is exactly twice the number of arrangements of BALL.

So to get the number of arrangements of BALL, we have to divide the number of arrangements of

Therefore, the number of arrangements of BALL is 4!/2 = 12. O

'Concept:  Often we can count outcomes by strategically overcounting the number
| of outcomes, and then correcting for the overcounting. One common use
3 of this is in counting permutations with repeated items.

Problem 1.7: In howgany different -V-vaysr can 6 people be seated at a round table? Two seatmgg
arrangements are considered the same if, for each person, the person to his or her left is the same in ;
both arrangements.

7

Solution for Problem 1.7: If the 6 people were sitting in a row, rather than around a table, there would be 6!
arrangements. But this is clearly an overcounting, since several different row arrangements correspond
to the same round table arrangement. For example, suppose we take a row of 6 people and sit them at
the round table by putting the first person in the “top” seat and proceeding counterclockwise. Six row
arrangements and their corresponding circular arrangements are shown in Figure 1.2 below.

A B c
B E C. A D B
ABCDEF : BCDEFA : CDEFAB :
c E D F E A
D
D
E C F D A E
DEFABC : EFABCD: : FABCDE :
F B A C B D
A B C

Figure 1.2: Row and Circular Seatings

“_ six arrangements of the people A through F shown in the diagram correspond to the same

"5 reason for this is that our problem has symmetry: each arrangement can be rotated 6 ways (one
 ©em being no rotation) to make other arrangements. Hence, when we put our 6! arrangements of
“S_ZF in acircle, we count each circular arrangement 6 times, once for each rotation.

morod

“herefore, we must divide our initial overcount of 6! by 6, to account for the fact that there are

-

¢ arrangements corresponding to each circular arrangement. So our answer is that there are

7
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6!/6 = 5! = 120 ways to arrange the 6 people around the table. O

Concept: Counting outcomes with symmetry usually means some sort of strategic

(O==  overcounting.

Problem 1.8: Consider a club that has n people. What is the number of ways to form an r-person
committee from the total of n people? '

Solution for Problem 1.8: We start by counting the number of ways to choose r people if order matters.
There are n choices for the first person, n — 1 choices for the second person, # — 2 choices for the third
person, and so on, up to n — r + 1 choices for the " person.

So there are
nxXm-1)xXxm-2)x---x(n-r+1) (1.1)
ways to choose r people from a total of 1 people if order matters. (Recall that this is the quantity that is
often denoted by P(n,).)

But we know that there are 7! ways to order r people. Therefore, each unordered committee of r
people will correspond to 7! ordered choices of r people. So we need to divide our count in equation (1.1)
by r! to correct for the overcounting.

Therefore our answer is

(n) nxm—-1)xn-2)x-x(n—r+1) n!

7! ri(n =)

r

Concept: If we don't care about the order when choosing r items from a set of n
() ==3 items—for example, when choosing a committee—we have a combina-
tion. The number of ways to choose r items from a set of n items, without

o (10 ;
regard to order, is (r)’ pronounced “n choose r.” (Note: some sources

denote this as C(n, r) or as ,,C;.)

Important: The formula for combinations is:

@ (n): n! nn—-1)mn-2)--(n—r+1)

r} riin—r) - r!
The first formula is more typically used in algebraic proofs involving
combinations, whereas the latter formula is the one that we most often

use to actually compute combinations. For example:

(11)=11X10X9:165.

3 23l
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Problem 1.9: Each block on the grid shown below is 1 unit by 1 unit. Suppose we wish to walk
from A to B via a 7 unit path, but we have to stay on the grid—no cutting across blocks. How many
different paths can we take?

B

A

Solution for Problem 1.9: We know that we must take a 7 unit path. If we look at the grid a little more
carefully, we can see that our path must consist of 4 steps to the right and 3 steps up, and we can take
those steps in any order. So in order to specify a path, we must choose 3 of our 7 steps to be “up” (and
the other 4 steps will thus be “right”). Hence the number of paths is

7\ _7X6x5
3] 3x2x1 "

If you are not convinced, we can describe a path by writing “r” for a right step and “u” for an up
step. For every arrangement of 4 r’s and 3 u’s, we get a path from A to B, as shown in Figure 1.3.

B

A Path ruruurr is shown

Figure 1.3: Example path from A to B

Therefore, to count the number of paths from A to B, we need only to count the number of arrange-
ments of “rrrruuu.” The number of arrangements is

70 (7
=[] =35.
413 (3)

Remember how we get the above expression: there are 7! arrangements of “ryrararsu;usus,” where we
think of each r and each u as different. However, we want to count the number of arrangements of
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“rrrruuu,” where the r's and u’s are all the same, so we must divide by the 4! possible arrangements of
the r's and the 3! possible arrangements of the u’s. O

Concept Counting paths ona grld is one apphcahon of combinations.

‘Problem 1.10: In how many ways can a dog breeder separate hls 10 puppies into a group of 4 and“:g
a group of 6 1f he has to keep Blter and N1

TN

Solution for Problem 1.10: Let’s first do the problem by complementary counting,.

If we have no restrictions on the groups, then we simply need to choose 4 of the 10 dogs to be in the
smaller group, and the rest of the dogs will make up the larger group. There are () ways to do this.

But we can’t have Biter and Nipper in the same group. So we have to subtract the number of ways
that we can form the two groups with Biter and Nipper in the same group. This calls for a little bit of
casework.

Case 1: Biter and Nipper are both in the smaller group.
If they are both in the smaller group, then we have to choose 2 more dogs from the 8 remaining to
complete the smaller group, and we can do this in () ways.

WARNING!! Don t mistakenly count the p0551bﬂ1t1es in Case 1 as (2)(8) by reason-
l.. |
ing that we must choose 2 out of 8 dogs for the smaller group, and 6
out of 8 dogs for the larger group. These choices are not independent!
Once we pick the 2 dogs for the smaller group, then we have no choice
but to put the remaining 6 dogs into the larger group.

Case 2: Biter and Nipper are both in the larger group.
If they are both in the larger group, then we have to choose 4 dogs from the 8 remaining to compose the
smaller group, and we can do this in (g) ways.

So to get the number of ways to form groups such that Biter and Nipper are both in the same group,
we add the counts from our two cases, to get (g) + (g)

But remember that these are the cases that we don't want, so to solve the problem, we subtract this
count from the number of ways to form the two groups without restrictions. Thus, our answer is

(522

The other way that we could solve this problem is by direct casework. There are two cases of possible
groupings.

Case 1: Biter is in the smaller group, Nipper is in the larger group.
To complete the smaller group, we need to choose 3 more dogs from the 8 remaining dogs. We can do
this in (g) ways.

10
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Case 2: Nipper is in the smaller group, Biter is in the larger group.
Again, to complete the smaller group, we need to choose 3 more dogs from the 8 remaining. We can dc
this in (fj) ways.

To count the total number of groupings, we add the counts from our two cases, to get ( ;) + l‘;‘ =
56 + 56 = 112 as our final answer. O

Concept: Many counting problems can be solved in more than one T}\-fay. If it’s easy
(== todo, solving problems in more than one way is both good practice and a
good way to check your answer.

1.3 Basic Probability Techniques

Problem 1.11: What is the probability that when a fair 6-sided die is rolled, a prime number faces up?

Problem 1.12: A standard deck of cards has 52 cards divided into 4 suits, each of which has 13 cards.
Two of the suits (¥ and ¢, called “hearts” and “diamonds”) are red, the other two (# and &, called
“spades” and “clubs”) are black. The cards in the deck are placed in random order (usually by a
process called “shuffling”). What is the probability that the first two cards are both red?

Problem 1.13: We have a standard deck of 52 cards, with 4 cards in each of 13 ranks. We call a 5-card
poker hand a full house if the hand has 3 cards of one rank and 2 cards of another rank (such as 33355
or AAAKK). What is the probability that five cards chosen at random form a full house?

Problem 1.14: A bag has 3 red and k white marbles, where k is an (unknown) positive integer. Two of
the marbles are chosen at random from the bag. Given that the probability that the two marbles are
the same color is 1, find k.

Problem 1.15: Mary and James each sit in a row of 7 chairs. They choose their seats at random. What |
is the probability that they don't sit next to each other?

Problem 1.16: The Grunters play the Screamers 4 times. The Grunters are the much better team, and
are 75% likely to win any given game. What is the probability that the Grunters will win all 4 games?

Problem 1.17: A bag has 4 red and 6 blue marbles. A marble is selected and not replaced, then a
second is selected. What is the probability that both are the same color?

Problem 1.18: Point C is chosen at random atop a 5 foot by 5 foot square table. A circular disk with a i
radius of 1 foot is placed on the table with its center directly on point C. What is the probability that |
the entire disk is on top of the table (in other words, none of the disk hangs over an edge of the table)?

i
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Problem 1.11: What is the probability that when a fair 6-sided die is rolled, a prime number faces
up? .

Solution for Problem 1.11: There are 6 equally likely outcomes. Three of those outcomes are successful:

[, [+] or =l Therefore, the probability is 2 = 3. O
Concept: If all outcomes are equally likely, then the probability of success is

O==
Number of successful outcomes
P(success) = - .
Number of possible outcomes

Problem 1.12: A standard deck of cards has 52 cards divided into 4 suits, each of which has 13
cards. Two of the suits (¥ and ¢, called “hearts” and “diamonds”) are red, the other two (# and &,
called “spades” and “clubs”) are black. The cards in the deck are placed in random order (usually
by a process called “shuffling”). What is the probability that the first two cards are both red?

Solution for Problem 1.12:
Method 1: For the total number of possibilities, there are 52 ways to pick the first card, then 51 ways to
pick the second card, for a total of 52 x 51 possibilities.

For the number of successful possibilities, there are 26 ways to pick a red card first (since there are 26
total red cards), then there are 25 ways to pick a second red card (since there are 25 red cards remaining
after we've chosen the first card). Thus, there are a total of 26 X 25 successful possibilities.

Therefore, the probability is
P(first two cards are red) = Number of successful outcomes 26 X25 _ 35_
~  Number of possible outcomes T 52x51 102

Method 2: For the total number of possibilities, there are (%) = 1326 ways to pick two cards (without

regard to order).
For the number of successful possibilities, there are (226) = 325 ways to pick two red cards (without

regard to order).

Therefore, the probability is
Number of successful outcomes 325 _ 25
P(fi d) = = = .
VRIEE T FTA &k ) Number of possible outcomes 1326 102

Method 3: The probability that the first card is red is 28 = 5. If the first card is red, then the probability

that the second card is red is £. Therefore:
. ; 25 25
P(first two cards are red) = P(first card red) x P(second card red) = 5 X 5= 102
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Concept:  There are often many ways to approach the counting within probability

(=== problems. However you choose to approach a problem, make sure that
you are consistent! For example, if you count possible outcomes without
regard to order, don’t count successful outcomes with regard to order. In
other words, don’t compare apples and oranges!

Problem 1.13: We have a standard deck of 52 cards, with 4 cards in each of 13 ranks. We call a
5-card poker hand a full house if the hand has 3 cards of one rank and 2 cards of another rank (such
as 33355 or AAAKK). What is the probability that five cards chosen at random form a full house?

Solution for Problem 1.13: The total number of outcomes is just the number of ways to choose 5 cards
from a set of 52, which is (552) = 2,598,960. Notice that in this count, we don’t care about the order in
which the cards are chosen. (Remember—apples and oranges!)

To count the number of successful outcomes, we turn to constructive counting, thinking about how
we'd construct a full house.

To form a full house, we have to choose:
(a) A rank for the 3 cards. This can be done in 13 ways.
(b) 3 of the 4 cards of that rank. This can be done in (;f) = 4 ways.

(c) A rank for the other 2 cards. This can be done in 12 ways (since we can’t choose the rank that we
chose in (a)).

(d) 2 of the 4 cards of that rank. This can be done in (g) =6 ways.

Again, note that in each of the steps in our constructive count, we don’t care about the order in
which the cards are chosen.

So there are 13 X 4 X 12 x 6 = 3,744 full houses. Thus, the probability is

3744 6
2,598,960 4165

=)

Concept:  You will often have to use your toolbox of counting techniques (in this
case, constructive counting) to solve probability problems.

Problem 1.14: A bag has 3 red and k white marbles, where k is an (unknown) positive integer. Two
of the marbles are chosen at random from the bag. Given that the probability that the two marbles
are the same color is 1, find k.

Solution for Problem 1.14: Here we compute the probability in terms of k that the two marbles are the
same color, and then set that probability equal to 1.

To calculate the probability, we simply use our usual method of counting both the total number

13
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of outcomes and the number of successful outcomes. There are k + 3 total marbles in the bag, so the
number of ways to choose 2 of them, without regard to order, is (k;S).

One type of successful outcome is to choose two red marbles. This can be done in (S) = 3 ways. The

other successful outcome is to choose two white marbles. This can be done in @ ways. Since these two
cases are mutually exclusive, we can add our counts. So

3+(5)

P(both marbles are the same color) = ) ;
2

We set this equal to the given probability of 1, and then solve for k. Our equation is

3+ 1

(kES) - 9"

In order to solve this, we’ll need to first write out the combinations:

34 k{kz—l) B
*k3)k+2) 2"
3

We can get rid of the 2s in the denominators by multiplying the numerator and denominator of the left
side by 2:

6+k(k-1) 1

(k+3)(k+2) 2’

and then we cross-multiply to get rid of the fractions:
12 + 2k(k — 1) = (k + 3)(k + 2).

Multiplying out, we get
2k* — 2k +12 = I + 5k + 6,

$0 k* — 7k + 6 = 0. This factors as (k — 6)(k — 1) = 0, so either k = 6 or k = 1. Both solutions work. 01

Concept: Many probability problems will require some algebraic manipulation in |
order to solve them. Don’t be afraid to use algebra (in particular, to use
variables) if you need to!

Problem 1.15: M;\r_yand ]aﬁ{eis:eiacﬁs'i;tr in a row of 7 chairs. They choose their seats at random.
What is the probability that they don't sit

Solution for Problem 1.15: There are (;) = 21 ways in which Mary and James can choose 2 chairs, if we
don’t worry about the order in which they sit.

Although we can use casework to count the number of ways they can choose chairs that are not
next to each other, it is easier to use complementary counting. If we number the chairs #1, #2, ..., #7

14
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i order, then there are 6 ways Mary and James can choose chairs next to each other: they can sit in the
first two chairs, or chairs #2 and #3, or chairs #3 and #4, etc., up to chairs #6 and #7. Therefore

P(they sit next to each other) = % = ;,

and therefore 5
P(they don't sit next to each other) = 1 — - =5

Cdnééptz 7 Just as with counfihg, sometimes it's easier to calculate the prol;abilifjr of
an event not occurring than it is to calculate the probability of the event
occurring.

Problem 1.16: The Grunters play the Screamers 4 times. The Grunters are the much better team
and are 75% likely to win any given game. What is the probability that the Grunters will win all

games?
I S S e O e o P T e

Solution for Problem 1.16: The following solution is incorrect:

Bogus Solution: Since each game has 2 possible outcomes, there are 2* = 16 possible
ﬁ‘r! outcomes for the series. Only 1 of these outcomes is what we want,
namely the Grunters winning all 4 games. Therefore the probability
to 1
- 15 E' — = i —

One clue that this is an incorrect solution is that we never used the “75%” information that was
cresented in the problem. The reason this solution is incorrect is that the outcomes described in the
cogus solution are not all equally likely! We can only use this counting approach to probability when
we have equally likely outcomes.

So instead, we’ll use multiplication of probabilities of independent events. (The games are inde-
pendent, because the outcome of each game does not depend on what happened in the earlier games.)
Zach of the 4 games is independent of the others, and in each game, the Grunters have probability 3
of winning. Therefore, to get the probability that the Grunters will win all 4 games, we multiply the
orobabilities that the Grunters win each individual game. This gives:

P(Grunters win all 4 games) = P(Grunters win Game 1) X - - - x P(Grunters win Game 4)

3 9.3 3
= =X X

Using the same logic, we can show that P(Screamers win all 4 games) = (;) =

¢J|
o

15
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Concept: When computing probability by counting outcomes and using

O=

Number of successful outcomes
Number of possible outcomes

P(success) =

this approach will work only if the outcomes are equally likely.

Concept: In an event that is made up of multiple, independent, sequential sub-
events, we multiply the probabilities of the sub-events to get the probabil-
ity of the overall event. w

Problem 1.17: A bag has 4 red and 6 blue marbles. A marble is selected and not replaced, then a
second is selected. What is the probability that both are the same color? 5

Solution for Problem 1.17: We could solve this problem by counting the outcomes, but let’s instead solve
it by multiplying probabilities.
The probability that both marbles are red is given by:
P(both red) = P(first red) x P(second red after first red is drawn).

The probability that the first marble is red is 135. After drawing a red marble, there are 3 red marbles
and 9 marbles total left in the bag, so the probability that the second marble is also red is 2. Therefore

4 2
P(both red) = 19 % g =15

Similarly, the probability that both marbles are blue is given by:
P(both blue) = P(first blue) x P(second blue after first blue is drawn).

The probability that the first marble is blue is £. After drawing a blue marble, there are 5 blue marbles
and 9 marbles total left in the bag, so the probability that the second marble is also blue is 2. Therefore

PscHiie) = % x g = %

Since drawing two red marbles and drawing two blue marbles are exclusive events, we add the
individual probabilities to get the probability of one or the other occurring. Therefore:

P(both same color) = P(both red) + P(both blue) = % + % = %
O
Concept: When multiplying probabilities of dependent events, be sure to take the
prior events into account when computing the probabilities of latgr events.
16 ‘
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rol S_fdof_By 5 foot sqﬁ;e- table. A circular disk with :
a radius of 1 foot is placed on the table with its center directly on point C. What is the probability
that the entire disk is on top of the table (in other words, none of the disk hangs over an edge of the

)'?

Solution for Problem 1.18: The “total outcomes” region is easy: it’s just the surface of the table, so it’s a

table

square region with side length 5.
The “successful outcomes” region is trickier. We can draw a diagram as in Figure 1.4.

Unsuccessful Region

A This Fircle’s cen-
\ter ig inside the
succepsful region.

This circle's ce
ter is outside the
successful region,

This circle’s center|is
on the boundary of fhe
successful region.

Figure 1.4: Table and some disks

We can see that the disk will be entirely on the table if and only if C is at least 1 foot away from
each edge of the table. Therefore, C must be within a central square region of side length 3, as shown
in Figure 1.4.

So, now we can compute the probability:
P(Area of successful outcomes region) 3x3 9
P(success) = : _ = =—.
P(Area of possible outcomes region) ~ 5x5 25

"Concrept:m Ingeometry pfaﬁelhs, or in other ﬁfobiems in which the possible out-
1 comes are continuous (as opposed to discrete, meaning that they can be
! counted), we need to use geometry to compute the probability:

P e P(Size of successful outcomes region)
SUCCESS) = P (Gize of possible outcomes region)

Twice and thrice over, as they say, good is it to repeat and review what is good. — Plato

Extra!
2 S0 A 3

17
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CHAPTER 1. REVIEW OF COUNTING & PROBABILITY BASICS

1.4 Expected Value

Problem 1.19: Suppose you have a weighted coin in which heads comes up with probability 2 and
tails with probability ;. If you flip heads, you win $2, but if you flip tails, you lose $1. What is the
expected value of a coin flip?

Problem 1.20: In an urn, I have 20 marbles: 2 red, 3 yellow, 4 blue, 5 green, and 6 black. I select one
marble at random from the urn, and I win money based on the following chart:

Color || Red | Yellow | Blue | Green | Black
Amount won || $10 $5 $2 51 50

What is the expected value of my winnings?

Problem 1.21: Suppose I have a bag with 12 slips of paper in it. Some of the slips have a 2 on them,
and the rest have a 7 on them. If the expected value of the number shown on a slip randomly drawn
from the bag is 3.25, then how many slips have a 2?

Recall that expected value is the notion of a “weighted average,” where the possible outcomes of
an event are weighted by their respective probabilities. We can state this more precisely:

Concept: Suppose that we have an event with a list of possible values of the out-
C)% comes: X1,X2,...,X,. Value x; occurs with probability p;, value x; occurs
with probability p;, and so on. Note that

P1+P2+"'+Pn=1,

since the probabilities must total to 1. Then the expected value of the
outcome is defined as the sum of the probabilities of the outcomes times
the value of the outcomes:

E=pix1 +paxg + -+ + Pukn.

Problem 1.19: Suppose you have a weighted coin in which heads comes up with probability 3 and
tails with probability 1. If you flip heads, you win $2, but if you flip tails, you lose $1. What is the
expected value of a coin flip?

Solution for Problem 1.19: We multiply the outcomes by their respective probabilities, and add them up:

e %(+$2) - %(-3;1) = $1.50 — $0.25 = $1.25.

18




1.4. EXPECTED VALUE

D ——— e —— e e = e —

Concept:  Another way to think of the expected value in Problem 1.19 is to imagine
(=== flipping the coin 1000 times. Based on the probabilities, we would expect
to flip heads 750 times and to flip tails 250 times. We would then win

$1500 from our heads but lose $250 from our tails, for a net profit of $1250.

Since this occurs over the course of 1000 flips, our average profit per flip is

$1250
1000 $1.25.

Problem 1.20: In an urn, I have 20 marbles: 2 red, 3 yellow, 4 blue, 5 green, and 6 black. I select one
marble at random from the urn, and I win money based on the following chart:

Color || Red | Yellow | Blue | Green | Black
Amount won || $10 $5 $2 $1 $0

What is the expected value of my winnings?

Solution for Problem 1.20: Idraw a red marble with probability £, a yellow marble with probability 5,
and so on. Therefore, the expected value is
$48

2 3 4 5 6
E($1O) + %($5) + E($z) + 56($1) + E(%) =30 = $2.40.

Concept:  One common use of the expected value in a problem like Problem 1.20

(O== is to determine a fair price to play the game. The fair price to play is
the expected winnings, which is $2.40. In the long run, if I were charging
people the fair price to play the game, [ would expect to break even, neither
making nor losing money. If I were running this game at a carnival, I could
charge carnival-goers $2.50 to play the game, and I would expect to make
a 10-cent profit, on average, from each person that plays.

Problem 1.21: Suppose I have a bag with 12 slips of paper in it. Some of the slips have a 2 on them,
and the rest have a 7 on them. If the expected value of the number shown on a slip randomly drawn
rom the bag is 3.25, then how many slips have a 2?

solution for Problem 1.21:  We let x denote the number of slips with a 2 written on them. (This is the
ssual tactic of letting a variable denote what we're trying to solve for in the problem.) Then there are
12 — x slips with a 7 on them.

12—x
12

The probability of drawing a 2 is 75 and the probability of drawing a 7 is , 50 the expected value

of the number drawn is
X 12 —x 84 — bx

E= E(Z)+ B (7) = T
Sut we are given that E = 3.25, so we have the equation
84 — 5x
32h= 7

19



CHAPTER 1. REVIEW OF COUNTING & PROBABILITY BASICS

T

['his simplifies to 39 = 84 — 5x, which means that x = 9. Thus 9 of the 12 slips have a 2 written on them.

‘Concept: We said this before about probability, and it's true here too: don’t be afraid
(O=== to use algebra in solving expected value problems.

1.5 Pascal’s Triangle and the Binomial Theorem

Problem 1.22: Suppose that we consider Pascal’s Triangle to be a grid of dots (in other words,
everywhere there’s a number, we're just going to place a dot). We can count the number of paths from
the top dot to any of the lower dots, where each step of the path is from a dot to one of the two dots
immediately below it.

®
AN
® [
S S e N
® @ ®
AN AR e N
° L] ® L

/\/\/}i\
e e L}
AN N TN N

L ]

SRS e AN S R N N
® L]

For example, the above diagram shows a path to the circled dot. How many paths are there from the
top dot to the circled dot in the above picture?

b (7)=0)

Problem 1.25: What is the coefficient of the term of (x + 2y%)® with a 1® in it?

Problem 1.23: Prove that

Problem 1.24: Expand (x + y)".

Problem 1.26: Prove that for any #,

Extral All men’s miseries derive from not being able to sit in a quiet room alone. — Blaise Pascal
- 0

20
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1.5. PASCALS TRIANGLE AND THE BINOMIAL THEOREM

Problem 1.22: Suppose that we consider Pascal’s Triangle to be a grid of dots (in other words, §
everywhere there’s a number, we're just going to place a dot). We can count the number of paths |
from the top dot to any of the lower dots, where each step of the path is from a dot to one of the two 3
dots immediately below it. i

L J
7oA
® ®
A0 N E N
® ® ®
AN ARy N
L] ® ] ®

A BB B N B
® ® ® L]
YN B S
® e ® L

A S A O AR el e A
® ® ® ® ® e ®

For example, the above diagram shows a path to the circled dot. How many paths are there from
the top dot to the circled dot in the above picture?
TR B R T S SRS =

T e A R e e T e P G N

Solution for Problem 1.22: We must take a total of 4 steps, since the circled dot is 4 rows below the top
dot. Of those 4 steps, 3 of the steps must be down and to the right, and the other step is down and to
the left. We can take the 4 steps in any order, so long as 3 are to the right and 1 is to the left. Therefore,
the number of paths to the circled dot is the same as the number of ways to arrange 3 steps to the right
and 1 step to the left. We must choose 3 of the 4 steps to be to the right, and we know that we can do
this is (3) ways. So there are (3) paths from the top of the triangle to the circled dot. O

Important: Morrergene-ré-l-lly, the number of paths to the ¥ dot of Row (Wﬂére the
v top dot is considered to be Row 0) is (?:)

Important: This is Pascal’s .Triéngle:
V7 1
A
1 1
T O S
il 2 1
"I B A, SR Y
1 3 3 1
A N A AR TR
1 - 6 4 1

PN AT e e R
1 5 10 10 5 1

While knowing the numbers is important, it’s not nearly as important as knowing what the numbers
mean—and what they mean is combinations!
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‘Concept:  Most experienced counters think of Pascal’s Triangle as: 5
=
©
e b
) ()
Ve ;- i S
) @) &)
P N / N P N
©) }) &) 3
e N 7 kY P X 4 ~
@) G 3) ) )
4 N /7 N /7 S A N 7 b
@) ® ) G #) ©)

Each entry is the number of paths to that point of the triangle.

b2+ (1 )-0)

-i;;(_)_blé;{i.ZS: _Pl:ove tﬁat

Solution for Problem 1.23:

Proof by block-walking on Pascal’s Triangle: Let's look at a piece somewhere in the middle of Pascal’s
Triangle:

: ...\n—z/... .
AN ,(”)\ /
1 I
S \(H) N
N

We know that each entry is the sum of the two entries immediately above it, since every path to () must
pass through one or the other of the points immediately above (but not both). Therefore, we conclude

that
L) 7))
+ =)
¥ =1 r r
Proof by algebra: We start by writing out the algebraic definition of the combinations:

n—1 n-1\ (m—1) (n—1)!
r—1 +( r )T =D n-D--D)  Am—1-n1

2




1.5. PASCALS TRIANGLE AND THE BINOMIAL THEOREM

We now can now simplify the denominators, and put both fractions over a common denominator:

(n—1)+(n—1) (n—1)! . (n—=1)! _r(n—l)!_i_(n—r)(n—l)!.

r—1 ¥ -

T r=Din=7)  Hn-1-1 rn-r) ri(n—r)!
Now we add the fractions and factor the numerator:

(n—1)+(n—1)=r(n—1)1+(n-r)(n—1)!_n(n—l)!_ n! _(n)

r—1 r ri(n —r)! Crln=nt -t \r)

Proof by committee-forming: Given a club with n members, we know that we can form an r-person
committee in () ways. This is just our basic definition of combinations.

Imagine that one of the club members is named Bob. If Bob is on the committee, then we must
choose r — 1 remaining committee members from the # — 1 remaining club members. So there are ("))
committees with Bob on them.

However, if Bob is not on the committee, then we must choose all ¥ committee members from the
1 — 1 remaining club members. So there are (”;1) committees with Bob not on them.

The two situations above are exclusive cases, so to get the total number of committees, we add the
number of committees with Bob and the number of committees without Bob. Thus, the number of
r-person committees is (’::11) - (”;1). But we already know that the number of r-person committees is (),
so equating these two counts, we again get

(2=
+ ={ |
r—1 r r
Important: Pascal’s identity:

\ S e

thcept: Mai{y_;zafhbﬁléfdrial identities can be prov-;a_c_l in one or more of the follow-
ing ways:

¢ By a committee-forming argument

® By a block-walking argument

e By algebra

‘Problem 1.24: Expand (x + y)"

RESERET S

Solution for Problem 1.24: Let's look at how this works for (x + y)*:

(r+y)’ =@+ y)x+y)
=xx+xy + yx + yy
=% + 2xy + ¥~

23
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T e e ey = = = T

On the second line above, we get four terms: each term corresponds to choosing x or y from the first
term, then choosing x or y from the second term, and multiplying them together. After simplification,
we get our usual result on the third line above.

Just to make sure that it's clear what's happening, let’s also look at how this works for (x+y)*

X +yP =@+ y)x+y)(x+y)
= XXX + XXY + XYX + XYY + YXX + YXy + yyx + yyy
= %% + 3x%y + 3xy? + .

As before, in the second line above, each term is a product of x or y from the first term, times x or y from
the second term, times x or y from the third term. We take these products for every possible choice of x
or y from each term, and then add them up. When we simplify, we get our usual expression for (x + y)?.

Now we can see where the coefficients come from. For example, the coefficient of the xzy term in
(x+y)® is 3. That's because there are 3 ways to choose two x’s and one y: xxy, xyx, and yxx. Alternatively,
we can think of this as the number of ways to arrange two x’s and one y to make a three-letter “word”.
And we know how to count this: it’s

3! 3
2101 (1)

We can also think of this as the number of ways to choose one “slot” for the ¥ in our 3-letter word.

Now let’s go back to the general case of (x + )" Every term in the product results from choosing an
x or y from each of the n different (x + y) terms in the product. So if, for example, we choose k s, the
other n — k choices will be x’s, and we’ll get an x"*y* term in the product. But k y's can be chosen from

n terms in (}) ways. Therefore, the coefficient of x"kyk is (7). O

Important: The Binomial Theorem: for any positive integer #, the coefficient of the
@ X" ¥y term of (x + )" is (}). In other words,

(x+y)" = (g)x" + (T)xﬂ_ly +. (:)x”‘ky" +- 4 (n)y“.

n

Problem 1.25: What is the coefficient of the term of (x + 2y?)° with a y® in it?

Solution for Problem 1.25: How do we get a term in the expansion of (x + 2y?)6 with a ¥® init? The term
with a y in it is the term that has a (24)* in it. We know that when expanding (x + 2i%)°, we have to
choose 4 copies of 2y from the six (x +2y?) terms in order to get a term with ¥® in it. This can be done in
(Z) ways. We then take an x from each of the remaining two (x + 2y?) terms that didn’t contribute a 2y2.
Therefore, the relevant term in the expansion of (x + 21/2)° is (§)x2(2y%)* = 240x2y8. The answer is 240. O

Concept: When dealing with the Binomial Theorem, as with most theorems or
O% formulas, it is important to not merely memorize the formula, but to
understand it well enough to be able to use it flexibly.
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(g) : (1) el () =

solution for Problem 1.26: The sum of combinations should definitely remind us of the Binomial Theorem:

(x+y)' = (g)x” + (};)x”_ly +o 4 (:)y".

Pluginx = 1and y = 1 into the Binomial Theorem. This makes all the x’s and y’s go away!

Problem 1.26: Prove that for any #,

After we plug in x = 1 and y = 1, we're left with:

SRR, ¥/ n n n
(1+1)"'=2 _(0)+(1)+~--+(n).

That’s what we wanted to prove, so we're done! O

Concept: Often we can solve a problem by taking a general expression (which is
stated in terms of variables) and plugging in some nice values for the
variables to make them go away.

1.6 Summation Notation

You've probably already seen expressions like

nn+1
1+2+---4n= ( )
2
or
2 a
atar+ar- +---= .
l=r
These expressions use “ - to denote missing terms in a sum. Although writing sums like this mav be

intuitively clear, it is not very mathematically precise. For some expressions, the pattern of the rm::mg
terms might not be sufficiently well-defined. For example, if we were to write

Lo B v $81,

are we summing the first 41 positive odd integers, or are we summing the first 5 positive powers of 3?
Also, in an expression like
1+2+---+mn,

we run into a bit of ambiguity if n < 2: what are the “missing” terms?
To avoid many of these difficulties, we have a convenient notation that we use to write sums, called

summation notation. We use the symbol Z, the capital Greek letter sigma, which stands for “sum.”
For example, we would write

n
1+2+---+n:2k.

k=1
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n
The symbol Z means to take the sum where the different terms are given by pluggingink =1,k =2,
k=1
and so on up through k = n. The letter k is not important, and can be any letter not in the sum'’s terms.
The variable k is sometimes called a dummy variable.

To take another simple example,

11
Ziz:52+62+72+82+92+102+112=25+36+49+64+81+100+121:476.
=5

Often we will use summation notation to write identities more concisely. For instance, we can write
the Binomial Theorem as
M
. n\
(x+y)" = Z (k)x” Sk,
=0

If the sum is infinite, then we can use the symbol oo to indicate this. For example, if |r| < 1, then

oo

Z[I?‘fz 1ir

=0

We will discuss more subtle aspects of summation notation throughout the book as we need them.

1.7 Summary

This chapter is a review of the concepts and techniques that you should know before proceeding
further with this book. The rest of the book will assume that you know and are comfortable with these
techniques. If many of the solutions to the problems in this chapter did not come easily to you, you
may want to review more introductory-level material before continuing on with this book.

The book Introduction to Counting & Probability covers all of the topics in this chapter (except for
summation notation), and does so in much greater detail than we did here.
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¢ is the beginning of wisdom, not the end. — Mr. Spock

CHAPTER

Sets and Logic

2.1 Introduction

In order to discuss some of the more advanced concepts in this book, we'll first need to discuss two
very fundamental areas of mathematics: sets and logic.

Some of these concepts may be familiar to you, but you should nonetheless read through this chapter
carefully—there may be some subtleties that you're not already familiar with. Also, you'll see that there
are relatively few problems in the text in this chapter. The concepts in this chapter are tools that we
use to describe and solve problems later in the book, but these tools don’t necessarily give rise to many
interesting problems in their own right.

The notation and terminology might seem a bit heavy in this chapter. Try not to worry too much
about all the new notation and terminology, especially in the logic sections. It's much more important
to try to keep the big picture in mind: sets and logic are tools that we use to formulate and solve more
complicated ideas and problems. (Although, to be fair, set theory and the theory of formal logic are ri
branches of mathematics in their own right, and many mathematicians have made careers studsi
them.) As you use sets and logic in more and more problems, the terminology will become more an
more natural to you.

Also, because a lot of the exercises in this chapter depend on knowing the appropriate definitions
and notation, we're not using our usual style of putting practice problems at the start of every section,
because without knowing the terminology or notation, you wouldn’t be able to make anv headwav.
Instead, for this chapter only, we'll just be introducing problems as we go through the text. When vou
reach a problem in the text, try to solve it before reading the solution; then, whether vou think vou've
solved it or not, carefully read the solution presented.

27



CHAPTER 2. SETS AND LOGIC

2.2 Sets

Sets are the building blocks of mathematics. Like many other extremely fundamental mathematical
concepts (such as “point” or “number”), sets are difficult to precisely define, and we’re not going to try
to be precise here.

Roughly speaking, a set is a collection of objects. The objects can be essentially anything: numbers,
functions, other sets, any combination of these, or nothing at all. The order of the objects in the set
is unimportant. All that matters is what objects are in the set. There might only be a finite number
of objects in the set (meaning basically that we could count them if we liked), in which case the set is
called (big surprise) a finite set. Otherwise we call it an infinite set. The objects in the set are called the
elements or members of the set.

There are two basic ways that we can describe a set. The first is to simply list its elements. For
example:
A=1{2,9.22}

This is a set with three elements, namely 2, 9, and 22. This is the most basic way to define or describe
a set: We list the elements inside of curly braces, and separate the different elements by commas. As
we said above, the order of the elements doesn’t matter, so A = {9,22,2} is exactly the same set as
A ={2,9,22}. Also, each element can only be in the set once, so for example B = {3, 6, 3} is not a legal set
(or, alternatively, we can think of the second “3" in {3, 6, 3} as being redundant and write {3, 6, 3} = {3, 6}).

Sometimes it’s impractical to list a big set, so we use ellipses if the pattern of the elements in the set
is clear. For example, we feel pretty safe describing a set as {1,2,3,...,99,100} and knowing that this is
the set of the first 100 positive integers.

If a set is infinite, then we obviously have no hope of being able to list all the elements, since such
a list would go on forever! But if it is clear which elements are in the set, then we can list the elements
using ellipses. For example, the set of all positive integers can be written as {1,2,3,...}, because the
pattern is clear. As another example, we can be pretty sure that {1, 2,4, 8,16, 32, .. .}, without any further
description, is the set of all nonnegative powers of 2. Be careful though: you should only do this if your
pattern is absolutely clear. Listing a set as {1,2,4, .. .} is pretty ambiguous: is it the set of all nonnegative
powers of 2, or the set of all positive integers not divisible by 3, or something else that we didn't think
of? It's not at all clear, so we need more sample elements to make the pattern clear, or some words
describing the set, or we can define the set via the properties of its elements, as we're about to see.

Aside from listing the elements, the other basic way to describe a set is to provide a property that
precisely defines the elements of the set. For example:

B = {x | x is an integer}.

In this example, the set B consists of all the integers. Some people use a colon () instead of the vertical
bar (|); in either case, you should read the symbol as “such that.” For example, we would read our set B
above as “the set of all x such that x is an integer.” Another common example is an interval on the real
line; for example,

{x | x is a real number and 2 < x < 3}

is the interval of all real numbers that are greater than 2 and less than or equal to 3. One of the major
strengths of this way of describing a set is that we can use this even if we don’t know explicitly what
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the elements are. For example,
{y | v is a real number and 2* — 4/* + 61/ — 11y+ 12 =0}

is perfectly valid, even if we don’t necessarily know at first glance exactly what values of y are in the
set, or even if there are any elements in the set.

Most of the time, we will be using sets whose elements are numbers or other mathematical objects.
However, a set can contain pretty much anything as elements, as long as the elements are precisely
defined. For example, we could define a set

S = {x | x is a state in the United States}.

Then S = {Alabama, Alaska, ...}. We can even “mix and match” different types of elements to our
heart’s content. For example,
T = {5, {2, n}, Boston}

is a set with three elements: a number (5), a set (with elements 2 and 7), and a city (Boston). If an object
% is an element of S, we write this as x € S. If x is not an element of S, we write x ¢ 5. For any object x
and any set S, either x € Sor x ¢ S, but (of course) never both. Indeed, this is the whole point of sets: a
set is a collection of the objects that belong to it, and everything else does not belong.

There is a very special set called the empty set, denoted by 0. This is the set with no elements at all.
For example,
{x | x is a real number and x? < 0} = 0,

because there is no real number satisfying the property that its square is less than 0. Note that x ¢ 0 for
any x. We sometimes also write the empty set as a list: () = {}. Of course, it's an empty list, since the
empty set has no elements.

If 5 is a finite set, then we let #(S) denote the number of elements of 5. We say that #(S) is the
cardinality of S. (Note that many sources use the notation |5 in place of #(S).) For example, if
5 =1{2,4,9,11} then #(S) = 4, since S has four elements. Note that #(0) = 0, since 0 has zero elements.
If S is an infinite set (such as the set of all integers), then we cannot define #(S) without resorting to
so-called transfinite cardinal numbers, which are beyond the scope of this book.

A set A is called a subset of a set B if every element of A is also an element of B. We think of A as
2 smaller set that is made up of some of the elements of B. More informally, we think of A as sitting
inside” B. The notation that we use is A C B. For example,

{3,8,11} € {2,3,8,10,11, 14, 16}
and
{x | x is an even integer} C {x | xis an integer}.
[f A is a subset of B, we also say that Bis a superset of A.

Sometimes it is convenient to have a notation for when a set is a proper subset of another set,
meaning that it is a subset but not equal to the larger set. For example, {1,2,3} is a proper subset of
1,2,3,4},but {1,2,3,4} isnot a proper subset of {1, 2, 3, 4}, although it is a subset.
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We use the notation A C B to denote that A is a proper subset of B. (This is very similar to the
notations < for “less than” and < for “less than or equal to”: 3 <4and3 <4and 4 < 4, but4 ¢ 4))
Another way to think of this is that A ¢ B means that A is a subset of B, but there is some element of B
that is not in A. For example, {1,2,3} c {1,2, 3,4} because 4 is not in {1,2,3}.

WARNING!!  Unfortunately, this notation is not universally agreed upon. Many
3 authors use A C B to mean that A is any subset of B, not necessarily

proper. Some of these authors then use the notation A C B or A GB
to mean that A is a proper subset of B.

However, in this book, we will always use A C B to mean that A is
a subset of B, possibly equal, and use A C B to mean that A is a proper
subset of B.

WARNING!!  The concepts and notations can get a bit confusing, and it takes a little
F bit of practice to use them properly. For example, if A = 1,2, 3}, then
it is correct to say that 1 is an element of A and that {1} is a subset of

A. In notation, we would say

1€A and (1} CA.

But it is not correct to say that {1} is an element of A.

Let’s practice with some basic exercises involving elements and subsets:

Problem 2.1: Consider the following sets:
A=1{1,2,345, B={234, C=13(45)

(@) SACA?IsAc A?
(b) sBC A?IsBc A?
(c) sCCA?IsCc A?
(d) Is4eB?Isd4eC?

(e) Listall of the subsets of B. How many are there?

Solution for Problem 2.1:
(@) The elements of A are 1, 2, 3,4, and 5. All of these elements are elements of A,s0 A C A. However,
A=A, s0 Ais not a proper subset of A. Therefore, A ¢ A.

(b) All of the elements of B are also elements of A, so B € A. Further, A contains elements (namely, 1
and 5) that are notin B, so Bisa proper subset of A; that is, B c A.

(c) One of the elements of C is {4,5}. This is not an element of A (it is a subset of A, which is not the
same thing). So C ¢ A and by the same reasoning C ¢ A.

(d) 4 is an element of B, so 4 € B. However, 4 is not an element of C. The set C has two elements, the
number 3 and the set {4,5). So 4 ¢ C.
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(e) We can list the subsets of B:
0,2}, {31, {4}, 12,3}, {2,4}, (3,4}, {2, 3,4}
(Don’t forget that 0@ and B itself are subsets of B.) There are 8 subsets of B.

Note some special properties of subsets:

» Every set is a subset of itself; that is, A C A for any set A.
* The empty set is a subset of any set; that is, @ C A for any set A.
e If A, B are two sets such that A C Band B C A, then A = B.

e If A and B are any two sets, then we cannot have both A ¢ Band B c A.

Let’s explain one of these properties now, and you'll be asked to explain the others in the exercises.

R

Problem 2.2: Show that the empty set is a subset of any set.

Solution for Problem 2.2: By the definition of subset, we know that 0 C A if every element of 0 is an
element of A. But @ has no elements, so every element of () (there aren’t any of them!) is in A (there’s
nothing to check!). O

Every set S has a special associated set called its power set, denoted by P(S). This is a set whose
elements are all of the subsets of S. More precisely,

PIS) =1{T'| T € 8.
For example, if S = {1, 3,4}, then
P(S) =10,{11,13}, {4}, {1,3},{1,4},{3,4}, {1, 3,4}}.

Notice that the elements of P(S) are sets, not numbers. This is perfectly legal—remember that “set” is a
very general concept, and that elements of sets can be anything! Also notice that P(0) = {0}, which is
not the empty set: {0} is a set with one element, and that element is the set 0.

This can get a bit confusing, so let’s look at an example.

Problem 2.3: Let A = {1,2,3, 6} be the set of positive divisors of 6. Define
B={SeP(A)|1¢S).

e Flements of B

W

Solution for Problem 2.3: This problem is most easily solved by trying to get past all the notation and
thinking about it in words. The elements of B are exactly the subsets of A that don’t contain 1 as an
element. So we can list them:

B =1{0,{2}, {3}, {6}, 2,3}, {2, 6}, {3, 6}, {2, 3, 6}}.
Note also that B = P({2, 3,6}). O
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CHAPTER 2. SETS AND LOGIC

Sidenote: Some special sets |
.h Some sets are so common that they have special names. (We've already!
seen one such set, namely 0.) Some others are: !

e Z, the set of integers

e (, the set of rational numbers
e IR, the set of real numbers

e C, the set of complex numbers

Note that Z ¢ Q € R C C. (These sets are usually written, as they are here, |
in a font called “blackboard bold,” which consists of regular capital letters
with an extra line in them.) ‘

221 Is @ = {0}? Why or why not?

2.2.2 For each part, determine if the statement is true or false, and explain why or why not.
(a) 3€{1,3,59]

(b) (2,6} =1{6,2,2}

(© (51€1(3,59)

(d) 4 € ({4}

(e) Bci{1,209)

() 0e{0,{1},82}

(g) {x]xisaneveninteger} C Z

2.2.3 Explain why A C A for any set A.

2.24 Explainwhyif AC Band B C A, then A = B.

2.2.5 Is the subset relationship transitive? In other words, if A € B and B C C, can we conclude that
A € C? Why or why not? How about for proper subsets?

2.2.6 Suppose that B is a set such that B C (. What can we conclude about B?

2.2.7 Explain why it is true that if A and B are finite sets and A C B, then #(A) < #(B). What does it
mean if A C B and #(A) = #(B)? If A and B are finite sets such that A C B, what can we conclude about
#(A) and #(B)?

2.2.8 Explain why it is impossible for two sets A and B simultaneously to satisfy A C Band B C A.
2.29% Whatis P(P(0))? Hints: 145
2.2.10x Prove that if S is a finite set and #(S) = n, then #(P(S)) = 2". Hints: 316, 276
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2.3. OPERATIONS ON SETS

2.3 Operations on Sets

Justas we can perform operations on numbers, such as addition and multiplication, to getnew numbers,
we can perform operations on sets to get new sets. We start by defining the two basic operations on
sets.

Definition: The union A U B of two sets A and B is the set of all objects that are elements of at least 5
one of A and B. : =

We can write this more formally as:
AUB={x|xeAorxeB}.

Note that our use of the word “or” in the line above does 70t mean “one or the other, but not both.”
Instead, we use the word “or” to mean “one or the other, or possibly both.” (This is the way that
logicians define “or,” which we'll see in the next section of this chapter.) Elements that are in both A
and B are also in their union.

Here are some examples:

* {2,3,8/U{1,7,11,13) = (1,2, 3, 7;8,11,13}.

* {4,8,91U1{2,4,9,11} = {2,4,8,9,11}. (We don’t list 4 or 9 twice, even though they appear in both
sets, since elements are not duplicated in a set.)

* {1,2,4)U{1,2,4,8} = {1,2,4,8).

e {x|xisaneven integer} U {x | x is an odd integer} = {x | xis an integer}.

Definition: The intersection A N B of two sets A and B is the set of all objects that are elements of f
both of A and B. 5

We can write this more formally as:

ANB={x|xeAandxeB).

Some examples:

* (3,5,9,11) n{2,5,8,11,13} = {5, 11}.

{2,6,9,11} N {2,9} = {2,9}.

{4,9,11,16} n {2, 8, 10, 14} = 0, since these two sets have no elements in common.

® {x|xisaneven integer} N {x | x is an odd integer} = (.

{x | xis an even positive integer} N {x | x is a prime number} = {2).

33




CHAPTER 2. SETS AND LOGIC

A special case of union and intersection is shown in the following problem.

Problem 2.4: éuppose A and B are sets such that A C B.
(a) Whatis AU B?
(b) Whatis AN B?

s

e R e
Solution for Problem 2.4:

(a) If A C B, then every element of A is also an element of B. This means that any element in A or B
must be in B. Therefore, AU B C B. On the other hand, every element of B is also an element of
AUB,soBC AUB. Hence, AUB = B.

(b) Any elementin A and B must be in A, so AN B C A. On the other hand, every element of A is also
an element of B, and thus also an element of AN B,so A C AN B. Therefore, ANB = A.

Important: In order to show that two sets A and B are equal, we have to show that
W every element of A is also an element of B, and we have to show that
every element of B is also an element of A. .
If we only do one of these but not both, all we're showing is that one
set is a subset of the other. For example, if we show that every element
of A is also an element of B, then we’ve shown that A C B. In order to
show that they're equal, we have to show the reverse as well.

It is useful to have a word describing when two sets have no elements in common:

Definition: If AN B =0, then we say that A and B are disjoint.

We can visualize the operations of union and intersection using Venn diagrams. In particular, if A
are B are sets, represented by circles in a Venn diagram, then A U B is the region inside of the two circles
combined, and A N B is the region inside of both circles:

AUB ANB

These two operations—union and intersection—are distributive with respect to each other. We'll
prove one of the distributive laws and leave the other as an exercise.

Extra! Logic (and therefore probability as a branch of logic) is not concerned with what men do believe,
b b b it what they ought to believe, if they are to believe correctly. — John Venn -
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2.3. OPERATIONS ON SETS

Problem 2.5: Prove that if A, B, and C are sets, then

ANBUC)=(ANB)UANC).

Solution for Problem 2.5:  To prove that two sets are equal, we must show that they have the same
elements. This means that we must show that every element in one set is also in the other set, and vice
versa.

So we start by letting x be an element of A N (B U C). This means that x € A and x € (B U C), which
means that
x€Aand ((x € B) or (x € O)).

This can be rewritten as
(xeAandxeB)or(xe Aand x € C).

Now, rewriting our statement using union and intersection of sets, we have
x€((ANB)U(ANCQ)).
>0 all elements of A N (B U C) are also elements of (A N B) U (A N C), which means that

AN(BUC)C(ANB)U(ANCQ). (%)

We're not done! We have to show the reverse as well. To do so, let y be an element of (ANB)U(ANC).
Then
(yeAandyeB)or(yeAand y € C).

This can be written as
yeAand (yeBorye(),

which means that y € A N (B U C). Thus,

ANB)UANC)CAN(BUOQ). (#2)

Combining (*) and (**), we see that AN (BUC) and (A N B) U (A N C) have the same elements, so thev
are equal. O

The logic steps in the middle of the above argument might be a bit unclear—we’ll cover more details
of the logic involved in the next section—but we can also visualize the result using Venn diagrams.

The first diagram, at right, shows A filled with diago- A B
nz! lines in one direction, and B U C filled with diagonal -
“nes in the other direction. Their overlap, filled with the 2 ﬁ'-
crossed diagonal lines, is the region that is in both sets; _
that is, it is the region A N (B U C). W Ele
E:& N(BUC)
C
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CHAPTER 2. SETS AND LOGIC

On the other hand, the diagrams below show A N B shaded in the first picture, and A N C shaded
in the second picture. When we combine the pictures, the shaded region is the region that is in at least
one of the intersections, so the shaded region in the right picture is (A N B) U (A N €).

ANB ANC (ANB)UANCQC)

C

This is visual evidence that
AO(BUC)=(AOB)U(AHC).

Note that using Venn diagrams in this way is not a proof, but it does allow us to see visually why the
identity in question is true.

There are a couple more set-theory concepts that come up occasionally. One is the idea of a universal
set, which is a set that contains all possible elements in a given problem or situation. For example, in an
introductory algebra setting, the universal set might be the set R of real numbers, so that, for example,

x|x?+1=0}=0,

because it is assumed that we are only considering elements x € IR. On the other hand, if the universal
set were the complex numbers, then

fx|x*+1=0}= (i, -},

Note that the universal set may vary from problem to problem, and it is not always explicitly stated.

In a Venn Diagram, often a universal set is denoted by a large box
surrounding the diagram, as shown to the right. In any context in which
we have a universal set, we have the implicit assumption that every set
under discussion is automatically a subset of the universal set. In other
words, we're not allowed to go “outside the box” of the universal set.

u

Generally, we prefer not to use universal sets unless the context is ab-
solutely clear. For example, as discussed above, without a clear universal
set, the set

x|x*+1=0)

is unclear. If the universal set is R, then this set is empty, but if the universal set is C, then this set is
{i, —i}. It's usually much better to be upfront with our assumptions. For example, if we write

xeR|x*+1=0}
then it’s clear that this is the empty set.
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Wealso talk about the complement of a set A with respect to a universal
set U. This is the set of all elements (in U) that are not in A. For example.
if U = Z, the set of integers, and A is the set of all odd integers, then
the complement of A is the set of all even integers. The complement of
A is sometimes denoted AS or U — A or U\ A. In a Venn Diagram, the
complement of A is the shaded region in the diagram at left.

We can also define the set-theoretic difference of two sets A and B. This A
set, denoted either A — B or A \ B, is the set of all elements of A that are not
elements of B. For example, if

A=1{1,45911} and B=1{24,5,8,10},

then
A\ B=1{1,9,11},

since those are the elements of A that are not elements of B. The “extra” elements of B (2, 8, and 10)
are irrelevant. The set-theoretic difference A \ B is represented by the shaded area in the Venn Diagram
above to the right.

2.3.1 Foranyset A, whatare AUQ and AN G?

23.2 Provethat AUA=ANA=A.

233 IfxeS,whatareSU {x}and SN {x}?

234 Showthat AU(BNC)=(AUB)N(AUCQ).

23.5

'a) Suppose that AU B = A. What can we conclude about A and B?
'b) Suppose that A N B = A. What can we conclude about A and B?

2.3.6x If S and T are sets, describe (S N T) in terms of P(S) and P(T). Can you similarly describe
P(SUT)? Hints: 103

2.4 Truth and Logic

Informally, for our purposes in this book, logic is the way that we interpret statements of fact and
use them to prove new statements of fact. (What a professional mathematician means by “logic” is
something far different, much more abstract, and well beyond the scope of this book.) In most cases,
vou will find that logic is just an extension of your natural common sense, but in this section we will be
careful to try to explicitly state all of our assumptions and conclusions.

To start with, a statement (or proposition) is an assertion that is either true or false (but never
both). “False” is the opposite of “true.” We are not able to define what “true” or “false” means, but you
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CHAPTER 2. SETS AND LOGIC

should use your common sense. (Philosophers, mathematicians, and logicians have been debating for
centuries about the meaning of “truth,” and we're certainly not going to enter that debate here.)

Some examples of statements are:

e Paris is the capital of France. (This is a true statement.)

e New York is the capital of the United States. (This is a false statement.)

0 =1. (False.)

3 < 8. (True.)

All even integers are divisible by 2. (True. The word “all” means that this is an example of a
quantified statement, which we'll talk more about in the next section of the chapter.)

There exists an integer whose square is 7. (False. The phrase “there exists” is another example of
a quantified statement.)

e There exists a real number whose square is 7. (True.)
Some examples of things that are not statements are:

e Is Madrid the capital of Spain? (This is a question, not a statement.)
e Pizza is good. (This is an opinion, not a statement of fact.)

e Kaflooy is the capital of Garglbox. (This is just nonsense; it’s not true nor false since the words
have no meaning.)

® 2+ 9. (This is a value.)

e There exists a number whose square is 7. (This is not a statement unless we more carefully define
what “number” means. If “number” means “integer,” then it’s false. If “number” means “real
number,” then it’s true.)

o This statement is false. (This cannot be true or false without contradicting itself, so it is not a
statement.)

There are three basic operations that we can perform on statements to get new statements, sometimes
called compound statements.

¢ The negation of a statement p, denoted —p, is the statement that is true when p is false and is false
when p is true. Stated more simply, —p is the opposite of p. For example, if p is the statement
“Paris is the capital of France,” then —p is the statement “Paris is not the capital of France.”

* The conjunction of two statements p and g, denoted p A g, is the statement “p and 4”. For example,
if p is “Paris is the capital of France” and g is “Madrid is the capital of Spain,” then p A g is “Paris
is the capital of France and Madrid is the capital of Spain.” The statement p A q is true provided
that both p is true and g is true; otherwise p A g is false.
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2.4. TRUTH AND LOGIC

p is “Paris is the capital of France” and g is “Madrid is the capital of Spain,” then p V g is “Paris
is the capital of France or Madrid is the capital of Spain.” It is true provided that at least one of »
and 4 is true (perhaps both); otherwise p V g is false.

¢ The disjunction of two statements p and g, denoted p V g, is the statement “p or q”. As above, if

WARNING!! “porg” is one place where mathematical logic might differ from your
“ everyday use of the English word “or.” The statement “p or g” means
that at least one of the statements p and g are true. It does 7ot mean

that exactly one of them is true.

Concept Don’t worry about 1ear'rﬁﬁé-5f_fhémorizmgthe names tlfkg7; Ebhjﬁﬁctibhi”i)m

or the symbols (like “A”). What's important is that you know what the '
terms “and”, “or”, and “not” mean. We'll almost never use the names,
and we’ll only rarely use the symbols

Sometimes we analyze more complicated statements by means of a truth table. A truth table simply
lists all of the possible values of a compound statement, given the possible values of its component
parts. For example, we show the truth tables of our basic operations in Figure 2.1 below. In these tables,
T represents “true” and F represents “false.” For example, the table on the right in Figure 2.1 lists the
truth value of “p or q” for each possible pair of values for p and for 4.

plg|pandg plq|porg
p | notp T|T T T|T T
T F T|F| F T|F| T
F T F|T F F|IT T
F|F F F|F F

Figure 2.1: Truth tables for the basic logic operations

Concept:  You should get comfortable enough with “and”, “or”, and “not” so that
these truth tables are as automatic to you as an addmon table

Important: In order to prove that a statement of the form “p and ¢” is true, you must
W prove that both p and g are true. In order to prove that a statement of the |
form “p or g” is true you must prove that at least one of P and q are true.

Let’s do a simple example of proving the truth value of a more complicated statement.

Problem 2.6: Prove that for any statement p, the statement “p and (not p)” is always false.
SRR z c = S R R S B N R T s = ;

Solution for Problem 2.6: First, we know that this statement must be false, just by common sense. There’s
no way that a statement and its opposite can both be true: in fact, we always have that one is true and
the other is false.

39



CHAPTER 2. SETS AND LOGIC

But to formally establish this, we can resort to a truth table. The statement p can itself be either true
or false. So we make a table listing the possible values of p, and the resulting values of “p and (not p).”

p | notp | p and (not p)
T| F ' F

F| T 2

As we can see from the table, any input value of p makes the statement false.

Here is a slightly more complicated example. We'll write it using symbols because it’s a bit compli-
cated to write it in words.

SN

A SR

Solution for Problem 2.7: This one is a bit too complicated for us to use “common sense,” so let's go
straight to the truth table. We list the truth table for all possible values of p and 4. Note that we show
the truth value of all the intermediate terms, to make the results clear.

Plalpval-r|-q|=p)AEg) | =(=p) A (~g))
TIT, T |F|F F T
TIF| T |F|T F T
FIT| T | T|F F T
FIE| F |T|T T F

Note that the 3™ and last columns are identical, proving the assertion. O

By the way, the statement of Problem 2.7 is known as one of DeMorgan’s Laws. In English, we
would say that “p or g” is equivalent to the statement “not((not p) and (not g)).” Think about, in English,
why that makes sense. You'll get a chance to prove a version of another one of DeMorgan’s Laws in the
exercises.

The other very important operation that we use to make compound statements out of simple
statements is that of implication. This is the operation given by the statement “If p, then 4” and is
denoted by p = g. We may also read p = q as “p implies 4.” This is a true statement unless p is true
and q is false, in which case it is false. For example, if p is the statement “4 is an odd number” and qis
the statement “10 is prime,” then p = q is the statement “If 4 is an odd number, then 10 is prime.” This
is an example of a true statement, although some people find this a bit counterintuitive, and draw the
following incorrect conclusion:

‘Bogus Solution: 4 is an even number, not an odd number, and 10 is composite, not
| prime, so the statement “If 4 is an odd number, then 10 is prime” is
3 a false statement.

This is incorrect logic. 4 is an even number, so “If 4 is an odd number, then 10 is prime” is true.
If the part following the “If” in an implication is false, then the implication is automatically true. For
example, “If pigs can fly, then I am a billionaire” is a true statement: pigs can't fly, so we can put any
statement we like after the “then” and get a true statement (even though, sadly, I am not a billionaire).
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We can also list the truth table of p = g:

The only time thatp = g is false is if p is true and q is false. For example, “If 9 is odd, then 28 is a perfect
square” is false.

We also have the two-way implication p < g, which is a shorthand for (p = g) A (g = p). In
words, we would write “p if and only if 4.” Some people abbreviate this to “p iff g,” but this should be
considered shorthand only, and not correct mathematical writing. Here’s the truth table:

plalp=4qla=plreqg
TIT[ T T T
T|E| B T F
FIT| T B F
F|E| T T T

Note that p & g is true whenever p and g have the same truth value (they’re either both true or both
false), and p & g is false whenever p and g have different truth values (one is true and the other is false).
S0 we could have rewritten Problem 2.7 as:

Problem 2.7: Prove that, for any statements p and q, the statement
(p Vg & (=((=p) A (-9))

is always true.
| s S

There are two important logical operations that we can do to an implication. The first is to take its
converse.

Definition: The converse of the statement p = g is the statement g = p.

In other words, we swap the “if” and “then” parts.

Note that the truth or falsehood of an inference gives us no information about the truth or falsehood
of its converse. For example, the statement “If a man lives in Los Angeles, then he lives in California”
is true, but its converse “If a man lives in California, then he lives in Los Angeles” is false (since, for
example, he might live in San Diego).

We can also list a truth table to see that the truth values of p = g and g = p are not necessarily the
same:

plalr=aqlg=p
T|T| T i I
T|F| F T
FlT| T F
F{F| T T
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Important: A very common logical mistake that students often make when working
@ proof-style problems is to prove the converse of what the problem is
asking. As we have seen, the converse of an implication can be true

even if the original implication is false.

The other common operation that we can do to an implication is to take its contrapositive.

Definition: The contrapositive of the statement p = g is the statement g = —p.

In other words, we swap the “if” and “then” parts and take the negation of both.

In contrast to the converse, the contrapositive of an implication has the same truth value as the
original implication. For example, the statement “If a man lives in Los Angeles, then he lives in
California” is true, and its contrapositive “If a man does not live in California, then he does not live in
Los Angeles” is also true. We can also see this in a truth table:

plalp=q|-p||-q=-p
TITI T | F|F T
TI|F F F T E
ElT| T |T|F T
FlE| T |T|T T

Concept: Sometimes ﬁi'probf:s:i:i)fleilﬁfoblems, it's easier to prove the contrapositive |

(===  of what the problem is asking than it is to prove the original problem
statement. As we’ve just seen, this is logically valid: an implication is
logically equivalent to its contrapositive.

2.4.1 Which of the following are statements? (For any that are not statements, briefly explain why
not.)

(a) 2isan odd number.

(b) The author of this book has brown eyes.

(c) Infinity is really cool.

(d) George Washington was the first president of the United States if and only if ((a touchdown in
football is worth 11 points) and (8 + 3% = 2* + 1)).

(e) Canyoudrive a car?

H »>+x-3

2.4.2 Prove that “p or (not p)” is always true for any statement p.

2.43 Prove that, for any statements p and g, the statements —(p A q) and (—p) V (=) are either both true
or both false. (This is another of DeMorgan’s Laws.)
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* The universal quantifier is the equivalent of the words “for all” or “every.” It is sometimes
denoted by an upside-down “A”, like so: V. For example, we can write the (false) statement “All
integers are divisible by 2" as

Yx e Z, 2|x.

In English, we would read this as “For all elements x of the set of integers, 2 divides x.” This
means, naturally, that 2 divides every element of Z, the integers. Of course, this is a false statement,
but it is a legal statement nonetheless.

* The existential quantifier is the equivalent of the words “there exists.” It is sometimes denoted
by a backwards “E”, like so: 3. For example, we can write the statement “There exists an integer
x such that x> — 5x + 6 = 0” as
IxeZ x*-5x+6=0.

In English, this reads “There exists an element x in the set of integers such that x> — 5x + 6 = 0.”
This means that there is some element of Z that makes the statement true.

Here is the general description of the two quantifiers:

Concept: If Sis a setand p(x) is a statement that depends on an element x of S, then:

e Yx € S, p(x) means that p(x) is true for all elements x of S.

¢ dx € 5, p(x) means that p(x) is true for at least one element x of S.

Important:  The symbols are not that important, and you won't see them that often.
W The meaning of the quantifiers is what’s important. Itis very important to
understand the difference between a statement being true for all elements
of a set, and merely that there exists an element of the set that makes the

statement true.

For example, the statement “All triangles are equilateral” is clearly false. But the statement “There
exists an equilateral triangle” is clearly true.

We can combine quantifiers in the same statement; for example, the statement:
For every positive real number x, there exists a positive real number y such that x = .
This statement can be written symbolically as
VxeR,x>0= (JyeR,(y>0)A (x = 7).

I'said that the statement can be written symbolically, but we almost never do so, because as you can see,
it's pretty unreadable. Just use English.

Note that the order of quantifiers is important! The following is wrong:

Bogus Solution: There exists some positive real number ysuch that for every positive
i‘r! real number x, we have x = 2,
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2.5. QUANTIFIERS

Clearly this is not true: this would mean that every real number has the same square root!

Important: Make sure your quantifiers are in the correct order!

\Y

When we want to negate a statement that involves a quantifier, we have to be careful to also reverse
the quantifier. For example, the negation of the statement “All cars have four wheels” is the statement
“There exists a car that does not have four wheels.” In the first statement, all cars have four wheels, so to
zet the opposite of that statement, we don’t need that all cars don’t have four wheels, we just need some
car without four wheels. Another example is “There exists a person from Canada who plays hockey.”
The negation of this statement is “All people from Canada do not play hockey.”

Symbolically, if p(x) is a statement that depends on a variable x that is an element of a set S, then the

opposite of the statement
Forall x € S, p(x) is true

b’

There exists x € S such that p(x) is false.

Important:  To prove a universally-quantified statement—a statement that is true |
W “for all x € S"—you must prove that the statement is true for every x |

in the set 5. On the other hand, to prove an existentially-quantified
statement—a statement for which “there exists x € S” that makes it

true—you only have to find a single x in the set S that makes the state-

ment true.

2.5.1 Explain why the statements

There exists x € S such that p(x) is true

and
For all x € S, p(x) is false

are opposites.

2.5.2 Find an example of a statement p(x, y) in terms of two integers x and y such that the statement
AxeZ VyeZ p(x,vy)

is true, whereas the statement
VxeZ,Aye Z,p(x,y)

is false.
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CHAPTER 2. SETS AND LOGIC

2.6 Summary

[n this section, we discussed some of the basic building blocks of higher mathematics: sets and logic.
The point of this chapter is not to study these topics very deeply in and of themselves, but rather to
make sure that we have the necessary tools to construct valid proofs. The symbolism in this chapter is
not really that important.

JImportant: N ormally, we do not write the logical symbols. We prefer tor]sewadsj
W because words convey the meaning of our logical arguments better than !

2 the symbols do.

What's important is to understand the concepts that underlie set theory and basic logic. Some of
these concepts are:
What sets are and how they can be described
How sets are related to their subsets
The empty set 0
The power set P(S) of a set S
How to combine sets by union and intersection
The basics of truth and logic: statements are either true or false
The meanings of “and”, “or”, and “not”
The meaning of an “if. . . then. ..” inference

The converse and contrapositive of an inference

YYVYVYVYVYVYYYY

The meanings of, and difference between, “for all” and “there exists”

=1{1,2,3,...,30},
n eS| nz0and the units digit of # is 9},

neS|ln=1 (mod 4)) ={neS|TkeZ n=4k+1),
neSin=3 (mod4)}={neS|IkeZ n=4k+3],
(neS|n=2 (mod 4)} ={neS|TkeZ n=4k+2)

4 =
D={
P ={peS|pisa positive prime},
u={
V=
W =
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REVIEW PROBLEMS

(a) Find thesets D, P, U, V,W,DNU,PNW,S\P,and P\ (DU V), by explicitly listing the elements
of each set.

(b) Which is greater, #(P N U) or #(P N V)?

29 LetT=1{-2,-1,0,1,273,4,5)}.

(a) Whatis {x*|x € T}?

(b) Whatis{xe€Z |x%eT)?

2.10 The sets A, B, and C satisfy AN B = BN C = (. Is it necessarily true that A N C = 0?
211 Are the converses of the statements in Problem 2.4 true? In other words:

(a) If A and B are sets such that A UB = B, must A C B?
(b) If A and B are sets such that A N B = A, must A C B?

[ they are true, explain why. If they are not true, show an example where they fail.

212 If A\ B = A, then what can we say about sets A and B?
2.13 The finite sets A and B satisfy #(A \ B) = #(B \ A). Does it follow that #(A) = #(B)?

2.14 Show that for any statements p, 4, and r, the statement

(p=pr@=rN=@p=r
is always true.

215 Let A be the set of mathematicians, let B be the set of snobs, let C be the set of scientists, let D be
the set of people who have been to Mars, let E be the set of people who have drunk coffee, and let U be

the set of all people. Let p(x, y) denote the statement “x has taken a photo of y”. Express the following
statements in plain English:

a) Bcl.

b) AcC

<) (AnD)CE.

d) U=CUE.

e) Yxel, (p(x,x) = x € B).
5 YxeC, Ay ek, p(x, y)
B dy € E VxeC,plx,y)

=16 Using the same notation as in the last problem, express the following statements using set and
‘ogic notation.

21 Only snobs drink coffee.
= Not all scientists are snobs.
- Some mathematician has drunk a coffee.

2 If everyone has been to Mars, then every scientist has drunk a coffee.
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CHAPTER 2. SETS AND LOGIC

(e) Every mathematician has taken a photo of a snob.
(f) Everyone who has been to Mars is a snob, except for scientists.

(g) The only people who have taken a photo of everyone who has drunk a coffee are scientists.
217 Let p(x) be a statement that depends on the element x.

(a) What can you say about the truth of the statement “Vx € 0, p(x)”?
(b) What can you say about the truth of the statement “Jx € 0, p(x)”?

2.18 Show that for any sets A, B, and C, we have CC Aifand only if (AN B)UC=AN(BUC).

219 A set S of real numbers is called an interval if for all x, y € S, we have
zeR|x<£z<yl €5
For example, the sets [0,1], (=10, 5), and [3, o) are all intervals.

(a) Is the union of two intervals always an interval?

(b) Is the intersection of two intervals always an interval?

2.20 The exclusive or operation, denoted by &, is defined so that p @ g is true if and only if p is true or
q is true, but not both.

(a) Show that for any statements p, g, and r, the statements (p @ q) @ r and p @ (7 © r) are equivalent.
(b) Show that for any statements p, g, and r, the statements p A (& 1) and (p A q) ® (p A r) are equivalent.

2.21 Which of the following statements are equivalent to ~(¥x € S, Ay € T, p(x, y))? (More than one
may be equivalent.)

() Yxe§, Ay eT, —p(x,y).
(i) Ixe S, Vy e T, -plx, y).
(iil) Yx €S, =(Ay € T, p(x, y)).
(iv) Ax € S5, -~y € T, p(x, v)).
(v) Ixe S, ~(Yy eT, p(x, y)).

2.22 The symmetric difference of two sets A and B is defined as (A \ B) U (B \ A), and is denoted by
ASB.

(a) LetA=1{1,2,3,4,7,8},B=1{2,4,57,9,10},and C = {3,6,7,8,9}. Find AeB,(AeB)e(C,Be(, and
Ae(Bo Q).

(b) Use part (a) of Problem 2.20 to show that (A& B)eC= Ao (BeC) forall sets A, B, and C.

(c) What identity of set theory does part (b) of Problem 2.20 give rise to?
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If you want to make an apple pie from scratch, you must first create the universe. — Carl Sa gan

CHAPTER

I A Piece of PIE

3.1 Introduction

[n this chapter we'll have some PIE.

PIE is the abbreviation for the Principle of Inclusion and Exclusion. Despite the fancy name, PIE is
actually pretty simple. In fact, for the first few problems, PIE is really just an extension of your common
sense, but as we'll see later in this chapter, PIE can be a powerful tool for solving a wide variety of
counting problems.

PIE is essentially a special application of one of our most fundamental counting techniques: strategic
svercounting. In a typical PIE computation, we will repeatedly overcount and undercount until, at the
=nd of the process, we arrive at exactly the correct count. It may seem a bit confusing, but trust us,
£'s not as complicated as it sounds. It does, however, require some thought to use PIE correctly; in
carticular, memorizing a “formula” for PIE is a really bad idea.

3.2 PIE With 2 Properties

Problem 3.1: If 20 girls are on my school’s soccer team, 25 girls are on my school’s hockey team, and
11 girls play both sports, then how many girls play soccer or hockey?

Problem 3.2: If A and B are sets, write an expression for the number of elements in A U B in terms of
“he number of elements in A, B, and A N B.
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CHAPTER 3. A PIECE OF PIE

' Problem 3.3: At my school, the only foreign languages offered are Spam'sh and French, and there
are 40 students enrolled in at least one of the classes. If 28 students are in the Spanish class and 23
students are in the French class, then how many students are taking both languages?

Problem 3.4:
(a) How many 6-digit numbers start with an even digit?

(b) How many 6-digit numbers end with an even digit?

(c) How many 6-digit numbers start and end with an even digit?

(d) How many 6-digit numbers start or end with an even digit?

Suppose that we have two sets A and B. We’d like to count the number of elements in their union
AU B, which is to say, we want to count the elements that are in A or B.

What's wrong with the following argument?

Bogus Solution: The number of elements in A U B is the number of elements in A
ij'! plus the number of elements in B. Or, as an equation,

#(AUB) = #(A) + #(B).
This argument doesn’t take into account the fact that some elements might be in both sets. To take
a simple example, suppose that A = {1,2,3} and B = {3,4,5}. Then AU B = {1,2, 3,4, 5}, and we see that

#HAUB)=5 but #A)+#B)=3+3=6.

Let’s see a basic example of this phenomenon in a problem setting.

Problem 3.1: If 20 girls are on my school’s soccer team, 25 girls are on my school’s hbckey team, and *
11 glrls play both sports then how many girls play soccer or hockey7

s s
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Solution for Problem 3.1: A bogus solution to this would be:

Bogus Solution: There are 20 giﬂs on the soccer team and 25 girls on the hockéy
pid team, so there are 20 + 25 = 45 girls on either team.

This doesn’t work since there are 11 girls on both teams. If we simply count 20 + 25, we’ve counted

these 11 girls twice, once on the soccer team and once on the hockey team.

Therefore, we must subtract these girls from our count, since we've counted them twice and we
only want to count them once.

So the number of girls playing soccer or hockey is 20 + 25 — 11 = 34.

We can also see this by using a Venn Diagram.

50




t

/e

3.2. PIEWITH 2 PROPERTIES

Soccer Hockey

In order to fill in the numbers, we work from the inside out, as this is usually the best way to proceed

with Venn diagrams. So, we start by placing the 11 girls who are on both teams into the center of the
diagram.

Soccer Hockey

Then we can place 20 — 11 = 9 girls in the “soccer only” part of the diagram, and 25 — 11 = 14 girls
= the “hockey only” part of the diagram.

Soccer Hockey

WWe can now see that there are 9 + 11 + 14 = 34 girls on the two teams. O
Here's the general idea of this basic version of PIE:

We want to count the number of elements in the union of two sets A and B. For example, in Problem
= 1 set Ais “girls on the soccer team” and set B is “girls on the hockey team.” However, if sets A and B
~verlap, we cannot merely sum the elements in each set, since elements in both sets would get counted
—wice. In order to count the elements in A U B, we need to include the elements of A and the elements
22 5, and then exclude the elements in both. This is why we call this method the Principle of Inclusion
and Exclusion.
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CHAPTER 3. A PIECE OF PIE

Let's see the general statement of PIE for counting the number of elements in the union of two sets:

Problem 3.2: If A and B are sets, write an expression for the number of elements in A U B in terms
of the number of elements in A, B, and A N B.

Solution for Problem 3.2: We can write PIE for 2 sets as a formula:

#(AUB) = #(A) + #(B) - #(ANB),

i W where #(S) denotes the number of elements in set S.

Importeint:

Going back to our first example, Problem 3.1, we can write this in words as

Number of girls playing soccer or hockey = Number of girls playing soccer
+ Number of girls playing hockey
— Number of girls playing both soccer and hockey.

|

'Problem 3.3: At my schoolr,v’fﬂé“gniy foreign 1ang11ages offered are Spanish and French, and there
are 40 students enrolled in at least one of the classes. If 28 students are in the Spanish class and 23 |
'students are in the French class, then how many students are taking both languages?

Solution for Problem 3.3: This problem is slightly different from Problem 3.1. Here, we're told not only
the sizes of the two sets, but also the size of their union; we want to find the size of their intersection.

Let x be the number of students in both language classes. (Note that we're using the very common
problem solving technique of letting a variable denote what we want to find.) Then PIE tells us that

40 = 28 + 23 — x,
which we can solve to get x = 11.

As a quick check, we can draw the Venn Diagram for this problem, with all of the numbers filled in:

Spanish French

It is easy to verify from the diagram that there are 28 students in Spanish, 23 students in French, and
40 students total, and thus there are 11 students in both languages. O

Problems 3.1 and 3.3 were pretty transparent—it was clear that we needed to count the elements
in two overlapping sets, and that PIE was the tool to use. Most PIE problems are not quite so simply
stated. Here’s an example:
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3.2. PIE WITH 2 PROPERTIES

Problem 3 4: How many 6—d1g1t numbers start or end w1th an even d1g1t7

SR e
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solution for Problem 3.4:  The word “or” suggests that we are counting elements in two sets. In this
oroblem, we want to count the 6-digit numbers that are in the union of those that start with an even
Zigit and those that end with an even digit.

Concept: ~ If we want to count'things that satisfy some i)ropéri;y or some other p'rop—'
erty, and the two properties overlap, then we probably want to use PIE.

Thus, our strategy is going to be

#(6-digit numbers that start or end with an even digit) =
#(6-digit numbers that start with an even digit)
+ #(6-digit numbers that end with an even digit)
— #(6-digit numbers that start and end with an even digit)

Each of these terms is fairly easy to count.

=-iigit numbers that start with an even digit: There are 4 choices for the first digit (2, 4, 6, or 8), and 10
“hoices for each remaining digit, so there are 4 x 10° = 400,000 of these numbers.

=digit numbers that end with an even digit: There are 9 choices for the first digit (since it can’t be 0), 10
—hoices for each of the four middle digits, and 5 choices for the last digit (2, 4, 6, 8, or 0), so there are
= % 10* x 5 = 450,000 of these numbers.

=-digit numbers that start and end with an even digit: There are 4 choices for the first digit, 10 choices for
=zch of the four middle digits, and 5 choices for the last digit, so there are 4 x 10* x 5 = 200,000 of these
numbers.

Therefore, the number of 6-digit numbers that start or end with an even digit is

400,000 + 450,000 — 200,000 = 650,000.

We also could have counted these numbers using complementary counting. We know there are
=20,000 6-digit numbers (since there are 9 choices for the first digit and 10 choices for each of the other 5
Zigits). We also know that there are 250,000 6-digit numbers for which both the first and last digits are

2dd (since there are 5 choices for the first and last digits, and 10 choices for each of the 4 middle digits).
Therefore, there are 900,000 — 250,000 = 650,000 6-digit numbers for which the first and last digits are
not both odd, meaning that at least one of them is even. O

Concept: When faced with counting things that are “at least” something or “one
(O=== or more” of something, our two main tools are PIE and complementary
counting.

3.2.1 There are 47 dogs at the pound. All of them are big or very hairy. 30 are big. 42 are very hairy.
“ow many of the dogs are big, very hairy dogs?
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3.2.2 How many 10-digit binary numbers start with 2 ones or end with 2 ones (or both)?

3.2.3 Suppose that 80% of U.S. households own a DVD player and that 70% of U.S. households own a
computer. What is the range of possible percentages of U.S. households that own both? Hints: 25

3.24 How many positive integers less than 100,000 are neither squares nor cubes? Hints: 62

3.2.5 Of the 85 teachers at my school, 25 have no children, 50 have a son, and 45 have a daughter. How
many have a son and a daughter?

3.2.6 How many 9-digit numbers have the property that the product of their first and last digits is
even?

3.2.7% A school with 100 students offers French and Spanish as its language courses. Twice as many
students are in the French class as the Spanish class. Three times as many students are in both classes
as are in neither class. The number of students in both classes is even, and fewer than 10 students are
in neither class. How many students are taking Spanish? Hints: 309, 141

3.3 PIE With 3 Properties

Problem 3.5: Now my school offers 3 foreign languages: Spanish, French, and Chinese. There are 57
students enrolled in at least one of the classes. If 29 are in the Spanish class, 34 are in the French class,
33 are in the Chinese class, 15 are taking both French and Spanish, 16 are taking both French and
Chinese, and 12 are taking both Spanish and Chinese, then how many students are taking all three
languages? ' :

Problem 3.6: If A, B, and C are three sets, find an expression for the number of elements of AUBUC.

Problem 3.7: How many positive integers less than 1000 are divisible by neither 2, 3, nor 5?

We've seen how to use PIE to count the number of elements in the union of two sets. It seems
reasonable to ask whether PIE can be used to count the number of elements in the union of a bunch of
sets. We'll explore this general question in Section 3.5, but in this section we’ll look at the example of
counting elements that are in one or more of three different sets. Let’s start with a concrete example.

Problem 3.5: Now my school offers 3 foreign languages: Spanish, French, and Chinese. There are §
57 students enrolled in at least one of the classes. If 29 are in the Spanish class, 34 are in the French %
class, 33 are in the Chinese class, 15 are taking both French and Spanish, 16 are taking both French
‘and Chinese, and 12 are taking both Spanish and Chinese, then how many students are taking all

three languages? :
S R TR R T TS
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Solution for Problem 3.5: Suppose that we try to count the number of students in at least one of the
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e e

classes. We start with
(29 Spanish) + (34 French) + (33 Chinese) = 96.

Clearly, though, this is way too big, since it overcounts those students who are in more than one class.
Also, we already know that there should be 57 students total, because the problem told us so.

Our first attempt at correcting this is to subtract the number of students who are taking 2 classes:

we know those students have been counted twice, so we need to subtract to make sure that they are
only counted once. Now our count is.

(29 + 34 + 33) — (15 + 16 + 12) = 96 — 43 = 53,

But this is now too small, since we know that there are 57 students total. What's wrong here?

The problem is that we have not correctly accounted for those students who are taking all three

classes. To see this, imagine that Vincent is taking all three languages. How many times do we count
Vincent in our expression 29 + 34 + 33 — 15 — 16 — 127

We add Vincent once in each of the 29, 34, and 33 terms, since he is in all three classes. On the
other hand, we subtract him once in the —15, —16, and —12 terms, since he is in all three pairs of classes.
Therefore, in the expression 29 + 34 + 33 — 15 — 16 — 12, we haven’t counted Vincent at all!

Thus, our count 29 +34+33 - 15—16 — 12 = 53 doesn’t count the students who are in all three classes.
Since 57 — 53 = 4, we are missing 4 students, therefore there are 4 students in all three classes.

We can use a Venn Diagram to check our answer. Using Figure 3.1, you can verify that there are

7+ 11 +4 + 12 = 34 students in the French class, and all of the other data given in the problem can be
verified as well.

Spanish French

A
av%a

Chinese

Figure 3.1: Completed Venn Diagram for Problem 3.5

We can use the logic of Problem 3.5 to come up with a general formula for the number of elements
= the union of 3 sets.

Problem 3.6: If A, B, and C are thre
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Solution for Problem 3.6: We start with just summing the elements in the three sets:
#(A) + #(B) + #(C).

However, this sum overcounts elements that appear in more than one set. We can try to correct for this
by subtracting the number of elements in each pair of sets:

#(A) + #(B) + #(C) —#(ANB) — #(ANC) - #B N C).

If an element is in exactly two sets, it will now be counted exactly once. For example, if x is in A and B,
then x will be counted once in #(A) and once in #(B), but x will also be subtracted once in #(A N B). So x
will be added twice and subtracted once, which means that x will be counted one time overall.

Now we look at those elements in all three sets. These elements are added three times when we
count the individual sets, but they are also subtracted three times when we subtract the pairs. So these
elements have not yet been counted at all! We finish our count by adding them back in.

Our conclusion:
Important: If A, B, C are finite séts, then

W ~ #AUBUQ) =#(A)+#(B)+#(C)—#(AOB)—#(ADC)—#(BOC)+#(AQBrlC).'

O

Let’s see an application of the 3-set PIE process.

-Eﬁv??fﬁ:

Problem 3.7: How many posmve mtegers Tess | than 1000 are divisible by neither 2, 3, nor 57
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Solution for Problem 3.7: There seems to be no good direct way to count this, so we think about trying to
count the opposite: how many positive integers less than 1000 are divisible by at least one of 2, 3, or 5?

The “at least” in this question should make us think about PIE. Our three sets are:

A ="Positive integers less than 1000 that are divisible by 2”
B = "“Positive integers less than 1000 that are divisible by 3”
C = "Positive integers less than 1000 that are divisible by 5”

Our goal is to compute #(A U B U C). This means PIE.

What's the easiest way to compute the number of positive integers less than 1000 that are divisible
by n? We simply take the largest integer less than 1000/n.

So, using our notation above:
#(A) = (largest integer less than 1000/2) = 499,

#(B) = (largest integer less than 1000/3) = 333,
#(C) = (largest integer less than 1000/5) = 199.
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Now we can look at the intersections of pairs of the sets:

AN B = "Positive integers less than 1000 that are divisible by 2 and 3”
“Positive integers less than 1000 that are divisible by 6”

AnC

“Positive integers less than 1000 that are divisible by 2 and 5”
“Positive integers less than 1000 that are divisible by 10”

C N B = “Positive integers less than 1000 that are divisible by 3 and 5”
= “Positive integers less than 1000 that are divisible by 15”

We can count these using the same reasoning as above:

#(A N B) = (largest integer less than 1000/6) = 166,
#(A N C) = (largest integer less than 1000/10) = 99,
#(B N C) = (largest integer less than 1000/15) = 66.

Finally, we know that A N B N Cis the set of positive integers less than 1000 that are divisible by all
0f2, 3, and 5. This is the set of positive integers less than 1000 that are divisible by 30, hence

#A N BNC) = (largest integer less than 1000/30) = 33.

Therefore, using PIE, we can compute:

#HAUBUC) =#A) +#(B) +#(C) —#ANB)—#ANC) - #BNC) + HANBNC)
= 499 + 333 + 199 — 166 — 99 — 66 + 33
= 733,

Remember, these are the integers less than 1000 that are divisible by at least one of 2, 3, or 5. We want
those that are not divisible by any of 2, 3, or 5, so we must subtract this answer from 999 (the total
number of positive integers less than 1000) to get our final answer of 999 — 733 = 266. O

3.3.1 Dogs in the GoodDog obedience school win a blue ribbon for learning how to sit, a green ribbon
for learning how to roll over, and a white ribbon for learning how to stay. There are 100 dogs in the
school. Suppose:

e 73 have blue ribbons, 39 have green ribbons, and 62 have white ribbons.

¢ 21 have a blue ribbon and a green ribbon; 28 have a green ribbon and a white ribbon; 41 have a
blue ribbon and a white ribbon.

e 14 have all three ribbons.

How many dogs have not learned any tricks?
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3.3.2 How many 3-letter words (where a “word” is any string of 3 letters) have at least one A? (Solve
using PIE.)

3.3.3 Vernonia High School has 85 senior boys, each of whom plays on at least one of the school’s three
boys varsity sports teams: football, baseball, and lacrosse. It so happens that 74 are on the football team;
26 are on the baseball team; 17 are on both the football and lacrosse teams; 18 are on both the baseball
and football teams; and 13 are on both the baseball and lacrosse teams. Compute the number of senior
boys playing all three sports, given that twice this number are members of the lacrosse team. (Source:
HMMT)

3.3.4 Four coins are flipped one after the other. What's the probability of getting two consecutive tails?
33.5% A new class of 180 dogs has enrolled in the GoodDog school from Problem 3.3.1. We have the

following facts:

e An equal number of dogs have each of the ribbons.

An equal number of dogs have each pair of ribbons.

15 dogs have all three ribbons.

All dogs have at least one ribbon.

The number of dogs with exactly one ribbon equals twice the number of dogs with more than one
ribbon.

How many dogs have blue ribbons? Hints: 102, 119

3.3.6x How many 6-digit numbers, written in decimal notation, have at least one 1, one 2, and one 3
among its digits? Hints: 96, 290

3.4 Counting Problems With PIE

Problem 3.8: How many positive integers less than 180 are relatively prime to 180?

Problem 3.9: The Sanders family has 3 boys and 3 girls. In how many ways can the 6 children be
seated in a row of 6 chairs, so that the boys aren’t all seated together and the girls aren’t all seated
together?

Problem 3.10: We form a 12-card deck by taking the Jacks, Queens, and Kings from a standard deck
of cards (so that there are 4 cards of each rank). Arrange these 12 cards in a row at random. What is
the probability that:

(a) no 4 cards of the same rank are all together?

(b) no 3 cards of the same suit are all together?

58




3.4. COUNTING PROBLEMS WITH PIE

Problem 3.11: Two biologists, two chemists, and two physicists go out to dinner and sit at a round
table with 6 equally spaced chairs. In how many ways can they sit so that no two scientists of the
same type (for example, two biologists) are seated next to each other? (Two seatings that are merely
rotations of each other are not considered distinguishably different.)

(a) First, solve the problem using casework: count the number of seatings in which the two biologists
are sitting directly opposite from one another, and count the number of seatings in which the two
biologists are sitting with one person between them.

(b) Now solve the problem using PIE, by counting the total number of seatings (without any restric- :
tions), then subtracting the number of seatings with at least one pair of like scientists adjacent. |
(The “at least,” as usual, is your signal to use PIE.)

Problem 3.12: How many 6-digit binary numbers (numbers with 0’s and 1’s as digits) have a string
of three consecutive 1’s appearing in them? (For example, 101110 and 111100 both have a string of
three consecutive 1's, but 100110 doesn't).

In most cases, a counting problem won’t come with the instruction “Use PIE to solve this problem.”
You'll have to figure out on your own that PIE is the right tool to use. In this section we’ll work through
a few problems that call for the use of PIE.

Problem 3.8: How many 'I_J_c-)siti'vé' integers less than 180 are rélatively pfime to 1807

Solution for Problem 3.8: This problem should remind you of Problem 3.7.

We'lluse a slight computational shortcut to make the calculations come out a little nicer than they did
i Problem 3.7. Instead of determining the number of positive integers less than 180 that are relatively
orime to 180, we'll instead determine the number of positive integers less than or equal to 180 that are
relatively prime to 180. Since 180 isn’t relatively prime to itself, this doesn’t change our final answer.

We start by noting that 180 = 4 x 5 x 9 = 22 x 5 x 32. Therefore, a positive integer is relatively prime
t0 180 if and only if it is not divisible by 2, 3, or 5. As in Problem 3.7, there’s no obvious way to count
the relatively prime integers directly (though see the Sidenote after this solution for more information
on this), but we can use PIE to count the complement of what we want, namely the positive integers
less than or equal to 180 that are divisible by at least one of 2, 3, or 5.

Hence, in words, what we are counting is:

# of integers less than or equal to 180 divisible by at least one of 2, 3, or 5 =
# of integers less than or equal to 180 divisible by 2
+ # of integers less than or equal to 180 divisible by 3
+ # of integers less than or equal to 180 divisible by 5
— # of integers less than or equal to 180 divisible by 2 and 3
— # of integers less than or equal to 180 divisible by 2 and 5
— # of integers less than or equal to 180 divisible by 3 and 5
+ # of integers less than or equal to 180 divisible by 2, 3, and 5.
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Thus, our calculation is

180 180 180 180 180 180 180
—— —— e e mR— e —_— = — —1 —_ :1 .
> + 3 - 5 G 10 5 + 30 90 +60+36-30-18-12+6 32

Since there are 180 total positive integers less than or equal to 180, and 132 of them are not relatively
prime to 180, that leaves 180 — 132 = 48 that are relatively prime to 180. O

Sidenote: Given any positive integer #, there is a fairly easy formula for computing
J\ the number of positive integers less than or equal to n that are relatively
prime to n. If p1,pa, ..., px are the distinct prime divisors of 7, then

cons--2) 63

is the number of positive integers less than n that are relatively prime to .
For example, as we already have computed in Problem 3.8,

¢(180):180(1—%)(1~%)(1—%):1SO-%%-%:48.

This is known as the Euler phi function (or totient function), and has
many important applications in number theory, the most well-known of
which is Euler’s Theorem, which states that

a*™ =1 (mod n)

for all a that are relatively prime to 7. You can prove the formula for ¢(1)
using PIE: try it for yourself in the Challenge Problems.

Problem 3.9: The Sanders family has 3 boys and 3 girls. In how many ways can the 6 children be ¢
seated in a row of 6 chairs, so that the boys aren’t all seated together and the girls aren’t all seated .
together?

Solution for Problem 3.9: We can do this problem in two steps. First, we determine how many ways
there are to assign the 6 chairs by gender: 3 to boys and 3 to girls. Second, we count the ways to place
the boys and the girls into their assigned chairs.

It seems like messy casework to try to count directly the number of legal configurations for the boys
and girls, so we think instead of counting the illegal configurations: those configurations where 3 boys
or 3 girls are all consecutive.

Concept: Messy casework often means that there is a simpler solution using com-
plementary counting and PIE.

With no restriction, there are (g) = 20 ways to assign the seats, since we must choose 3 of them for
the boys to occupy (the girls will then occupy the other 3). Now we need to determine how many of
these 20 configurations are illegal.
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3.4. COUNTING PROBLEMS WITH PIE

There are 4 configurations with the 3 boys together—we could list them as BBBGGG, GBBBGG,
=GBBBG, and GGGBBB, or we could reason that there are 4 choices for where the middle boy sits: any
of the seats except for the end seats.

Similarly there are 4 configurations with the 3 girls together.

But this does not mean that there are 4 + 4 = 8 illegal configurations! We have double-counted the
configurations where both the boys and the girls are together. There are two of these—BBBGGG and
GGBBB—so we must subtract 2 from our total.

Therefore there are 6 illegal configurations of boys and girls, and hence 20 — 6 = 14 legal configura-
Bons.

Finally, in each of the 14 legal configurations, we know that there are 3! = 6 ways to assign the boys
%0 their designated sets, and also 3! = 6 ways to assign the girls. Therefore, the number of possible
seatingsis 14 X 6 X 6 = 504. O

Problem 3.10: We form a 12-card deck by taking the Jacks, Queens, and Kinés from a standard deck
of cards (so that there are 4 cards of each rank). Arrange these 12 cards in a row at random. What is |
the probability that:

'2) no 4 cards of the same rank are all together?

'2) no 3 cards of the same suit are all together?

SRR S A S S L DU SN B e R B e

Solution for Problem 3.10: This problem is very similar to Problem 3.9, in that we are arranging things
= a row, subject to a condition that certain groups cannot be together. So for both parts of this problem,
we'll use a similar strategy to the one that we used in the solution to Problem 3.9: count the number of
~egal configurations, then subtract this count from the total number of configurations to get the count
27 our successful configurations.

= Note that we don’t have to worry about the suits at all. The suits are totally irrelevant to this part
of the problem.

First we count the number of configurations of the Jacks, Queens, and Kings in the row, without
worrying about the condition. We have four |’s, four Q’s, and four K’s to arrange in a line of 12.
Without any restriction, this can be done in (')(}) = 34650 ways (we choose 4 of the initial 12 spots
for the Js, then 4 of the remaining 8 spots for the Q’s, and the K’s go in the 4 spots that are left over .

7

Now, we need to determine how many of these configurations are illegal. A configuration :
illegal if at least one of the ranks (Jacks, Queens, or Kings) appear together as a group. As we e
seen before, the “at least” is a signal to use PIE.

First, we'll count the configurations that have the 4 Jacks together. There are 9 choices for where
to place the Jacks (the first Jack must be in any of positions 1 through 9), then there are (L) ways to
allocate the remaining spaces for the Queens and Kings. So there are 9 x (i) = 630 configurations
with all of the Jacks together.

Similarly, by symmetry, there are 630 configurations with all the Queens together, and 630
configurations with all the Kings together.

But we have overcounted—configurations such as JJJJKKQQQQKK are counted twice, once as
a configuration with the Jacks together, and once as a configuration with the Queens together. So
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we have to subtract off configurations in which two ranks are grouped together.

We count configurations with both the Jacks and Queens together as follows: think of arranging
a block of J's, a block of Q’s, and four K’s into 6 slots. There are 6 choices for where to place the
block of J’s, then 5 choices for where to place the block of Q’s; the K’'s will go in the remaining
empty slots. Therefore, there are 6 x 5 = 30 configurations with the J’s and Q’s together. Similarly,
there are 30 configurations with the J’s and K’s together, and 30 configurations with the Q’s and
K’s together.

Finally, we count configurations with all three ranks together: we have a block of 's, a block of
Q’s, and a block of K’s. All we need to choose is in what order they appear. Therefore, there are
3! = 6 configurations with all three ranks together, which must be added back to our count.

Thus, there are a total of
3(630) — 3(30) + 6 = 1806

illegal configurations, and hence 34650 — 1806 = 32844 legal configurations. Finally, our probability
. 32844 _ 787 _ g4 g

1S 33650 — 825 ~ 94.8%.

Similarly to part (a), we don’t have to worry about the ranks of the cards here. All we have to do

is keep track of the suits.

We proceed in a manner similar to part (a). We start by noting that there are (132)(3)(2) = 369,600
possible configurations: we choose 3 of the 12 spaces for the s, then 3 of the 9 remaining spaces
for the s, then 3 of the remaining 6 spaces for the ¢s, then the &s go in the final 3 spaces.

To count the number of arrangements with all of the #s together, we note that there are 10
choices for where the #s go, then there are (g)(g) ways to allocate the remaining suits. So there
are 10(2)(?) = 16800 configurations with the 3 #s together. By symmetry, there are also 16800
configurations for each of the other three suits being together.

Next, we look at configurations with pairs of suits together. For example, if we want all of the
as together and all of the s together, there are 8 x 7 x (§) = 1120 configurations (thinking of the #s
as a block and the ¥s as a block). There are this many configurations for each of the g) = 6 pairs of
suits.

Next, we count configurations with 3 suits together. For example, if we want all of the as, Us,
and ¢s to be together, there are 6 x 5x 4 = 120 configurations. There are 120 configurations for each
of the 4 choices of 3 suits to keep together.

So far, we have .
4(16800) — 6(1120) + 4(120) = 60960

configurations counted. Is this count correct? Is it too high? Too low?

We know, based on our previous work with PIE, that this accurately counts all configurations
with 1, 2, or 3 suits together. But it doesn’t correctly count the configurations with all 4 suits
together. These configurations are counted 4 times in the first term, subtracted 6 times in the
second term, then added back 4 times in the third term, for a net total of being counted twice.
Therefore, we need to subtract them once to get them properly counted once overall.

There are 4! = 24 configurations with all four suits together (we merely have to choose in what
order the four suits appear), so our complete count of configurations with at least one suit together
is 60960 — 24 = 60936.
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This means that there are 369600 — 60936 = 308664 configurations with no suit all together;
hence, the probability of this occurring is
308664 12861

369600 _ 15400 ~ 53:9%:

Problem 3.11: Two biologists, two chemists, and two physicists go out to dinner and sit at a round
table with 6 equally spaced chairs. In how many ways can they sit so that no two scientists of the
same type (for example, two biologists) are seated next to each other? (Two seatings that are merely
rotations of each other are not considered distinguishably different.) :
L et e S e e R e et i S L R e s T I
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Solution for Problem 3.11: We can solve this problem using casework—let’s do so, for practice.

We start by arbitrarily seating one of the biologists in any seat. Since we're dealing with a round table,
this isn't really a “choice,” since we can always rotate the table. Now there are two cases, depending
on where we seat the other biologist.

Case 1: The other biologist sits directly opposite the first. Then to complete the seating, we must have one
“hemist and one physicist on either side of each biologist. We have 4 choices for where the first chemist
sits (since there are 4 empty seats), then 2 choices for where the other chemist sits (since she cannot sit
fext to the first chemist). To finish, we have 2 choices for how to seat the two physicists. So there are a
otal of 4 X 2 X 2 = 16 seatings in this case.

—ase 2: The other biologist sits 2 seats away from the first. There are 2 choices here (2 seats to the left or 2
s<ats to the right). We then have 4 choices for the person to sit between the biologist. The other person
of the same science must then sit directly opposite, so that the remaining two people are not next to
=ach other. Finally, there are 2 choices for seating the remaining two people. So there are4 X2 x2 =16
seatings in this case.

This gives a total of 16 + 16 = 32 seatings.
Now let’s look at the PIE solution. This is a basic PIE calculation—in words, what we want o
compute is:

# of seatings with no pair adjacent = # of seatings (with no restriction)
— # of seatings with 1 pair adjacent
+ # of seatings with 2 pairs adjacent
— # of seatings with all 3 pairs adjacent.

Because this is a round table, there are 6!/6 = 5! = 120 ways to seat the six people—there are &' Ways
= arrange 6 people, but we have to divide by 6 due to the symmetries of rotation.

Suppose we want to sit one specified pair together. We can seat them anywhere at the table (it doesn't
matter where because of the rotational symmetry), and then there are 4! ways to seat the remaining 4

o=ople. There are also 2 ways to seat the two people within the pair, so there are a total of

ways to seat all the people with one specified pair together. There are 3 different pairs, so we have to
subtract 3(48) from our initial count of 120.
ir anywhere. We

Now suppose we want to sit two specified pairs together. We can seat the first pa
“en consider the second pair as a unit, so there are 3! ways to seat the second pair and the other two
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people. There are also 2 ways to seat the people within each pair, so there are a total of 22 - 3! = 24 ways
to seat all the people with two specified pairs together. There are 3 choices of two pairs, so we have to
add 3(24) back to our running count.

Finally, if we wish to seat all three pairs together, there are 2 ways to arrange the pairs, and 2 ways
to arrange the people within each pair, for a total of 2° - 2 = 16 ways to seat all the people with all three
pairs together.

Therefore, the final answer is:
120 — 3(48) + 3(24) — 16 = 32.

|

Problem 3.12: How many 6-digit binary numbers (numbers with 0’s and 1’s as d1g1ts) have a string *
of three consecutive 1’s appearing in them? (For example, 101110 and 111100 both have a string of
three consecuh 1’s, but 100110 doesn t) 3

T O e P A

Solution for Problem 3.12: There are four possible positions for a run of three ones: 111???, 711177, 7?1117,
and ???111.

We can save ourselves a bit of work by noticing that everything of the form ?111?? must have a 1
in the first slot as well (since every 6-digit number begins with a 1), so everything of the form ?111?? is
included in those numbers of the form 111???. So we really have only three types of 6-digit numbers to
worry about: 111?77, 1?1117, and 17?111.

There are 8 numbers of the form 111?77, 4 numbers of the form 171117, and 4 numbers of the form
17?111 (in each case, there are 2 choices for a digit to replace each “?”).

Now we count the numbers that fall into more than one of the above categories. There are 2 numbers
of the form 111117, 1 number of the form 111111, and 2 numbers of the from 1?1111.

Finally, there is one number of all three forms, namely 111111.
So the number of 6-digit numbers with at least one run of three 1’'sis8 +4+4-2-1-2+1=12.

It is also pretty easy to list them: 100111, 101110, 101111, 110111, and all 8 numbers of the form
1117?72, O

<3.4.1 In how many ways can we arrange the letters of the word STRATA so that the two A’s are
nonconsecutive and the two T’s are also nonconsecutive?

. 3.4.2 How many positive integers less than 211 are relatively prime to 126?
. 3.4.3 How many positive integers less than 1000 are relatively prime to both 10 and 127

- 3.4.4 3 fans each from Austin High School, Butler High School, and Central High School are seated in
a row of 9 seats. In how many ways can we seat the fans if no three fans from the same school are all
three seated consecutively?
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3.45 15 students are each going to enroll in exactly one of economics, psychology, or sociology. In
how many ways can they enroll, provided that no class is left empty? Hints: 222

3.5 PIE With Many Properties

Problem 3.13: How many positive integers less than 1000 are not divisible by a 1-digit prime? ‘

Problem 3.14: Let A, A,,

+--, Ay be n sets. Find an expression for the number of elements of
AjUAU---UA,.

Problem 3.15: In how many wa

ys can we seat 5 pairs of twins in a row of 10 chairs, such that nobody
sits next to his or her twin?

In Problem 3.10 we had our first taste of a PIE
of PIE is the same no matter how many sets we h
make sure that every outcome that we want gets

problem with more than 3 sets. The general concept
ave—we alternately overcount and undercount, and

counted exactly once.
Problem 3.13: How maﬁy poéiti{fé 'ﬁitegers less than

o e N

I

1000 are not divisible by a 1-digit prime? i
@wm%mﬁﬁéﬂ-ﬁeﬁc‘&%.:‘&;ﬁfiﬁ?«fti S eSS TR e :§¢§L:E}F;é

Solution for Problem 3.13: We can more easily count the positive integers less

are not divisible by a 1-digit prime. (This will give us the same answer as th
number 1000 will not be in our count.)

than or equal to 1000 that
e original problem, as the

The one-digit primes are 2, 3, 5,and 7. Let | ] denote the
Then we can proceed in a similar manner as in Pr
less than or equal to 1000 that are divisible by at1

greatest integer less than or equal to =
oblem 3.8, and count the number of positive integers
east one of 2, 3, 5, or 7. The PIE calculation is:

#s divisible by 2,3, 5, or 7 = [IOZOOJ el [I%OOJ + [10500J + 110;)0J

-(I1%°“J+[1?80J+l1?2”J+11§’§zJ+F§?°J+F?SO_H
(=112 5
3wl

This works out to

500 + 333 + 200 + 142 — (166 + 100 + 71466 +47 +28) +(33+23+14+9) — £ =
Therefore there are 1000 — 772 = 228 positive integers less than

(or less than or egual to) 1000 hat are
not divisible by a 1-digit prime.
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Problem 3.14: Let Ay, Ay, ..., A, ben sets. Find an expreséibn for the number of elements of ]
AJUAU---UA,. i

| |
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Solution for Problem 3.14: Based on what we’ve done before, we expect that we should successively add
and subtract the sizes of the intersections of more and more sets. Specifically, we should get:

#HALUAU---UAy) = #(A1) + #(Ag) + - +#(An)
— (#(AL N A + #H(A1 NAZ) + - +#(A.1 NAY))
+ #HALNAINA3) + -+ (A2 NAi-1 N AY))
—#AINANANAY+ )

+ $
+ (=1 (A N AN N Ay).

How can we prove that this is indeed the correct formula?

As always, the goal of PIE is to make sure that every element is counted once and only once.
Therefore, we can take an arbitrary element of the union of the sets, and count how many times it is
counted in the above expression. We do this by considering the number of individual sets that our
element is a member of. In particular, suppose element x is in exactly k of the A;’s, where 1 < k < n.
Let’s count the number of terms in which x gets counted.

x appears in k of the sets, so it’s counted +k times in the first line of the formula.

X appears in (g) of the intersections of pairs of sets, so it's counted —(’2‘) times in the second line of the
formula.

x appears in (§) of the intersections of triples of sets, so it's counted +(5) times in the third line of the
formula.

This pattern continues, until we get to the k™ line of the formula, in which x appears in only one
intersection of k sets, so it's counted (—1)¥*! times (it's counted +1 if k is odd, and —1 if k is even).

K\ [k .
R

times. We need to prove that this quantity equals 1, meaning that our element x gets counted exactly
once.

Thus x gets counted a total of

Let’s rewrite the above expression so that all the terms are binomial coefficients:

{8t

Only one of the binomial coefficients with top entry k is missing, namely (). If we add and subtract
(5) = 1 to the expression, then things become clear:

(BBt
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“he term in parentheses in the previous expression is simply the binomial expansion of 0 = (1 — 1)*
=sing the Binomial Theorem. So the element x is counted exactly once by our formula. We've now

shown that every element that appears in exactly k sets is counted exactly once, for all 1 < k < #. Thus
our formula is correct. O

Once again, here is the formula for PIE with # sets:

Important: If Ay, Ay, ..., A, are sets, then

Q7 #ATUA U UA,) = #(A) + #(A2) + - + #(A,)
= (A1 N A + #A1NAs) + - + #(A,1 N A))
+#HAINANA) + -+ (A2 N A N AL)
—(#MAINANA3NAg) +--+)

-+ 2
+ (1) A N A N -0 Ay).

Let’s try using PIE in a problem with a large number of sets:

Problem 3.15: In how inany w:ijzs can we seat 5 pairé of twins in a row of 10 éhairs, such that =
nobody sits next to his or her twin?

A B L B R R R T S e R VS gaee R TR T ST

Solution for Problem 3.15:  Trying to count this directly would involve a lot of messy casework. So

“stead we count the complement, which is the number of ways to seat the 10 people such that at least
“ne set of twins sit together.

For any pair of twins, there are 9! ways to seat the twins (thought of as a block) and the other 8
people, then 2 ways to seat the twins within their block. So, given a set of twins, there are 2 - 9! ways
“0 seat the 10 people so that the given pair of twins sits together. Note also that there are (?) ways to
“hoose the pair of twins to be seated together. So the first term of our PIE calculation will be (f)Z -9l

For any two pairs of twins, there are 8! ways to seat the two pairs and the other 6 people, and 2
ways to seat each of the two twins within each pair, so there are 22 - 8! ways to seat the 10 people with
The designated pairs together. Also, there are (g) ways to choose two pairs of twins, so the second term
2% our PIE calculation will be (3)22 - 8.

For any three pairs of twins, there are 7! ways to seat the three pairs and the other 4 people, so there
zre 2° - 71 to seat the 10 people with the three designated pairs together. There are (g) choices for the
three pairs of twins. Similarly, there are 2 - 6! ways to seat four designated pairs together, and there are
27 - 5! ways to seat all five pairs together, with (Z) and (g) choices, respectively, for the pairs.

R

Therefore, there are
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ways to seat the 10 people so that at least one pair of twins is together. Hence there are

5] H 5 5 5
B .91 2,97 - 3.7 4 ar 5.51
R SRR S

ways to seat them so that no pair of twins is together. This can be simplified by factoring out 5!:
5!(30240 — 30240 + 13440 — 3360 + 480 — 32) = (120)(10528) = 1,263,360.

This may seem like a lot, but it's quite a bit less than 10! = 3,628,800. If we were to seat the twins
randomly, then the probability that no person is sitting next to his or her twin is
1,263,360 47

3,628,800 ~ 135 ~ o48%

©3.5.1 How many positive integers less than 529 are relatively prime to 462?

3.5.2 Yeechi has a deck of cards consisting of the 2 through 5 of hearts and the 2 through 5 of spades.
She deals two cards (at random) to each of four players. What is the probability that no player receives
a pair? (Source: Mandelbrot) Hints: 195

3.5.3% Three Americans, three Canadians, three Spaniards, and three Russians are flying on a small
plane that consists of 6 rows of 2 seats each. In how many ways can they be seated, so that no two
people from the same country sit in the same row? Hints: 180

+3.5.4x Each square of a 3 x 3 grid of squares is painted black or white with equal probability. What
is the probability that the grid does not contain a 2 X 2 square that is entirely white? (Source: AIME)
Hints: 82, 314

3.6 Counting Items With More Than 1 of Something

Problem 3.16: My school now offers 3 new foreign languages: Arabic, Japanese, and Russian. There
are 50 students enrolled in at least one of the classes. Suppose that 18 are taking both Arabic and
Japanese, 15 are taking both Arabic and Russian, 13 are taking both Japanese and Russian, and 7 are
taking all three languages. We wish to count how many students are taking at leést two languages.
(a) Why is the answer rot 18 + 15 + 13 — 72

(b) What is the answer?

Problem 3.17: If A, B, and C are three sets, how can we count the number of elements in at least two
of the sets?
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FProblem 3.18:
‘2] How many positive integers less than 2000 are divisible by at least two of 2, 3, and 5?

'9) How many positive integers less than 2000 are divisible by exactly two of 2, 3, and 5?

Problem 3.19: Five standard 6-sided dice are rolled. What is the probability that at least 3 of them
show a

Problem 3.20: Suppose A;, Ay, ..., Ay are sets. Determine an expression that counts the number of
=lements that are in at least 5 of the sets.

We've seen that PIE is a good tool for counting items that have “at least 1” of a set of properties. But
whatif we want to count items that have “at least 2” of a set of properties? Does PIE work in the same
+7

Sort of. Let’s see an example:

Problem 3.16: My school now offers 3 new foreign languages: Arabic , Japanese, and Russian. There
zre 50 students enrolled in at least one of the classes. If 18 are taking both Arabic and Japanese, 15
=re taking both Arabic and Russian, 13 are taking both Japanese and Russian, and 7 are taking all

ghree languages, then how many students are takmg at least two languages’f‘

e o B e P O A e T P T o R B R e N T S M A S e

Sciution for Problem 3.16: We could naively use PIE as follows:

Bogus Solution: We initially count 18 + 15 + 13 students, but that overcounts the
i‘r! students in all three languages, so we subtract 7, and get as our
answer 18 + 15 + 13 — 7 = 39 students in at least two languages.

This seems right, but a Venn Diagram quickly shows us the er-
=or of our ways. We can construct a partial Venn Diagram, starting
with the 7 students in all three languages, and filling in the appro-
-iate numbers for the students in two languages; the result is at A
=zht. Notice how this Venn Diagram encapsulates all the given in-
“ormation from the problem (except for the 50 total students, which v
= irrelevant). Then by summing the numbers in the diagram, we

=== that there are 11+ 8 +7 + 6 = 32 students in at least 2 languages.

Arabic Japanese

Why did our Bogus Solution not work?

Think about how many times a student in all three languages
= counted in our initial count of 18 + 15 + 13. Such a student is
“ounted three times, once for each pair of classes. Since we only
want to count every student once, we need to subtract this student twice in order to get a correct count.
“herefore, the correct PIE expression is

Russian

18+15+13-2(7) =46 -14 =32,
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which matches the number that we got from the Venn Diagram. O

As we saw in Problem 3.16, using PIE properly requires that we think about what we’re doing, and
not mindlessly add and subtract numbers.

‘Concept: Don’tmemorize a “formula” for PIE. Instead, think about how many times

each item is counted, and make sure that each item is counted once and
' only once.

Let’s look at the general case of the situation from Problem 3.16.

Problem 3.17: If A, B, and C are three sets, how can we count the number of elements in at least two :
|of the sets? .

=S e e s e e e S e S e e e S 08 BT e R

Solution for Problem 3.17: We start by counting the number of elements in pairs of sets; that is,
#HANB)+#ANC)+#BNCQC).

However, any element that is in all three sets is in all three of these pairs, and will thus be counted 3
times. Since we only want to count it once, we must subtract twice the number of elements in all three
sets. So the number of elements in at least 2 sets is

#HANB)+#ANC)+#BNC)-24ANBNC).

O

Problem 3.18:
(a) How many positive integers less than 2000 are divisible by at least two of 2, 3, and 5? g

AR S

(b) How many positive integers less than 2000 are d1v131b1e b exactl two of 2 3, and 57

SR st S ik e

Solution for Problem 3.18:

(a) We can use the expression that we just found in Problem 3.17. The answer is

[1999J . [1999J " l1999J _2{1999

G 0 5 TJ = 333 + 199 + 133 — 2(66) = 533.

(b) We simply need to subtract, from our answer to part (a), the number of elements that are divisible
by all three of 2, 3, and 5. There are \.lgggj 66 of these, so the answer is 533 — 66 = 467.

We’'ve done “at least 2.” Let’s see if we can do “at least 3.”

‘Problem 3.19: Five standard 6-sided dice are rolled. What is the probability that at least 3 of them 7

AR

2o

Solution for Problem 3.19: As hopefully you've come to expect by now, the phrase “at least” in the
problem statement is our signal that we want to think about using PIE.
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3.6. COUNTING ITEMS WITH MORE THAN 1 OF SOMETHING

First, of course, there are 6° = 7776 equally likely possible outcomes for rolling the 5 dice. Now we
count the successful outcomes, those in which at least three dice show [ il

We start by counting outcomes in which a specific set of three dice show E3. There are }) = 10
“hoices for 3 dice out of 5 to come up Ed For any chosen 3 dice, there are 6* ways for those three dice

0 be i dand the other two dice to be anything, since there are 6 choices for each of the “anything” dice.
~his gives an initial count of 10 - 6* = 360 successful outcomes.

However, this overcounts outcomes like , where four dice come up EZ These outcomes
zre counted 4 times in our above count, once for each subset of 3 s in the set of 4 E¥s. Since we only
want to count these outcomes once, we must subtract these outcomes 3 times from our original count.
There are (i) = 5 choices for 4 dice out of 5 to show , and once we have chosen the 4 dice, the 5t die
= arbitrary. Thus, there are 5- 6 = 30 outcomes with four dice showing Eil As we discussed above, we
m=ed to subtract this 3 times from our original count of 360, so at this point we have 360 — 3(30) = 270
successful outcomes.

We now know that this count of 270 accurately counts the outcomes in which we have exactly 3 HEE

or exactly 4 Eds. But how many times is [ 3 i § § counted?

_ This outcome (all ki's) is counted +10 times in our 360 term, since it appears once for each of the
- = 10 subsets of three dice out of the five. It is then counted —=3(5) = —15 times in our —90 term, since
= 2ppears three times for each of the (2) = 5 subsets of four dice out of the five. Therefore, it is counted
= total of 10 — 15 = -5 times. We need it counted (positively) once, so we need to add it back 6 times,
which means that we need to add 6 to our count.

Thus there are 360 — 90 + 6 = 276 successful outcomes, and the probability of success is

276 23 .
e = o BEG%,

1]

Now that we've done “at least 2" and “at least 3,” you may wonder if we can count “at least k" for
sy k. The answer is yes, we can, but to write a general formula is fairly difficult, and we're going to
Zefer it to later in the book. However, it’s not too hard to figure out the formula for a specific example.
* does require us to think a little bit and not blindly add and subtract. Let’s try one:

Problem 3.20: Suppose Ay, A,, ..., Ay are sets. Determine an expression that counts the number of
=lements that are in at least 5 of the sets.
R B T e R o e D e e e BT SSrtec o

S

=cution for Problem 3.20: We begin by summing all of the intersections of 5 sets. There are .; =21 of
Dese intersections:
#(AL N Ay N A, N Ay NAs)+#(A1 NAy N Az NALNAg) + e+ #AZNALNAs N A D A- *

(;):2] terms

“7is sum counts once each element that appears in exactly 5 sets, since each such element only appears
= one term of (+). We will abbreviate this sum using the following somewhat sloppy notzson

Z #(intersections of 5 sets).

21 terms
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If an element appears in exactly 6 sets, it is counted 6 times in (+), since there are (§) = 6 ways to
choose 5 of the 6 sets that the element appears in. Since we only want to count these elements once, we
need to subtract the sum of the 6-fold intersections 5 times:

C5(HA; N Az NN A +#(AI N A N NA7) +-o - +#(A N A3 N N A7) (+)

Z):? terms

Once again, we will abbreviate this term with the notation

-5 Z #(intersections of 6 sets).

7 terms

Finally, we look at the elements that appear in all 7 sets. These elements appear in every term of
both (+) and (++), so they are added 21 times in (+) and subtracted 5-7 = 35 times in (#+); hence they have
been counted a net 21 — 35 = —14 times. Since we want to count them exactly once, we need to add
them back 15 times.

So our “formula” is

#(elements in at least 5 sets) = Z #(intersections of 5 sets)

21 terms
-5- Z #(intersections of 6 sets)
7 terms

+ 15 - #(intersection of 7 sets).

3.61 How many positive integers less than or equal to 3150 have at least three different prime factors
in common with 31507

3.6.2 The four sets A, B, C, and D satisfy
#ANB) =166, #ANC) =100, #AND)=71, #BNC) =066, #BND)=47, #CnND)=28,

HANBNC)=33, #HANBND)=23, #HANCND)=14, #BNCND)=9
#ANBNCND)=4.

(a) How many elements belong to at least two of the sets A, B, C, and D?
(b) How many elements belong to exactly two of the sets A, B, C,and D?
3.6.3 Four standard 6-sided dice are rolled.

(a) What is the probability that at least 3 of them are L=l or greater?

(b) What is the probability that exactly 3 of them are =l or greater?
Hints: 65
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3.6.4 LetA, B, C, D, E be five sets, and let S, be the set of elements that appear in least two of the five
sets. Find constants p, g, r, and s such that

=(S,) = p[#ANB) + #HANC) +#AND) + HANE) + #BN C)
+#(BND)+#BNE) +#CND)+#CNE)+#DNE)]
+g#ANBNC)+#ANBND)+#ANBNE) +#ANCND) +#ANCNE)
+#ANDNE) +#BNCND)+#BNCNE)+#BNDNE)+#CNDNE)]
+1#HANBNCND) +#ANBNCNE)+#ANBNDNE)+#ANCNDNE)+#BNCNDNE)]
+s#ANBNCNDNE).

Hints: 117

3.7 Some Harder PIE Problems

L

Problem 3.21: 7 people are having a water balloon fight. At the same time, each of the 7 people
fhrows a water balloon at one of the other 6 people, chosen at random. What is the probability that
There are 2 people who throw balloons at each other?

Froblem 3.22: In how many ways can we arrange 5 A’s, 7 B’s, and 4 C's into a 16-letter word, such that
“here are at least three ‘CA’ pairs occurring in the word (in order words, there are at least 3 occurrences
of 2 'C" immediately followed by an ‘A’)?

Problem 3.23: In how many ways can we choose 4 vertices of a convex n-gon (where 1 > 4) to form a_
convex quadrilateral, such that at least 1 side of the quadrilateral is a side of the n-gon?

Froblem 3.24: ] have a coat with area 5. The coat has 5 patches on it. Each patch has area at least 2.5.
Frove that 2 patches exist with common area of at least 1. (Source: PSS)
WARNING!! This is a very hard problem. It requires both a solid understanding
! % of PIE and a good insight as to how to properly use it. Think about
: the problem for a little while, but don’t be discouraged if you don't
make much progress.

o this section we'll be looking at problems that call for a nontrivial use of PIE.

Problem 3.21: 7 people are having a water balloon fight. At the same time, each of the 7 people
“wows a water balloon at one of the other 6 people, chosen at random. What is the probability that

Mhere are 2 people who throw balloons at each other?
T Sle F o =

BERELE S SR SSEI R A e e e e

Swason for Problem 3.21:  First, we determine the total number of outcomes. Since each person has 6
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equally likely choices (each can be throwing at any of the other 6 people), and there are 7 people, we
have 6’ total possibilities.

Now we’d like to count the “successful” outcomes: those outcomes in which at least 2 people ars
throwing balloons at each other. As we’ve seen many times before, the “at least” is your signal to
consider either PIE or complementary counting. However, a quick look at the complement—trying
to count those cases in which no pair is throwing at each other—seems to lead to a calculation tha:
degenerates into some really messy casework (try it and see for yourself if you don’t believe me). Sc
we'll try counting this directly, and for that we’ll use PIE.

First, we count the number of outcomes in which any particular pair is throwing at each other. There
are () = 21 pairs of people. Besides the pair throwing at each other, the other 5 people each have &
choices each. So there are 21 - 6° total possibilities.

However, this overcounts those outcomes in which two or more pairs are throwing at each other. Sc
we have to correct for this overcount. This is the point in the solution where it is most likely that you
would make a mistake:

| Bogﬁé Solution: There are (;)(g) =21-10 = 210 ways to choose two pairs of beople, i

ﬂ‘r! since there are (5) = 21 ways to choose one pair from 7 people and l
then (3) = 10 ways to choose a second pair from the remaining 5
people.

Seems right, but there’s a subtle error. The error is that this counts the number of ways to choose 2
“first” pair and then choose a “second” pair. What we really want to count is the number of ways to
choose two pairs, without regard to order. So we must divide (;)(g) by 2 to correct for this overcount.
Thus there are 210/2 = 105 ways to choose two pairs of people.

Once we have chosen our two pairs, there are three people left over who each have 6 choices of
person to throw at. Thus there are 105 - 67 total possibilities with two pairs. Since each two-pair case is
counted twice in our original 21 - 6° count, we have to subtract our new count once, so that our running
total at this point is

(21-6°) — (105 - 6°).

How many times do we count possibilities in which there are 3 pairs of people throwing at each
other? These possibilities are counted 3 times in the first term (once for each of the 3 pairs), and
subtracted 3 times in the second term (once for each 2-pair subset of the 3 pairs). Thus they currently
aren’t being counted at all, and we have to add them back in.

There are (}) = 21 ways to choose the first pair from the 7 people, (;) = 10 ways to choose the second
pair from the 5 remaining people, and (g) = 3 ways to choose the third pair from the 3 remaining people,
so there are 21 - 10 - 3 ways to choose 3 pairs in order. However, we don’t care about the order of the
pairs, so we must divide by 3! to correct for this. Therefore there are 21-10 - 3/3! = 105 ways to choose
3 pairs. The 7th, unpaired, person has 6 choices for whom to throw at, so this gives a total of 105 - 6
possibilities with 3 pairs.

Therefore, there are
(21-6°) — (105 - 6°) + (105 - 6) = 141,246
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possible outcomes in which there is at least one pair throwing at each other.

Finally, the probability that this occurs is

(21-6°) - (105-6%) + (105-6) _ 23541 7847
67 6% T 15552

x 50.5%.

Problem 3.22: In how fnai{yfirx;a}s can if_\r_e"éﬁ”éﬁgé 5A’s,7 B's, and 4 C’s into a 16-letter word, such g
that there are at least three ‘CA’ pairs occurring in the word (in order words, there are at least 3 |
occurrences of a ‘C’” immediately followed by an ‘A’)?

solution for Problem 3.22: It is possible to solve this problem using casework, where the cases are:

—ase 1: Words where all four C’s are followed by an A. This is the number of arrangements of 4 (CA)’s, 1 A,
znd 7 B’s, so there are (f‘) x 8 = 3960 arrangements in this case.

—ase 2: Words where 3 C’s are followed by an A and the 4th C is followed by a B. This is the number of
zrrangements of 3 (CA)’s, 1 (CB), 2 A’s, and 6 B’s, so there are (132) X 9% (i) = 55440 arrangements in this

£as5e.

—ase 3: Words where 3 C's are followed by an A and the 4th C is followed by a C. This is the number of
zrrangements of 1 (CCA), 2 (CA)’s, 2 A’s and 7 B’s, so there are 12 x (121) X (g) = 23760 arrangements in
his case.

—ase 4: Words where 3 C's are followed by an A and the 4th C appears at the end. This is the number of
arrangements of 3 (CA)’s, 2 A’s, and 7 B's, so there are (7) x (g) = 7920 arrangements in this case.

>0 there are a total of 3960 + 55440 + 23760 + 7920 = 91080 arrangements.

But we can more simply solve this problem using PIE. If we count the number of arrangements of 3

CA)'s, 1C,2 A’s,and 7 B’s, we see that there are (133) x 10 x (g) = 102960 arrangements, but this counts

=very arrangement with 4 CA’s 4 times. So we must subtract 3 times the number of arrangements with
= CA's, which as we saw above is 3960. Hence there are 102960 — 3(3960) = 91080 arrangements. O

Counting problems involving PIE sometimes appear in geometric settings:

Problem 3.23: In how many ways can we choose 4 vertices of a convex n-gon (where n > 4) to form
= convex quadrilateral, such that at least 1 side of the quadrilateral is a side of the n-gon?

ad e U N e e e R L = RaE S B T

=ciution for Problem 3.23: We first count how many quadrilaterals have a particular side

°¢ the 11-gon as one of its sides. Once we have a side of the n-gon, we need to choose 2 - ~
°¢ the remaining n — 2 vertices to complete the quadrilateral (we can’t choose the two
“=rtices that are the endpoints of our already existing side). So there are (";?) such
“uadrilaterals. Since there are 1 sides of the #1-gon that we could have started with, this
= ves us an initial count of n(";?).

This initial count, however, overcounts those quadrilaterals that have 2 or more of its sides as
=des of the original n-gon, so we have to correct for this. There are essentially two cases to consider for
suadrilaterals with 2 sides on the original n-gon: its 2 sides (on the original n-gon) are either consecutive
or nonconsecutive.
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We can pick two consecutive sides in n ways. This gives 3 vertices of our quadrilateral. Then,
we have to choose a fourth vertex, which we can do in n — 3 ways. Thus there are a total of n(n — 3)
quadrilaterals of this type.

Alternatively, we can pick two nonconsecutive sides: we have n choices for the first side, then
n = 3 choices for the second non-adjacent side. We then divide by 2 since this counts every pair of
non-adjacent sides twice, once in each order. Therefore we have n(n — 3)/2 pairs of non-adjacent sides.
This gives us all 4 vertices of the quadrilateral, so there are no more choices to be made.

Thus, adding these two cases, we see that there are n(n—3)+n(n-3)/2 = —n(n 3) such quadrilaterals.
These quadrilaterals are counted twice in our original count, so we need to subtract them once.

Finally, any quadrilateral with 3 sides on the original n-gon must have all 3 of those sides adjacent
(otherwise we use up too many vertices). There are n of these quadrilaterals, since there are n choices
for the middle of the three adjacent sides on the n-gon. These quadrilaterals are counted 3 times in
our original count (once for each side on the original n-gon), but are subtracted 3 times in our count of
quadrilaterals with 2 sides on the n-gon (once for each pair of sides on the original n-gon). So we need
to add these back once.

Thus the number of quadrilaterals is

_ _ —2y_ _ 3_ @2
n(nz?_)_gn(n_s)_l_n_n(n 2)(n 3)23n(n 3)+2n=n 8n2+17n_

As a quick check, we can verify that this formula works for n = 5, 6,7, and 8. For n < 7, the answer
is just () (since any choice of 4 vertices will give a quadrilateral with at least one side on the original
n-gon). The answer for n = 8 is (}) — 2 = 68, since the only way that we can choose 4 vertices on an
octagon that will give a quadrilateral with no sides on the octagon is if we choose every other vertex,
and there’s only 2 ways we can do that. Checking our formula, we see that it gives 5 when n = 5, 15
when n = 6, 35 when n = 7, and 68 when n = 8, so we probably didn’t make any obvious mistake.

- Conéept: Ifit's possible to do a qLuck check of 'your-ahswer toa éorhp]iéa;ted problem,
_ it’s usually a good idea to do so.

We'll conclude our study of PIE with a very difficult problem. Solving this problem requires a solid
understanding of the principle behind PIE, and not just a “memorize a formula” knowledge of PIE.

The statement of the problem is deceptively simple.

Problem 3.24: I have a coat with area 5. The coat has 5 patches on it. Each patch has area at least 2.5.
Prove that 2 patches exist w1th common area of at least 1. (Source: PSS) g

Qe e

Solution for Problem 3.24: It may not be immediately clear how to proceed. We can start by introducing
some notation and listing facts that we know. Let’s call the patches Py, P;, Ps, P4, Ps, and let’s use brackets
to denote area (for example, [P4] is the area of patch P).

What do we know? What are we trying to prove?

76




3.7. SOME HARDER PIE PROBLEMS

Concept:  In proof problems, one way to start is by listing what you know and what

We know that [P1] > 2.5, [P,] > 2.5, etc. We also know that the coat has area 5. We're trying to prove
=ztone of [Py NP,], [P1NPs),..., [Py N Ps]is at least 1.

How do we relate all of these items?

We know that the area of the union of the patches is no bigger than the entire coat. Therefore
2> [P, UP, UP;U P, U Ps].

Now it's starting to look like PIE! We can write the area of the union of the patches using PIE.
“though we've only used PIE up to now to count discrete elements of sets, the concept works just as
well for areas. (Just think of a region as the set consisting of all of the points in the region.)

To shorten what we have to write in what follows, let’s introduce some notation for the terms in our
“'E expression.

= sum of areas of patches = [Pi]+[P2] +--- + [Ps]

= sum of areas of overlaps of 2 patches = [P, N Pl +[PyNPs]+---+ [Py N Ps)

= sum of areas of overlaps of 3 patches = [P;NP,N P3]+---+[P3N Py N Ps)

= sum of areas of overlaps of 4 patches = [P;NP,N P3NPyl + -+ [P, N P3N PyN Ps]
= sum of areas of overlaps of all patches = [PiNP; N P3N PyNPsl.

Then, using PIE, we get that

[P1U"-UP5]:A—B+C—D+E,
= because the total area of the coat is 5, we have the inequality

5>A-B+C-D+E. (3.7.1)

We're trying to show that at least one pair of patches has common area at least 1. If all 10 pairs of
s=:ches were to have area less than 1, then when we sum them, we would get B < 10. We would like to
=50w that this cannot happen, so we’d like to prove that B > 10. (This is an example of the Pigeonhole
Frinciple, which we'll cover in great detail in Chapter 5.)

0 it makes sense to rewrite our inequality (3.7.1) in terms of B:

B>A+C-D+E-5,

—_ -

(W5 ]

e also know that A = [Py] + --- + [P5] > 5(2.5) = 12.5, since each patch has area at least 2.5. Therefore
we can replace A in (3.7.2) to get

B>125+C-D+E-5=75+C-D+FE.

=
=)

(5]

“75s is good, but not good enough: we want to show that B > 10. But we seem #o have used 211 the
- ormation that was provided to us, so what are we going to do?

PIE got us this far, so let’s use it again! Let’s work on B directly by counting the area of the coat
“overed by at least two patches. We denote this area by X. Don’t fall into this trap:
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Bogus Solution:

i‘r! X=B-C+D-E.

No! As we saw in Section 3.6, PIE is not so simple when we're counting “at least 2” of something.
We have to think about how many times each region gets counted. For example, B counts the triple-
overlap regions 3 times, so we have to subtract C twice in order to get them counted once. Similarly,
B counts the quadruple-overlap regions (3) = 6 times, but —2C subtracts them 2(4) = 8 times, so we
need to add them back three times to get them counted once. Finally, the five-way overlaps are counted
(g) - 2(;) +3(}) =10 - 20 + 15 = 5 times, so we need to subtract 4E.

Therefore, we know by PIE that
X=B-2C+3D-4E. (3.7.4)
So what? We don’t know anything about X, right?
Wrong! We know that X < 5 (since X can’t be bigger than the whole coat). This fact, although
seemingly trivial, is very important! Thus we have

B &B= 00+ 3D =4E, (3.7.5)

We can use this to eliminate one of the variables in (3.7.3). Let’s solve (3.7.5) for C:
Cz %(B+3D—4E—5),

and plug this into (3.7.3):
B 2784+ C—D+E

1
27.5+§(B+3D—4E—5)—D+E

1, 1
=5+ =B+ -D=E
B e
which simplifies to give
1 1
-B>5+:-D-E
2-77" 2 ’
or

B>10+D - 2E. (3.7.6).

Remember, we wanted to prove that B > 10, so we're very close. All we need to show to finish the
problem is that D — 2E > 0.

But this is yet another use of PIE! Note that D counts the area in the overlap of all 5 patches five
times, once for each subset of 4 patches. Therefore D > 5E, which certainly means that D > 2E, and
hence D - 2E > 0.

Thus we’ve proven that B > 10, which is what we needed to show, so we're done! O

3.7.1 Six children are playing dodgeball. Each child has a ball. At the sound of the whistle, each
child chooses another child at random to chase. What is the probability that there is at least one pair of
children who are chasing each other?
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3.7.2  In the grid at right, we wish to go from corner A to corner B, B

moving only up and to the right one unit at a time. How many such
paths include an edge of the shaded square?

3.7.3 Let S be a set with six elements. Let P be the set of all sub-
sets of 5. Subsets A and B of S, not necessarily distinct, are chosen
‘ndependently and at random from #. Find the probability that B is
contained in at least one of A or S\ A. (Recall that the set 5\ A is the set

of all elements of S that are notin A.) (Source: AIME) Hints: 129,282 A

3.74x In how many ways can we choose 5 vertices of a convex n-gon (where 1 > 5) to form a convex
pentagon, such that at least 2 sides of the pentagon are sides of the n-gon? Hints: 225, 238

3.7.5% Prove that, in Problem 3.24, for all such coats on which no pair of patches overlaps an area of
more than 1, no point on the coat is covered by more than 3 patches. Hints: 337, 219

3.8

>

Summary

The principle of inclusion and exclusion (or PIE) is used to count the number of items that are in
the union of two or more sets. This can be thought of as counting items that have “at least one”
of a number of properties.

If A and B are two sets, then

#(A U B) = #(A) + #(B) — #(A N B).

If A, B, and C are three sets, then

#AUBUC) = #(A) +#(B) + #(C) —#ANB) —#ANC) - #BNC) + #HANBNO).

More generally, if A1, Az, ..., A, are sets, then

#HALUAU---UA,) =#(A1) + #(A2) + -+ + #(A))
—(#HATNA)+#HATNA)+ -+ #A,_1NAY))
+#HAINANA)+- -+ (A,2NA,1NA)Y))
—(#HAITNANASNAY)+ 1)

=+ )
+ (1) H#A NA NN A,

PIE can also be used whenever we have to count items that have “at least k" of a set of properties.
Anytime we need to count the items that are in least k sets from a collection of 7 sets, there will be
a PIE expression to calculate it.

Don’t blindly apply PIE. Think carefully about how many times each element gets counted. Make
sure that elements in exactly 1 set, exactly 2 sets, etc., are each counted once and only once.
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Here are a couple of problem-solving concepts regarding PIE:

“Concept: Mgégyﬁcvasework often means thatit’s simpler to use complementary count-

@== ingandPIE.

Concept: If a problem asks you to count how many items have “at least” one prop-
(== erty, that'sa good sign that you may want to use PIE. Similarly, if a problem
asks you to count how many items have “none” of several properties, that

may be a sign to use complementary counting with PIE.

Cdnéépt: Don’t memorize a “formula” for PIE. Instead, think about how many times
each item is counted, and make sure that each item is counted once and
. only once.

We also saw one general good piece of advice when trying to do proofs:

Concept: In proof problems, one way to start is by listing what you know and what|
(O== you're trying to prove.

3.25 How many 4-letter words (consisting of any sequence of 4 letters, possibly repeated) start or end
with a vowel? (For the purposes of this problem, consider A, E, I, O, and U to be vowels, and consider
Y to be a consonant.)

3.26 How many 3-digit numbers have two consecutive digits the same?

3.27 Is it possible that among a group of 20 ninth-graders, 15 of them play lacrosse, 12 of them play
soccer, and 6 of them play both? Why or why not?

3.28 When I go to work, there’s a 20% probability that I'll forget my office keys, and a 30% probability
that I'll forget my wallet. If there’s a 5% probability that I forget both, then what's the probability that I
arrive at work with both my keys and my wallet?

3.29 How many 4-letter “words” (any combination of 4 letters) have no two consecutive letters iden-
tical?

(a) Solve the problem using PIE.

(b) Solve the problem using constructive counting.

(c) Can you algebraically explain why your two answers from (a) and (b) are the same? (Of course we
know that they must be the same, since they’re just two different ways of counting the same thing,
but can you explain it in terms of algebra?)
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330 Sam can only remember 10-digit numbers if the first four digits are either exactly the same as the
next four digits of the number or the last four digits of the number. For example, Sam can remember
134123456 and 3444533444, but not 3344443334. How many 10-digit numbers can Sam remember?

331 My state uses a sequence of three letters followed by a sequence of three numbers as its standard
“cense plate pattern (for example, GMQ829). Given that each three-letter three-digit arrangement is

=qually likely, find the probability that such a license plate will contain at least one palindrome (a three-

“=tter arrangement or a three-digit arrangement that reads the same left-to-right as it does right-to-left).
Source: AIME)

332 Let 7 = (x1,x2, X3, X4, X5, X, X7) be a permutation of the numbers (1, 2, 3, 4, 5, 6, 7) (recall that a
sermutation is a rearrangement of the numbers, in which each number appears exactly once). Find the
=umber of such permutations 7 in which x,, = 1 for some odd integer n.

533 Twenty five of King Arthur’s knights are seated at their customary round table. Three of them
7= chosen—all choices being equally likely—and are sent off to slay a troublesome dragon. Find the
srobability that at least two of the three had been sitting next to each other. (Source: AIME)

334 Whatis the probability that a 13-card bridge hand (dealt at random from a standard 52-card deck)
"= a void (meaning it has no cards of some suit)?

#35 How many 5-digit sequences have a digit that appears at least 3 times? (For instance, 03005 and
—=22 are examples of such sequences.)

536 Consider two events A and B. Find P(A or B) in terms of P(A), P(B), and P(A and B). Hints: 275

537 There are N students at Grant High School. Let S(F) be the number of students at Grant who
so=2k French, S()) be the number of students who speak Japanese, and 5(A) be the number who speak
“z=bic. Let S(AF) be the number who speak both French and Arabic; define S(A]) and S(F J) similarly.
“rove that 3N + S(AF) + S(A]) + S(F]) = 25(A) + 2S(F) + 25()). Hints: 167

538 Given any set S, let 5(S) be the number of subsets of S (including S and the empty set). If X, Y,
and Z are sets such that s(X) + s(Y) + s(Z) = s(X U Y U Z) and #(X) = #(Y) = 100, what is the minimum
sussible value of (X N Y N Z)? (Source: AMC) Hints: 193, 98

239

= Prove that for any positive integer k less than 9,

-

= What happens if k = 9?
EEmis: 19, 209, 233
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340 Find the number of positive integers that are divisors of at least one of 101, 157, and 181", (Source:
AIME) Hints: 138

3.41 There are n chairs at a table, each with a name card with the name of one of n people (with one
name card for each person). The 1 people sit at the table. Let D, be the number of ways the n people
can sit at the table such that not a single person is sitting in the correct seat. (D, is called the number of
derangements of an n-member set.)

(a) Use the Principle of Inclusion-Exclusion to find an expression for D,,.

(b) Find a counting argument to show that Z (Z)D”_k =nl.
k=0

3.42 In a five-team tournament, each team plays one game with every other team. Each team has a
50% chance of winning any game it plays. (There are no ties.) Find the probability that the tournament
will produce neither an undefeated team nor a winless team. (Source: AIME) Hints: 320

3.43% The goal of this problem is to derive the function for the number of positive integers less than
or equal to n which do not have a factor besides 1 in common with 7. Recall that this function is called
the Euler phi function, denoted ¢)(n), and was discussed in the box on page 60.

(a) Let the prime factorization of 1 be n = PPy - p. How many positive integers less than or equal
to n are divisible by p;? By p? By pifor1 <i<k?

(b) What's wrong with just subtracting all the numbers we find in (a) from # to get ¢»(n) (the number
of positive integers less than or equal to n that have no factor besides 1 in common with n)?

() How can we use PIE to correct for our error in part (b)?

(d) After writing an expression for ¢(n) using PIE, compare your expression to the expansion of the

product
fo)b-3-4-3)
P p2 Pk

3.44% Definea regular n-pointed star to be the union of # line segments P1P;, P,P;5, ..., P,P; such that:

What can you conclude?

¢ the points Py, P,,...,P, are coplanar and no three of them are collinear,

e each of the n line segments intersects at least one of the other line segments at a point other than
an endpoint,

e all of the angles at Py, P,,..., P, are congruent,
e all of the # line segments P1P,, P,Ps,...,P,P; are congruent, and

e the path P\P,, P,P;,...,P,P; turns counterclockwise at an angle of less than 180 degrees at each
vertex.

There are no regular 3-pointed, 4-pointed, or 6-pointed stars. All regular 5-pointed stars are similar, but
there are two non-similar regular 7-pointed stars. How many non-similar regular 1000-pointed stars
are there? (Source: AIME) Hints: 95, 169
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CHAPTER

Constructive Counting and 1-1 Correspondences

141 Introduction

‘Youmay recall the concept of constructive counting from the book Introduction to Counting & Probability.
The basic idea is that in order to count the number of a items in a certain set, we think about how we
would construct an item belonging to that set. During the construction, we keep track of the number of
choices that we have at each step. Although this sounds simple, it is a very powerful way to count! In
fact, many of the counting problems that we’ve solved up to now have essentially used this idea.

This chapter consists of constructive counting problems: we're trying to count the number of
=lements of some set, and we do so by thinking about how we can construct the elements of the set.
WWe've seen lots of problems of this type before, especially in the Introduction to Counting & Probability
200k, but the problems in this section will generally be harder than the ones you’'ve seen before.

We'll also introduce a new tool that’s closely related to constructive counting, called a 1-1 corre-
spondence (read as “one-to-one correspondence”). Here’s the basic idea: we want to count the items

o some set A. For whatever reason, set A is hard to count. But suppose that we can find another set B
such that:

® B has the same number of elements as A, and

e Bis easy to count.

Then to count A, all we have to do is count B, and we have our answer! Simple as that!

A "1-1 correspondence” is the tool that we use to do the first part of the above: finding a set B
hat has the same number of elements as A. We do this by showing that every element in A somehow
~matches” a corresponding element in B, and vice versa. Since the elements of A and B come in matching
pairs, we know that the sets have the same number of elements.
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We can think of using a 1-1 correspondence as a more general version of one of our basic problem-
solving strategies: if we don’t know how to solve a problem, try to find a simpler, related problem that
we do know how to solve. That’s really what a 1-1 correspondence allows us to do: if we have a set
that’s hard to count, try to find a related set that's easy to count, and count the easy set instead! As you
might expect, the tricky part is finding the “easy” set and showing that it’s the same size as the “hard”
set.

4.2 Some Basic Problems

y

Problem 4.1: How many license plates consist of 1 number followed by 3 letters followed by 3
numbers?

Problem 4.2: How many 5-digit palindromes are there? (A palindrome is a number that reads the |
same way forwards and backwards. For example, 27872 and 48484 are palindromes, but 28389 and
12541 are not.)

Problem 4.3: How many 7-digit numbers have no two adjacent digits equal?

Problem 4.4: Four points are chosen at random from the grid at right. What is
the probability that the four points are the vertices of a rectangle whose sidesare » o o o
parallel to the sides of the grid? « 0V

The general idea with constructive counting is that we build (or “construct”) the items that we’re
trying to count, and while doing so, keep track of the number of choices that we have at each step in
the construction.

The problems in this section are all relatively basic examples of constructive counting, and should
be review for you if you've mastered the Introduction to Counting & Probability textbook.

Problem 4.1: How many license plates consist of 1 number followed by 3 letters followed by 3 P

numbers?

R T S R T R e o S P A B e R R P g T e T T R S T :!';
Solution for Problem 4.1: We have 10 choices for the first number, then 26 choices for each of the 3 letters,
then 10 choices for each of the last three numbers, for a total of 10 - 26° - 10° = 10* - 26 = 175,760,000
possible license plates. O

same way forwards and backwards. For example, 27872 and 48484 are palindromes, but 28389 and

Problem 4.2: How many 5- dlglt palmdromes are there? (A pahndrome is a number that reads the %
12541 are not.) %

TSRS R e R R R R e T e
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solution for Problem 4.2: We construct the number from left-to-right. We have 9 choices for the first digit
since it can’t be 0), then 10 choices for the second digit, then 10 choices for the third digit. But now
we're out of choices—the fourth digit must match the second, and the last digit must match the first.
Therefore, there are 9 - 10 - 10 = 900 such numbers. 0

Problem 4 3 How rnany 7 d1g1t numbers have no two ad]acent dlglts equal? P - -

‘-n’ution for Problem 4.3:  As in Problem 4.2, we construct these numbers from left-to-right. We have 9
“hoices for the first digit (since it cannot be 0). Then, no matter what we choose for the first digit, we
nave 9 choices for the second digit—any digit except the one that we chose for the first digit. Similarly,
“or each subsequent digit, we have 9 choices, since each digit can be any of 0 through 9 as long as it
<oes not match the previous digit. Therefore, there are 9 choices for every digit, and hence there are
= =4,782,969 such numbers. O

Problem 4.4: Four points are chosen at random from the grid at right. Whatis * * °* ° °F
the probability that the four points are the vertices of a rectangle whose sides are ¢ s o o
parallel to the sides of the grid?

Sclution for Problem 4.4: There are ( 5) ways in which we can choose 4 vertices (without regard to order).
-'-e need to determine how many of these sets of 4 vertices produce a valid rectangle. How can we
“onstruct such a rectangle? There are a couple of different ways we could proceed.

Sclution 1: A rectangle whose sides are parallel to the sides of the grid is determined by its two opposite
comers. There are (25) = 300 pairs of points in the grid, but there are two things we have to worry about.
“_rﬂt if we pick two points in the same row or same column, then we won'’t get a rectangle. There are
= rows and 5 columns, and each has ( ) = 10 pairs of points, so we have to subtract (10)(10) = 100 from
sur count, leaving 300 — 100 = 200 pairs of points left. Second, each rectangle has two pairs of opposite
comers, so we've overcounted by a factor of 2, and hence our final count is 200/2 = 100.

Salution 2: A rectangle whose sides are parallel to the sides of the grid can be determined by choosing
“wo rows to form the horizontal sides and choosing two columns to form the vertical sides. We can
hoo0se two rows in (2) = 10 ways and choose two columns in ( = 10 ways, so the number of rectangles
= (10)(10) = 100.

-

Therefore, 100 of the (245) sets of 4 vertices form valid rectangles, and hence our probability is %9—3 = 5=

; 5
We could also constructively count the probability directly, without counting the number of rectan-
===. For this, we think about selecting the vertices in order, one at a time. The first vertex is arbitrarily
“hosen. For the second vertex, there are two exclusive possibilities:

Case 1 The second vertex is in the same row or column as the first vertex. This occurs with probability
— = L. Then, in order to produce a valid rectangle, the third vertex must be on one of the lines containing
one of the first two vertices and perpendicular to the line containing the first two vertices. There are
8 such pomts on these lines, and 23 points remaining to choose from, so the probability of choosing

one is £ Finally, only one point of the 22 remaining will complete the rectangle, and the probability of
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choosing it is 5.

Case 2: The second vertex is not in the same row or column as the first vertex. This occurs wis
probability 22 = 2. These two points must be opposite corners of our rectangle, so the final two poin=
that we choose must be the other two corners. They are chosen with probability -

Therefore, the probability of choosing the four corners of a valid rectangle is:

181221 12 2

323 27323 232322 253

4.2.1 A dotis marked at each vertex of a triangle ABC. Then 2, 3, and 7 more dots are marked on the

sides AB, BC, and CA, respectively. How many triangles have their vertices at these dots? (Source:
HMMT)

4.2.2 Consider the set S = {1,2,3,...,34}. How many ways are there to choose (without regard to
order) three numbers from S whose sum is divisible by 3? (Source: ARML)

4.2.3 How many orderings of the letters in MISSISSIPPI read the same forwards as backwards?

4.2.4 Nine tiles are numbered 1,2, 3,...,9. Each of three players randomly selects and keeps three ot
the tiles, and sums those three values. Find the probability that all three players obtain an odd sum.
(Source: AIME) Hints: 131

4.2.5% Robert has 4 indistinguishable gold coins and 4 indistinguishable silver coins. Each coin has an
engraving of a face on one side, but not on the other. He wants to stack the eight coins on a table into a
single stack so that no two adjacent coins are face to face. Find the number of possible distinguishable
arrangements of the 8 coins. (Source: AIME) Hints: 13

4.3 Harder Constructive Counting Problems

Problem 4.5: We wish to compute the sum of all of the 5-digit palindromes.

(a) How many 5-digit palindromes are there?

(b) How many have "1” as the last digit? How many have ‘2’ as the last digit? And so on?
(c) What is the units digit of the sum of all of the 5-digit palindromes?

(d) Can you extend your reasoning from parts (a)-(c) above to find the sum of all of the —d1g1t
palindromes? -




" e

4.3. HARDER CONSTRUCTIVE COUNTING PROBLEMS

=m 4.6: In a special sort of lottery called reverse keno, a player may buy a ticket on which he
= 10 numbers from 1-100 (inclusive). Then, 10 of the numbers are drawn at random. The player
i his ticket contains none of the numbers which are drawn.

- What is the probability that a ticket wins?

%5 it possible to carefully select numbers on 10 tickets so that I am guaranteed that one of them
il win, regardless of what numbers are drawn?

. Whatif [ have 12 tickets? Can I now guarantee that one of them will win?

<11 4.7:
#iow many 2-digit numbers have distinct digits and are multiples of 97

How many 10-digit numbers have all digits distinct and are multiples of 111112

%1 What is the sum of the digits of any 10-digit number that has all its digits distinct? What can
vou conclude?

‘&) Useanargument similar to part (a) and your conclusion from (i) to count the numbers. Don’t
forget that a number cannot start with 0.
= Russia)

=m 4.8: In the course of a day, star tennis player Martina Combinova receives 10 different tennis
et from fans who want her to sign and return the rackets. At various points during the day,
ina takes a break from whatever she is doing to sign some of the rackets. Whenever she decides
s2n a racket, she grabs the most recently arrived racket, takes a few strokes with it, then signs
= sends it back. During lunch, Martina’s coach tells her that she has signed the 9th racket that
=d. Given that the order of the rackets’ arrival is fixed, how many possible post-lunch racket
2 sequences are there? (Source: AIME)

w0 for Problem 4.5: In Problem 4.2, we found that there are 900 of these numbers. But how does
£ 2=lp us sum them up?

“me idea is to sum each digit separately. Since we constructed the digits one at a time, it makes
== 0 think that we might be able to sum them one at a time.

amcept If domg the entire problem at once seems too complicated to handle, try
C)% breakmg it up into manageable parts.

Seart with the first digit. We know that there are 9 choices, so each choice appears in 900/9 = 100
Smbers. Therefore, the first digits sum to 100(1 + 2+ 3 + -+ - +9) = 4500. Since the last digits match the
st digits, they also sum to 4500.

ow on to the second digit. We know that there are 10 choices, so each choice appears in 900/10 = 90
mumbers. Therefore, the second digits sum to 90(0 +1+2+---+9) = 4050. Similarly, since the third and
“usth digits are constructed in the same way, they also sum to 4050.
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Therefore, all of the numbers sum to

4500(10%) + 4050(10%) + 4050(10°) + 4050(10) + 4500(1) = 4500(10001) + 4050(1110) = 49,500,00

Another way we could approach this is to calculate the average 5-digit palindrome. Based on &
construction, we know that the average first and last digit is 5 (the average of 1 through 9), anc
average of each of the middle three digits is 4.5 (the average of 0 through 9). So the average numbes 3

5(10%) + 4.5(10°%) + 4.5(10%) + 4.5(10%) + 5(1) = 55000,

and hence, since there are 900 such numbers, the sum of all of them is (900)(55000) = 49,500,000. =

Concept: In order to determine the sum of a set of numbers, we can often use a
(== two-step process:
' 1. Count the number of elements in the set.
2. Determine the average element of the set.
Then, we multiply the answers from our two steps to get the sum of the
clements in the set. Note that this is essentially what we do when we sum

an arithmetic series, such as 1 + 2 + -+ + 1. There are 1 elements in the
: : ' h
series, and the average is 2%, so the sum is ——”(”2+ ),

Sometimes just figuring out if a construction exists or not is a big part of the problem.

‘Problem 4.6: In a special sort of lottery called reverse keno, a player may buy a ticket on which he
' selects 10 numbers from 1-100 (inclusive). Then, 10 of the numbers are drawn at random. The player
wins if his ticket contains none of the numbers which are drawn.

‘(@) Whatis the probability that a ticket wins?
| (b) Is it possible to carefully select numbers on 10 tickets so that I am guaranteed that one of them
will win, regardless of what numbers are drawn?

(c) What if I have 12 tickets? Can I now guarantee that one of them will win?

G SR R e R R s P

Solution for Problem 4.6:

(a) There are 110[?) equally likely possible drawings. To count the number of winning drawings, we

think about how we would construct a drawing for which our ticket wins. Our ticket wins if the

10 numbers drawn are all among the 90 numbers that are not on the ticket. Thus, the probability of
winning is

) 90x89x - x8l

= ~ 33.05%.
(110(;3) 100 x99 x --- x 91 2%

(b) We need to think about whether we can construct 10 tickets that guarantee a win for any possible
drawing. We may find the opposite problem easier: whether, given any 10 tickets, we can construct
a drawing that loses on all 10 tickets. In fact, since every drawing has 10 numbers, we might get
very unlucky and have the first number drawn on ticket #1, the second number drawn on ticket #2,
and so on, so that each ticket contains one of the 10 numbers drawn, and thus we would lose on all

tickets. So it is not possible to guarantee a win using 10 tickets.
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=/ Given our answer to part (b), there is some hope that we might be able to construct a way to pick
numbers for 12 tickets so that every drawing must miss at least one of the tickets (since there are
only 10 numbers in a drawing). We fail if there is some drawing that matches a number on all 12
tickets.

Our first observation is that if a drawing loses on all tickets, then there must be a drawn number
that appears on more than one ticket, since there are only 10 numbers in the drawing but there are
12 tickets. So our first idea might be to try to make sure that no numbers appear on more than one
ticket—if we could guarantee this, then there’s no way that any drawing could lose. However, we
can’t arrange this: we must choose a total of 120 numbers for our 12 tickets (10 numbers per ticket),
but we only have 100 numbers to choose from. Therefore, some numbers must appear on more
than 1 ticket.

What happens if any number appears on more than two tickets? Then we’re in big trouble. For
example, suppose that 72 appears on tickets #1, #2, and #3. If the drawing consists of 72 plus one
number from each of the other nine tickets #4 through #12, then we lose on all 12 tickets. So if we
hope to guarantee a win, we cannot put the same number on more than two tickets. But as we
discussed above, we can’t avoid duplicating numbers on different tickets. In fact, there must be at
least 20 numbers that appear on two tickets.

This means that there must be some number (call it x) that appears on two different tickets.
There are 9 other numbers on the first of these tickets, and also 9 other numbers on the second of
these tickets. Note that these sets of 9 numbers might overlap, but even if these give us 18 different
numbers, and each of them is a 2-ticket number, there’s still at least one 2-ticket number left over
(since there are at least 20 of them total and we’ve only accounted for at most 1+9+9 = 19 of them).
Therefore, there must be another number (call it i) that appears on two other tickets, different from
the tickets containing x. But now we’re doomed: if the drawing comes up x, y, and one number
from each of the remaining 8 tickets, we lose.

So we cannot guarantee a win with 12 tickets.

As a hard challenge, see if you can figure out some system, using as few tickets as possible, that
Soes guarantee at least one winning ticket regardless of the numbers drawn.

Problem 4.7:
= How many 2-digit numbers have distinct digits and are multiples of 9?

= How many 10-digit numbers have all digits distinct and are multiples of 111112
“Source: Russia)

“wwtion for Problem 4.7: In both of these parts, we'll use the notation that an overbar indicates that we

“hculd treat each letter as a digit, and not as a product. For example, if 2 = 6 and b = 3, then ab is 63,
et 13 (the product of a and b).

& Since all of the numbers are small, we could solve this part simply by listing them:
18,27, 36,45,54,63,72,81,90,

so there are 9 such numbers. (Note that we didn’t list 99, since it doesn’t have distinct digits.)
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(b)

We notice that our list has one number for each possible choice of first digit. That might mak=
us wonder why, and if there’s a more clever solution.

Suppose that ab is a 2-digit multiple of 9 and a # b. We know that a + b must be a multiple of =
so the only possibility isa +b = 9. (We can't have a + b = 18 since then we’d have to havea = b ==
and that’s not allowed.) Thus b = 9 —a. We conclude that for every choice of 2 between 1 and =
(mcluswe) we get one Vahd number by settmg b =9 — a. Therefore there are 9 numbers.

Sldenote If you aren’t fanuhar with why a+ b must be a multrple of 9in order for ab
J\ to be a multiple of 9, write

ab=10a+b =9a + (a + b).

Clearly 9a is a multiple of 9, so for the whole expression to be a multiple of
9, (a + b) must be a mulhple of 9 as Well

Since we are lookmg for 10- dlglt numbers with all d1g1ts d1fferent we know that each dlgrt
through 9 must be used exactly once. Surely that must help somehow.

We can use the same observation that we used in part (a), which is that a number is a multiple
of 9 if and only if the sum of its digits is a multiple of 9. If our digits are 0 through 9, their sum is
(0+1+---+9) =45, which is a multiple of 9. So, every 10-digit number with all different digits
is a multiple of 9, and since 9 and 11111 are relatively prime, we may conclude that every 10-dig:t
multiple of 11111 with all different digits is a multiple of 99999. How can we use this observation®

Note that 99999 = 100000 — 1. If we write a 10-digit number n as n = uv, where u and v are each
5-digit numbers, then
n =uv = 100000u + v = 99999u + (1 + v).

So 1 is a multiple of 99999 if and only if 1 + v is. This means that u +v = 99999, since that’s the only
multiple of 99999 that could possibly be the sum of u + v.

Therefore, once we choose 1, we must have v = 99999 — 1 in order for uv to be a multiple of
99999. How can we construct such a number?

Note that the digits come in pairs that sum to 9: the units digit of ¥ must sum with the units
digit of v to make 9, the tens digits of # and v must sum to 9, and so on. Also, there are 5 pairs of
digits that sum to 9: 0 and 9,1 and 8,2 and 7, 3 and 6, and 4 and 5.

We have to allocate the five pairs of digits that sum to 9 to the five positions in u and v. This can
be done in 5! ways. We also have to choose which digit in each pair goes to 1 and which goes to z,
so this is 2 choices for each pair.

This might lead you to finish the problem by concluding:

Bogus Solutlon Hence the answer is 5'(25) (120)(32) 3840

pig
The problem is that a 10-digit number can’t begin with 0. Since in our count above, any digit is
equally likely to end up in any position, 1/10 of the numbers that we constructed above start with
0. That’s not allowed. So only 9/10 of the numbers we constructed are actually allowed, hence our
final answer is (9/10)(5")(2%) = (9/10)(3840) = 3456. O
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The last problem in this section is tough. Remember that your first rule of problem solving should
2¢ to read the problem carefully!

Problem 4.8: In the course of a day, star tennis player Martina Combinova receives 10 different tennis
rackets from fans who want her to sign and return the rackets. At various points during the day, |
Martina takes a break from whatever she is doing to sign some of the rackets. Whenever she decides
0 sign a racket, she grabs the most recently arrived racket, takes a few strokes with it, then signs
= and sends it back. During lunch, Martina’s coach tells her that she has signed the 9" racket that -
2rrived. Given that the order of the rackets’ arrival is fixed, how many possible post-lunch racket
sizning sequences are there? (Source: AIME) :

“wiution for Problem 4.8: Before diving into the solution, it's important to understand what’s going on

sere. Rackets #1 through #10 arrive at various points of the day. Whenever she signs one, Martina signs
= most recently-arrived racket.

Here’s an example:

» Rackets #1, #2, and #3 arrive
* Martina signs #3

» Rackets #4, #5, #6, #7 arrive
Martina signs #7 and #6
Racket #8 arrives

Martina signs #8

Rackets #9 and #10 arrive
Martina signs #10, #9, and #5
* Lunch!

» Martina signs #4, #2, and #1.

e post-lunch signing order in this example is: #4, #2, #1. The question is: how many different
est-lunch orderings are possible?

Cohcept: ‘Before I;ﬁving into a pfoblem, make sure that you:

O=

¢ Read the problem carefully.

e Understand what the problem is asking.

* If necessary, work through an example to get a feel for the problem.

‘e start by listing what we know and what we don’t know. We know that #9 has already arrived
S Seen signed. This means that #1 through #8 have already arrived, but we don’t know which of

o1



CHAPTER 4. CONSTRUCTIVE COUNTING AND 1-1 CORRESPONDENCES

them (if any) have already been signed. We also don’t know if #10 has arrived yet, or if it has bee=
signed.

So there are 9 rackets left that could potentially be signed after lunch. Rackets #1 through #8, i
remaining to be signed, must be signed in descending order (the opposite order in which they arrived.
On the other hand, racket #10 might already have been signed, or might arrive any time, and thus could
be signed at any time (or not at all).

Therefore, we are trying to count the number of lists containing none, some, or all of the numbers
1-8 and 10, where the numbers 1-8 must appear in descending order, but 10 can appear anywhere (or
nowhere).

Constructing the ways that 1 through 8 can appear is relatively easy—we only need to choose which
of the numbers are in our list, since once we choose which numbers are in the list, they must be placed
in descending order. For each of these possible lists of rackets 1-8, the 10 can appear at any point in
the list, or not at all. However, the number of choices for where the 10 can appear is dependent on the
number of elements already in the list. If there are k numbers in the list before adding 10, then the 10
can appear in any of the k + 1 “slots” between numbers (including the first and last slot), or may not
appear at all, for k + 2 possibilities.

S0 we need to sum over the different possible lengths of the lists of numbers from 1 through 8 (before
possibly adding the 10). There are (E) ways to list k numbers out of 1-8, and then k + 2 ways to include
10 in the list (or leave it off).

Adding over the possible values of k, we see that the total number of possible orders is
8
8 8 8 8 8
2(0) + 3(1) + 4(2) o el 10(8) = ;(k * 2)(k).

We could work this sum out by hand, but is there a more clever way?
In fact, there are two clever methods!

Method 1: We can pull 2 ((g) +G+ (g)) out, so that our sum is

2l +{e)+ o)) =of) =12+ (5} o) <of)

using the fact that (g) +-++ (§) = 28 = 256. Now we apply a bit of algebra:

8 8! 8! 7
k(k) BT STl e Ty S(k - 1)‘

Therefore, our sum is

7 (7 7
512 + 8((0) 4 (1) i oo (7)) =512 + 8(128) = 1536.

) Al

Method 2: Let
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Use the identity (i) ( g_ 5 k) to rewrite S as

ol

~dd these two expressions for S together to get

25 =12 ((g) + (&13) oot (g)) =12-2% = 12(256),

2nd divide by 2 to get S = 6(256) = 1536. O

‘Sidenote: The rackets in Problem 4.8 behave like a structure called a stack. A stack

.h is characterized by the property that the last item that arrives is the first
item that is processed (in this case, the “processing” is the signing of the
racket). This is also sometimes called a FILO structure (FILO stands for
“First In, Last Out”) or a LIFO structure (“Last In, First Out”), and is used
extensively in computer programming.

=3.1 Suppose that palindromes with # digits are formed using only the digits 1 and 2 and that each
s=lindrome contains at least one of each digit. Compute the least value of 1 such that the number of
szlindromes formed exceeds 2002. (Source: ARML) Hints: 218

3.2 We wish to color the integers 1,2, 3, ..., 10 in red, green, and blue, so that no two numbers 7 and
* with a — b odd, have the same color. (We do not require that all three colors be used.) In how many
wzvs can this be done? (Source: HMMT) Hints: 75

®33 LetS={1,23,...,24,25}. Compute the number of elements in the largest subset of S such that
7= two elements in the subset differ by the square of an integer. (Source: ARML)

%34 How many pairs of positive integers (m,n) are there such that the least common multiple of m
&g 7 is 21,6007

%35 An n-digit positive integer is cute if its n digits are an arrangement of the set {1,2,..., 7] and it
=t & digits form an integer that is divisible by k, for k = 1,2,...,n. For example, 321 is a cute 3-dig:

eeger because 1 divides 3, 2 divides 32, and 3 divides 321. How many cute 6-digit numbers are there?
Source: AMC )

#35x A classroom consists of a 5 X 5 array of desks, to be filled by anywhere from 0 to 25 students,
mcusive. No student will sit at a desk unless either all other desks in its row or all others in its o
= flled (or both). Considering only the set of desks that are occupied (and not which studens sit
= desk), how many possible arrangements are there? (Source: HMMT) Hints: 190

Extral  The greatest real thrill that life offers is to create, to construct, to develop something useful.
. 1 — Alfred P. Sloan
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4.4 1-1 Correspondence Basics

Informally, we say that two finite sets A and B are in 1-1 correspondence if they have the same numbes
of elements; thatis, if #(A) = #(B). But this begs the question—how do we tell if A and B have the same
number of elements?

We do so by matching up the elements of A and B, such that for every element of A there is 2
corresponding element of B, and for every element of B there is a corresponding element of A. In other

words, the elements of A and B come in matching pairs, one element of A matching with one elemess
of B.

Here’s a more formal definition:

Definition: We say that the sets A and B are in 1-1 correspondence if there exists a function ) -
mapping elements of A to elements of B, that satisfies both of the following properties:

(a) fis one-to-one or 1-1: if f(x) = f(y), then x = y. (This also goes by the fancier name injective.)

(b) fis onto: for every b € B, there exists a € A such that f(a) = b. (This also goes by the fancier
name surjective.)

The function f is also sometimes called a bijection.

Think about what the two parts of the above definition mean. Part (a) means that no two distinct
elements of A can correspond to the same element of B. Part (b) means that every element of B has to
match to some element of A. When we put these together, we see that every element of A matches to
exactly one element of B, and no elements of B get “skipped” in this matching.

Concept: Don’t worry about the terminology. The main thing to keep in mind is

(=== thata 1-1 correspondence between A and B has to pair up elements of A
with elements of B, such that every element of A matches up with exactly
one element of B, and every element of B matches up with exactly one
element of A. Hence the name “1-1 correspondence.”

Sometimes we write a & f(a) to describe the 1-1 correspondence, meaning that element a in set A
matches with element f(a) in set B.

Sidenote: T correspondences between infinite sets

J\ Our formal definition above works just as well for infinite sets as for ﬁmte
sets. However, we don’t “count” infinite sets, so if sets A and B are in
1-1 correspondence, it doesn’t necessarily mean that they have the “same
number” of elements. For one thing, #(A) is undefined if A is an infinite set.
But even weirder things can happen. For example, can we show that the
sets{1,2,3,...}and {0,1, 2,3, ...} are in 1-1 correspondence? Certainly: take
an element in the first set and subtract 1 to get an element in the second set.
This satisfies our definition. Yet, somehow the first set seems “smaller”
than the second one. More about this on page 98.
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Froblem 4.9: Which of the following pairs of sets are in 1-1 correspondence?

2 Integers from 1-10 (inclusive) and integers from 23-32 (inclusive).

2! Integers from 1-10 (inclusive) and integers from 1-100 (inclusive) that are perfect squares.
%) Integers from 1-10 (inclusive) and unordered pairs of integers from 1-5 (inclusive).

i‘ﬂ Integers from 1-10 (inclusive) and even integers from (—10)-10 (inclusive).

= 2-digit positive integers in base 10 and 2-digit positive integers in base 8.

lem 4.10: Show that the 7-step paths from A to B in the grid below are in 1-1 correspondence
“h arrangements of the letters RRRRUUU.

B

A

lem 4.11: How many 4-letter words can we form such that each word has 4 different letters in
asing alphabetical order (such as FHMR)?

I the most basic examples, showing that two sets are in 1-1 correspondence is just a matter of
Smding a way to match every element in the first set to exactly one element in the second set, and vice
WeTsa.

Feoblem 4.9: Which of the following pairs of sets are in 1-1 correspondence?

2 Integers from 1-10 (inclusive) and integers from 23-32 (inclusive).

& Integers from 1-10 (inclusive) and integers from 1-100 (inclusive) that are perfect squares.
= Integers from 1-10 (inclusive) and unordered pairs of integers from 1-5 (inclusive).

= Integers from 1-10 (inclusive) and even integers from (—10)-10 (inclusive).

= I-digit positive integers in base 10 and 2-digit positive integers in base 8.

Swusion for Problem 4.9:

& The elements match up 1 « 23, 2 « 24, etc., up through 10 & 32; in general, x < 22 + x. This
matches up each element of 1-10 (inclusive) with exactly one element of 23-32 (inclusive), and vice
versa. So the sets are in 1-1 correspondence.

= The 1-1 correspondence is x < x?, which can also be written as \/j © .
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¢} We can list the unordered pairs from 1-5, and match them with integers 1-10, as follows:

11,2} 26({1,3}) 3e1{1,4) 4 1{1,5) 5&12,3)
6 1{2,4 7o {2,5] 8o (3,4 9 (3,5 10 & {4,5}

There are, of course, many other ways that you could have matched up the sets. It doesn’t matter
that there’s no “formula” for the matching: as long as we can match each element of one set with
exactly one element of the other set, and vice versa, we have a 1-1 correspondence.

(d) These sets are not in 1-1 correspondence. There are 10 integers from 1-10 (inclusive), but 11 even

integers from (-10)-10 (inclusive), so no matter how we try to match them, there will always be
one integer in the second set “left over.”

(e) Thisisalsonota1-1correspondence. There are 9-10 = 90 integers of the form by, but only7-8 = 56

integers of the form abg. So if we try to match up the 90 integers in base 10 with the 56 integers in
base 8, we'll quickly run out of base 8 integers to use.

Notice in Problem 4.9 that all of our examples that were in 1-1 correspondence with the integers
1-10 (inclusive) had 10 elements. In part (a), there are 10 integers between 23 and 32 (inclusive); in part
(b), there are 10 perfect squares between 1 and 100 (inclusive); in part (c), there are (g’) = 10 unordered
pairs of integers between 1 and 5 (inclusive). This is the basic feature of 1-1 correspondence.

‘Concepts: Two finite sets can be placed in 1-1 correspondence if and only if they have |
: the same number of elements. ‘

I-1 correspondences are sometimes used to relate two different ways of representing the same
information, as in the next example.
Problem 4.10: Show that the 7-step paths from A to B in the grid below are in 1-1 correspondence §
‘with arrangements of the letters RRRRUUU. :

Solution for Problem 4.10: In order to travel in 7 steps from A to B, we must take 4 steps to the right and
3 steps up. Each different arrangement of these 7 steps will give a different path. So, given a path, we
can write it as a 7-step sequence of R’s and U’s, where the letter R corresponds to a step to the right, and
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the letter U corresponds to a step up. For example, see Figure 4.1 below:

B

A
Figure 4.1: Path corresponding to RRURUUR

Conversely, every sequence of 4 R’s and 3 U’s corresponds to a unique path with 4 right steps and 3
up steps. Therefore the two sets are in 1-1 correspondence. O

The point of Problem 4.10 is that while we may not necessarily know how to count paths, we
certainly know how to count sequences of 4 R’s and 3 U’s: there are (g) = 35 of them. Therefore, there
are 35 paths from A to B.

Generally, in counting problems, we use a 1-1 correspondence to replace a difficult-to-count set with
2 set that's easier to count. The next problem shows a basic example of this.

Problem 4.11: How manyi;i;ie_tter words can we form such that each word has 4 different letters in
increasing alphabetical order (such as FHMR)?

solution for Problem 4.11: Directly counting 4-letter words whose letters are in alphabetical order (for
=xample, using constructive counting) leads to extremely nasty casework. For example, if the word
starts with A, then there are 25 choices for the second letter; if this second letter is B, then there are 24
choices for the third letter, however if this second letter is C, then there are only 23 choices for the third
=tter. Furthermore, if the word starts with B, then there are only 24 choices for the second letter. . . the
czsework would go on like this seemingly forever!

Fortunately, we can create a nice 1-1 correspondence between the set
A = {4-letter words whose letters are all different and in alphabetical order}

=nd the set
B = {(unordered) sets of 4 distinct letters}.

“he correspondence is simple: given a 4-letter word in A, we simply use the letters in the word as our
=ement of B. To go the other way, given any four distinct letters in B, we just list them in alphabetical
“rder to get a word in A. Every word in A corresponds uniquely to a set of 4 letters in B, and every set
¢ 4 letters in B gives us a unique word in A.

~ S0 A and B are in 1-1 correspondence, and therefore #(A) = #(B). But B is easy to count—it’s just
~ 1 = 14,950. Hence there are 14,950 elements of A. O
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Obviously, the examples in this section were pretty easy, and included nothing that you didn’t
already know how to count. In the next couple of sections, we’ll do some more complicated examples.

4.4.1 Which of the following pairs of sets are in 1-1 correspondence? If the pair isin 1-1 correspondence,
show the correspondence.

(@) {1,2,3,...,12} and {66, 68,70, ..., 88}
(b) 13,6,9,...,60} and {4,9,14,...,104}

(€ 401,-..,15) and'P({1,2,5,4}
(

d) {ways to choose 2 items from a group of 5, where order does not matter} and {ways to choose 1
item from a group of 10)

(e) {3-digit numbers with no 2} and {3-digit numbers with no 4}
(f) {2-digit numbers with no 5} and {2-digit numbers with no 0}

4.4.2 How many 3-letter “words” have their middle letter later in the alphabet than both of the other
two letters? (For instance, CY] and FKF are examples of such words, but RPB and WWL are not.)

4.43 Compute the number of distinct paths not passing through point (2,2,2) that travel from point
(0,0,0) to point (4,4,4) in 12 steps, changing a coordinate by 1 at each step. (Source: ARML)

4.44 If Aisin 1-1 correspondence with B, and B is in 1-1 correspondence with C, show that A is in 1-1
correspondence with C.

4.4.5 Can a finite set A be in 1-1 correspondence with a proper subset B ¢ A? (Recall that a subset
B c Ais properif B # A.)

4.4.6%

(a) Show that the odd divisors of 42 are in 1-1 correspondence with the even divisors of 42.
(b) Show that the odd divisors of 28 are nof in 1-1 correspondence with the even divisors of 28.

(c) For what positive integers n are the odd divisors of # in 1-1 correspondence with the even divisors
of n? Hints: 224, 183

Sidenote: More about 1-1 correspondences and infinite sets

J\ As we saw on page 94, some strange things can happen when we look at 1-1
correspondences between infinite sets. In particular, Exercise 4.4.5 above is
not necessarily true if the set A is infinite; for example, the sets {0,1,2,3,...}
and {1,2,3,.. .} are in 1-1 correspondence even though the latter is a proper
subset of the former. Any infinite set that is in 1-1 correspondence with the
set of positive integers is called countable. However, not every infinite set
is countable. It turns out that Q (the set of rational numbers) is countable
but that R (the set of real numbers) is uncountable.

More about this on page 104.
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1.5 More Complicated 1-1 Correspondences

Problem 4.12: What is the maximum number of intersection points of diagonals
mside a convex n-gon? For example, the picture at right shows a pentagon with 5 such
mtersection points circled.

ta) Compute this by hand for n = 3,4,5,6,7 by drawing a picture and carefully count-
ing the diagonal points.
b) Do you see a pattern in the numbers that you found in part (a)?

i¢) Use your answer to (b) to find an appropriate 1-1 correspondence, and finish the problem.

Problem 4.13: Let n = 212385°. How many divisors of 1” are less than n?

12) Try the question for small values of #, such as n = 4, n = 5, and n = 6. Do you notice anything
interesting?

b) What other set is in 1-1 correspondence with divisors of n? less than n?

'c) Finish the problem.

Problem 4.14: Let k be an odd number. Show that there are fewer odd divisors of 4k than even divisors
of 4k.

Problem 4.15: The tennis club has 100 members, and Stephanie is the president. Which is larger: the
number of ways to choose a 10-person advisory committee (which does not contain Stephanie) to
advise Stephanie on what new rackets to buy, or the number of 11-person committees (which may
include Stephanie) to plan an upcoming tournament? Note: you should be able to do this problem without |
2 calculator!

[n the last section, the problems were pretty easy. In this section, things get a bit more difficult.

Problem 4.12:  What is the maximum number of intersection points of diagonals
mnside a convex n-gon? For example, the picture at right shows a pentagon with 5
such intersection points circled.

T S B A R S Ty

Solution for Problem 4.12: For a problem like this, where we're trying to find a formula in terms of a
Dositive integer 1, it often helps to try some small values of 1 and see if we discover a pattern.

Concept: When stuck on a “find a general féfﬁ'{ﬁié”-fype problem, experiment with
some small values, and look for a pattern.

We can draw some pictures for some small polygons. You should be able to draw this for triangles,
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quadrilaterals, and pentagons yourself; Figure 4.2 below shows a hexagon with 15 intersection points
and a heptagon with 35 intersection points:

Figure 4.2: Convex hexagon and heptagon with diagonals

From our examples, we have the following chart:

n ||3]4]5]6]7
Points [| 0| 1|5 | 1535

It's probably going to be pretty messy to draw an octagon! And maybe it’s hard to see a pattern in the
above numbers. But where do we often look for counting numbers? Pascal’s Triangle, of course!

' Concept: Look inside Pascal’s Triangle to find counting numbers.

O=

So let’s go ahead and draw Pascal’s Triangle, and we’ll highlight the numbers that we found:

1 6 20 6 1
1 7 21 21 7 1

Aha, now a clear pattern emerges! The boxed numbers on the left sides of each row are (g), G, ),
(;), etc. But the (same) boxed numbers on the right side are even easier to write as binomial coefficients:

(i), (i), (2), (Z), etc. Now we can see pretty clearly that the answer looks like (;). So now that we think
that we know what the answer is, how can we prove it?

We know one “obvious” set with (}) elements: the possible choices of sets of 4 vertices out of the
n total vertices. Perhaps we can show that this set is in 1-1 correspondence with intersection points of
diagonals inside the n-gon.
Concept: When you suspect that a set that you're trying to count has the same num-
‘ ber of elements as a set that’s easy to count, look for a 1-1 correspondence
‘ between the set you have and the “easy” set.
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In fact, we can find the 1-1 correspondence. Given any intersection point of diagonals, we can get 4
vertices by taking the two pairs of endpoints of the diagonals intersecting at that point. Conversely, anv 4
vertices uniquely determine two intersecting diagonals, by looking at the (unique) convex quadrilateral

with those 4 vertices. For example, Figure 4.3 below shows an intersection point (circled) and its
corresponding 4 vertices (in bold):

Figure 4.3: Hexagon with intersection point and 4 vertices in correspondence
So we've established a 1-1 correspondence between
{intersection points of diagonals} « {sets of 4 vertices},

znd since it is easy to see that the latter set has (}) elements, we can conclude that the former set does
zs well.

Note that we've glossed over one significant detail: what happens if more than 2 diagonals intersect
=t the same point? Then we don’t have our 1-1 correspondence, but this means that the set on the left in

“ur above correspondence is strictly smaller than the set on the right, so that the number of intersection
points is strictly less than ().

Hence (}) is the maximum number of intersection points of diagonals inside a convex n-gon. O

Problem 4.13: Let 1 = 212385°, How many divisors of n? are less than 1?

~olution for Problem 4.13: A logical place to start is to count the number of divisors of 72. Notice
that n? = 22316512, A divisor of 72 is a number of the form 2°3%5¢, where a < 24, b < 16, and ¢ < 12.
Therefore, since a can be anything from 0 to 24 (inclusive), and we have similar choices for b and ¢, there
2re 2517+ 13 = 5525 factors of n? (including »? itself).

So what’s wrong with the following?

Bogus Solution: A factor is less than n if and only ifa < 12, b < 8, and ¢ < 6, and

i‘r! there are 13- 9 - 7 = 819 of these. This includes 7 itself, so we must
subtract 1, and we get a final answer of 818.

The problem is that there are a lot of divisors of n? that are less than 1 but that are not themselves
divisors of . For example, 23 is not a divisor of 1, but it is a divisor of #2, and it is 2 lot smaller than /1.
Deciding what choices of a, b, c make 2°3°5¢ < 1 is a quite difficult number theory problem.

There doesn’t seem to be any obvious way to directly count what we want. So instead, we might
look fora 1-1 correspondence, from our set of divisors of #2 less than 1 to some other set that we know
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how to count. Is there an “obvious” set that is in 1-1 correspondence to the set of divisors of 12 less than
n? Remember: a 1-1 correspondence is essentially a pairing between elements of two sets, so is there
anything that we can pair a divisor of 1 less than # to?

Concept: E Eéﬁesiadﬁdénceé are géééﬁﬁéﬂy&jéiirmgs. So look for a set of thmgsto_
pair elements of your set to.

Indeed, divisors of #* come in pairs: if n* = xy for some integers x and Yy, then either x = y = n, or
x<nandy>mn orx>nandy < n In particular, a divisor x < n of n? is naturally paired with the
P 2
divisor =~ > n.

Therefore, we have a 1-1 correspondence between the sets
{divisors of n* less than n} « {divisors of 1> greater than n}.

Since these sets are of equal size, and together they total 5524 elements (since they contains all of the
divisors of n* except for 1), we conclude that they each have 5524/2 = 2762 elements. Hence the answer
to our problem is 2762. O

The last step of the previous problem indicates another important way in which we can use 1-1
correspondences.

[Important: If you can partition a finite set A into two non-overlapping subsets B
@ and C (meaning that BUC = A and BN C = ), and you can find a 1-1 |
correspondence between B and C, then B and C are each exactly one-half

the size of A.

A slight variation of this is in the next problem.

T’roblem 4:14: Let kbean odd numb(;_rShow that théré -gr;-féwer odd diviso-rs:“d}m-haﬁ even |
'divisors of 4k. '

e O e

Solution for Problem 4.14: Let's try a simple example to get a feel for things. Suppose k = 5, so 4k = 20.
The odd divisors of 20 are 1 and 5. The even divisors of 20 are 2, 4, 10, and 20. Indeed, we see that there
are only two odd divisors whereas there are four even divisors.

Let’s look at another example. Suppose k = 15, so 4k = 60. The odd divisors of 60 are 1,:3.:5..and
15. The even divisors of 60 are 2, 4, 6, 10, 12, 20, 30, and 60. We see that there are four odd divisors and
eight even divisors.

A pattern seems to have emerged. In both examples, there are exactly twice as many even divisors
as odd divisors. This might suggest trying to split the divisors of 4k into three groups, one of which
is the odd divisors, and showing a “1-to-1-to-1” correspondence between the three groups. Then each
group will be equal size, and the odd divisors will be exactly one-third of all the divisors, whereas the
even divisors, which make up the other two groups, will be the other two-thirds of the divisors.

A little experimentation will indicate how we should form the three groups. We notice that every
divisor of 4k contains either 0, 1, or 2 powers of 2 as a factor (since 4k = 2% -k, and k is odd). So those are
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our three groups: odd divisors (which contain no power of 2), divisors that are multiples of 2 but not of
+ (which contain one power of 2), and divisors that are multiples of 4 (which contain two powers of 2).

Let’s draw a chart for our initial two examples k = 5 and k = 15:

Divisors of 4k

k Odd | Multiples of 2, not 4 | Multiples of 4
5 1.5 2,10 4,20

1% | 1,8;5,15 2,6,10,30 4,12,20,60

Now it’s clear what the 1-to-1-to-1 correspondence is. If m is an odd divisor of 4k, then 2m is the
corresponding divisor of 4k that's a multiple of 2 but not of 4, and 4m is the corresponding divisor of 4k
that’s a multiple of 4. And it’s also clear that all of these correspondences are reversible: for example, if
we have a divisor of 4k that's a multiple of 4, then we can divide it by 4 to get an odd divisor of 4k.

Therefore, not only have we proven the original problem statement, we've in fact established
something stronger: the odd divisors of 4k make up exactly one-third of the total number of divisors of
& (If you know some number theory, try to prove this using number-theory techniques as well.) O

In the next problem, we're trying to determine not that two sets are of equal size, but which of two
sets is the larger. Although the next problem also has algebraic solutions, think about how we might
use a correspondence to solve it.

Problem 4.15: The tennis club has 100 members, and Stephanie is the president. Which is larger: §
the number of ways to choose a 10-person advisory committee (which does not contain Stephanie) |
%0 advise Stephanie on what new rackets to buy, or the number of 11-person committees (which |
may include Stephanie) to plan an upcoming tournament? Note: you should be able to do this problem ¢
B e —

solution for Problem 4.15: Both of these sets are relatively easy to count. The racket-advisory committee
m=eds 10 members from a set of 99, so there are (?g) ways to form the committee. The tournament-
- anning committee needs 11 members from a set of 100, so there are (100

11
o which is larger, (53) or (\)?

) ways to form the committee.

Since we know that Stephanie is never on the 10-person committee, we can always add her and get
a 1l-person committee. Similarly, given an 11-person committee with Stephanie on it, we can always
s=move her and get a 10-person committee without her. Therefore, we have a 1-1 correspondence

{10-person committees without Stephanie} < {11-person committees with Stephanie)

“owever, the number of 11-person committees with Stephanie is certainly less than the total number
o 11-person committees (with no restriction on the membership). Therefore, the number of 11-person
“ommittees is larger than the number of 10-person committees without Stephanie.

As we mentioned earlier, there are algebraic solutions to this as well. We can use Pascal’s identity

& reverse:
100} (99) _ (99 S
11 10/~ \11 ’
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or we can write out the definitions of the binomial coefficients:

100 _ 100! _ 100 99! _ 10099\ _ (99
1)~ 11189 ~ 11 10189 11 \10) " \10)

However, the 1-1 correspondence solution has the slight advantage that we perhaps see more clearly
why the statement is true. O

4,51 Annie the Ant starts at the lattice point (0, 0) and each minute moves 1 space up or 1 space to the
right (with equal probability). Benny the Beetle starts at (5,7) and each minute moves 1 space down or
1 space to the left (with equal probability). What is the probability that they meet? (Source: AMC)

2 e T3 na "y

452 Compute ) ) Z Z Y 1. (Source: HMMT)

ngo=0 fs=0 ny=0 n1=0 ng=0
4.5.3 TIroll 101 fair 6-sided dice.

(@) What is the probability that an even number of them come up even?

(b) Find the smallest integer s such that the probability that the sum is greater than s is less than 2.

4.5.4% Suppose n points are selected on the circumference of a circle and all (;) chords connecting a
pair of these points are drawn. Given that no three chords pass through the same point inside the circle,
find the number of triangles that are formed by portions of the chords inside the circle and do not have
any of the n points as vertices. Hints: 73

Sidenote: More about 1-1 correspondences between infinite sets
J\ Given any set S, finite or infinite, we can show that S is not in 1-1 correspon-
dence with its power set P(S). The proof uses a very clever argument called
the Cantor diagonalization argument, due to the German mathematician
Georg Cantor.

Suppose on the contrary that there is a map f : S — P(S) establishing the
1-1 correspondence. Define the set

A={seS|s¢ f(s)l.

In words, A contains each element s that is not contained in its corre-
sponding subset f(s) in $(S). The question then is: what elementa € S
corresponds to A € P(5)? In other words, what element a € S has fla) = A?
There must be such an element if f gives a 1-1 correspondence. But this
leads to a paradox: if a € A, then by definition a ¢ f(a) = A, and if
a ¢ A = f(a), then again by definitiona € A.

In other words, the set P(S) is always “bigger” than the set 5, even if S is
infinite. We’ll continue this discussion in Challenge Problem 4.47 on page
1.1Z.
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4.6 Clever 1-1 Correspondences

Problem 4.16: The game Chomp is played as follows: We start with a 5 x 7 array of cookies, as in the
picture below. The players alternate turns, and on each turn, the player chooses any cookie remaining
‘on the board and removes (or “chomps”) that cookie along with all the cookies above and/or to the
‘right of the selected cookie. For example, a possible first move is:

The cookie in the lower-left corner of the board is poison: the player who is forced to chomp it loses.
We wish to determine how many positions of the board are possible in the game.

{a) In English, how can we describe a possible position of the game?

{b) How does your English description from (a) lead to a mathematical description that we can |
count? |

i¢) Count the number of possible positions.

Definition: A partition of a positive integer 1 is a decomposition of # into a sum of positive |
Entegers (not necessarily distinct), where we don’t care about the order of the integers in the sum.

For example, the partitions of 3are 3,1 +2,and 1+ 1+ 1. Note that 1 + 2 and 2 + 1 are considered
“e same partition, since we don'’t care about the order of the integers in the sum.

Froblem 4.17: List all of the partitions of 4, 5, and 6.

Froblem 4.18: Prove that the number of partitions of an integer # into 3 parts is equal to the number
¢ partitions of the integer 21 into 3 parts, where each part is less than 7.

) Try toproveitforn=3,n=4,n=5n=6.
B Try to prove it for general .

lem 4.19:
List the partitions of 8 into exactly 3 parts.

List the partitions of 8 in which the largest term is 3.
How many partitions are there in your lists from (a) and (b)?

Prove the general result: the number of partitions of 1 into exactly r parts is equal to the number
of partitions of n in which the largest term is r.
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Problem 4.20: ?
(a) Steve flips 1 coin and Marissa flips 2 coins. What is the probability that Marissa flips more heads

. than Steve does? .
| (b) Steve flips 2 coins and Marissa flips 3 coins. What is the probability that Marissa flips more heads
than Steve does?
(c) Steve flips 499 coins and Marissa flips 500 coins. What is the probability that Marissa flips more,
heads than Steve does? |

Problem 4.16: The game Chomp is played as follows: We start with a 5 x 7 array of cookies, as
/in the picture below. The players alternate turns, and on each turn, the player chooses any cookie
remaining on the board and removes (or “chomps”) that cookie along with all the cookies above
and/or to the right of the selected cookie. For example, a possible first move is:

The cookie in the lower-left corner of the board is poison: the player who is forced to chomp it loses.

'How many possible positions of the board are possible in the game?
TR e L e S e T e e

Solution for Problem 4.16: Constructive counting might get complicated, because the legal positions
are a bit hard to describe. In particular, if we start to focus on possible moves, as opposed to possible
positions, we get into really nasty casework, and we also have the problem that the same position can
often be reached by a variety of different sequences of moves.

So not really knowing what else to do, let’s focus on a particular legal position to try to get a hand!le
on the problem.

‘Concept: When unsure how to proceed, look at some examples and see if you can
(== find apattern.

For example, the following might be the position after each player has moved twice:

 Extra! C is for cookie, that's good enough for me. — Cookie Monster
T (U 11
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2000 e

How can we describe such a position? What's the most “obvious” thing that we notice?

We definitely notice that the number of cookies in each row is nondecreasing as we go from top to
cottom. More specifically, each row has at least as many cookies in it as the row immediately above.

This gives us our first 1-1 correspondence:

(1.0 Cliamp paasions) s {Arrangements in which the number of cookies in}

each row is nondecreasing from top to bottom

Note that we haven’t shown all the steps necessary to prove that this is a 1-1 correspondence, but by
now you should be able to manage that on your own.

So fine, we have a 1-1 correspondence, but how do we count those arrangements?

Maybe it will help if we put the cookies ina grid, and include spaces for the cookies already chomped.

eeeee
200ee

Hmmm...let's draw in the “border” of the cookies:

Ahal’ We see that the border of the cookies is a path from the top-left corner to the bottom-right
comer, where the steps of the path are down or to the right. This is true for every arrangement of rows
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of cookies in nondecreasing numbers: as we move along a row, we're moving right, and as we go dows
from one row to the next, we're moving down. We know that we never have to move left or up sinee
the rows are nondecreasing,.

Therefore, we have the following 1-1 correspondences:

Lewal Chomp positions}. +> {Arrangements in Which the number of cookies in each}
& PP row is nondecreasing from top to bottom

Paths from the top-left corner to the bottom-right corner

— {of a 5 x 7 grid, where all the steps are down or to the}

right

Fortunately, this last set is easy to count! We need to take 12 steps total, and must choose 5 of them

12
to be down, so the number of paths is ( 5 ) =792,
Thus there are 792 legal Chomp positions, including the start of the game (where all 35 cookies 2=
present) and the end of the game (where all the cookies are gone and one player is poisoned). O

Sidenote: So how do I win?

.h We've just counted the number of legal positions in a Chomp game on a
5x7 grid. But we didn't really discuss the game itself—in particular, if both
players play intelligently, which player has a winning strategy? Chomp is
a very interesting game, in that it turns out that the first player always has
a winning strategy (except on the trivial 1 x 1 board), but except for certain
board sizes, nobody knows what that strategy is! We’ll discuss this more
in Chapter 13.

For the next few problems, we’ll introduce the notion of a partition. This comes up quite often =
counting and number theory problems.

Definition: A partition of a positive integer n is a decomposition of n into a sum of positive ]
integers (not necessarily distinct), where we don’t care about the order of the integers in the sum.

For example, the partitions of 3 are 3,2 + 1, and 1+ 1+ 1. Note that 1 + 2 and 2 + 1 are considerez
the same partition, since we don’t care about the order of the integers in the sum.

Problem 4.17: List all of the partitions of 4, 5, and 6.

Solution for Problem 4.17: The partitions of 4 are 4,3+ 1, 2 + 2,2+1+1,and1+1+1+ 1. There are =
different partitions of 4.

The partitions of 5are5,4+1,3+2,3+1 +1,2+2+1,2+1+1+1,and1+1+1+1+1. Thereare
7 different partitions of 5.

Thepartitionsof()are6,5+1,4+2,4+1+1,3+3,3+2+1,3+1+1+1,2+2+2,2+2+1+'_
2+1+1+1+1,and1+1+1+1+1+1. There are 11 different partitions of 6. O
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Determining the number of partitions of an arbitrary positive integer # is difficult, and there is no
mice formula for this. However, there are many nice relations among partitions; the next two problems
will give two examples.

Problem 4.18: Prove that the number of partitions of an mteger ninto 3 parts is equal to the number
of partl’aons of the mteger 211 into 3 parts where each part is less than .

S N N S DR

SRS S

Swution for Problem 4.18:  As we often do, to get a handle on this problem, let’s look at a few small
“=lues of n and see if we notice anything interesting.

Concept: When trymg to prove somethmg for all p051t1ve mtegers n, first try a few
small values of 1 and see if you notice a pattern.

| 1 | Partitions of  into 3 parts | Partitions of 21 into 3 parts less than 1 |

2 | None None

31 1+1+1 24242

4] 2+1+1 3+3+2

5 3+1+1 4+4+2
24241 4+3+4+3
4+1+1 5+5+2

6| 3+2+1 5+4+3
24242 4+4+4

Sesides confirming that the result seems to be true—there are the same number of partitions in each
“siumn—do we notice anything?

Since we want to show that the two sets are equal, it makes sense to look for a 1-1 correspondence
h-:.-. een them. So the question becomes: how does a partition of # with 3 parts correspond to a partition
= with 3 parts all less than n?

Let’s experiment with the 1 = 6 case. We'd like to exhibit a 1-1 correspondence
4+1+1,3+2+1,2424+2} - {5+5+2,5+4+3,4+4+4)

“nc doitin such a way that it generalizes for arbitrary .

The observation that should jump out is that each set has one partition with three equal terms
= -2+2and 4 +4 +4), one partition with three distinct terms (3+2+ 1 and 5+ 4 + 3), and one partition
Wi two equal terms and a third different term (4 + 1+ 1 and 5 + 5 + 2). It makes sense that these are
2ng to end up as the pairs in our correspondence.

“urther observation leads us to the insight that the corresponding terms in our above pairs all add
= = This leads to our correspondence.

4+1+1 & (b6-4)+(6-1)+(6-1)=2+5+5

3+2+1 & (6-3)+(6-2)+(6-1)=3+4+5
2+2+2 o (6-2)+(6-2)+(6-2)=4+4+4
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So our general conjecture is that given a partition of n with 3 parts, we can subtract each part from
1 to get a partition of 2n with 3 parts all less than 1, and vice versa. Now we have to prove it.

Suppose that n = a + b + ¢ is a partition of n. Then
m—a)+(n-b)+(n—-c)=3n—(a+b+c)=3n-n=2n,

so (n—a)+(n—>b)+(n-c)is a partition of 2n. Furthermore, since 2, b, and c are all positive integers stricts
between 0 and 11, so are n —a, n — b, and n — c. Therefore, each partition of # with 3 parts corresponds ==
a partition of 2n with 3 parts, each less than n.

But we're not done! We need to show that the correspondence works in the other direction as wel

Important: When provmg all correspondence you need to demonstrate that the
@ correspondence is indeed 1-1, meaning that it must be reversible: you
need to be able to go back and forth between the two sets. If you only
show one direction, you're not done yet!

Conversely, suppose that 211 = d + e + f is a partition of 21, with each of d, ¢, and f less than n. Thes
n—d)+(n-e)+(n—f)=3n—-(d+e+ f)=3n-2n=n,

so (n—d) + (n—e)+ (n— f)is a partition of n. Furthermore, since d, ¢, and f are all positive integers
strictly between 0 and 7, so are n —d, n — e, and n — f. Therefore each partition of 2n with 3 parts all less
than n corresponds to a partition of n with 3 parts.

Thus we have established a 1-1 correspondence between the sets
{Partitions of n with 3 parts} ¢ {Partitions of 21 with 3 parts all less than 1},

and hence these sets have an equal number of elements. O

Problem 4.19: Prove that the number of partltlons of n into exactly ¥ parts is equal to the number of
parhhons of n in which the largest term isr, for all p051t1ve mtegers Lsrsn

s 2 P P B e Y e S e S e e

Solution for Problem 4.19: 1In this problem, it’s a bit trickier to list examples, since we have to pick values
for both 7 and r. So let’s just pick one pair of values for n and r; our goal is to pick values small enough
so that they’re easy to work with, but big enough so that any pattern (if it exists) will hopefully emerge

Let’s pick n = 8 and r = 3, and list the partitions in each set.

| Partitions of 8 into 3 parts | Partitions of 8 with largest term 3 ‘

6+1+1 3+3+2

542+1 3+3+1+1
4+3+1 3+2+2+1
4+2+2 342+1+1+1
3+3+2 3+1+1+1+1+1

It’s a little more difficult to see a pattern here than it was in the last problem.
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One pattern that you might notice is that list of the largest terms (6, 5, 4, 4, 3) in each of the partitions
= the left column matches the list of the number of terms (3, 4, 4, 5, 6) in each of the partitions in the
=zht column. This is sufficiently interesting that we might pick different values of n and/or r and see i
=us still holds. Let’s try another example, with n =9 and r = 3.

| Partitions of 9 into 3 parts | Partitions of 9 with largest term 3 |

7+1+1 3+3+3

6+2+1 3+3+2+1

54+3+1 3+3+1+1+1
5+2+2 3+2+24+2

4+4+1 3+2+2+1+1
44+3+2 3+2+1+1+1+1
3+3+3 3+1+1+1+1+1+1

= still works: the largest terms (7,6,5,5,4,4,3) of the partitions in the left column match the number of
“=rms in the partitions in the right column.

This gives us an important clue towards how to build our 1-1 correspondence. In fact, we can build
#n algorithm that describes the correspondence. It’s easiest to describe with an example, so let’s show
e correspondence between
9+3+1e3+2+2+1+1L

Start with the 5 in the left partition, and write itas 1+ 1+ 1+ 1 + 1. Now take the 3 and add 1 to
=ach of the first 3 terms, giving 2 +2 + 2 + 1 + 1. Finally, take the 1 and add 1 to the first term, giving
2+ 2414 1.

To go the other way, start with 3 +2 +2 + 1 + 1, and take the number of terms (5) as the first term in
“ur new partition. Subtract 1 from each term: 2 + 1 + 1, and take the number of terms remaining (3) as
e next term in our new partition. Subtract 1 again from each term: 1, and take the number of terms
semaining (1) as the next term in our new partition. Subtract 1 again, and the original partition is gone.
“he numbers we've extracted along the way gives us our new partition: 5+ 3 + 1.

Let’s run through this algorithm again, with a different choice of partition:

Oold New || Old New
Given: partition with 3 parts || Given: partition with largest part 3
4+3+2 3+3+2+1
Start with 4 1’s 4 terms; subtract 1 from each term
3+2 I1+1+1+1(|24+2+]1 -
Add 1 to first 3 terms 3 terms; subtract 1 from each term
2 2+2+2+1(1+1 4+3
Add 1 to first 2 terms 2 terms; subtract 1 from each term
3+3+2+1 4+3+2

This is a bit wordy. Fortunately, we can more easily describe this correspondence using a tool called
= Ferrers diagram.
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Cdncept: 'Often, we can better understand cbmplicéted'concépts byusmg a suitable
(O== diagram.

We can represent a partition with r parts as » rows of dots, in which each row contains a number of
dots equal to the number in the partition. Similarly, we can represent a partition whose largest element
is 7 as r rows of dots, in which each column has a number of dots equal to a number in the partition.

4 —- e o o o

3 5 e o o T

2 - e o T 1
T2
3 3

Thus, we have 1-1 correspondences

Read as rows
>

Partitions of n
{Partitions of n with r parts}

: . Read as columns
[Ferrers diagrams with r rows|} o {whose largest
element is r

Hence the numbers of partitions in each set are equal. O

We will explore partitions further in Chapter 14.

Problem 4.20: Steve flips 499 coins and Marissa ﬂjpé 500 coins. What is the probiarbrility-’;hét Marissa
flips more heads than Steve does?

S B e B B L e e S R L P R

Solution for Problem 4.20: ~As usual, we can look at some small examples to try to get a feel for the
problem.

If Steve has 1 coin and Marissa has 2 coins, then since there are 3 flips total, there are 2 =8 possible
outcomes. We can easily list the outcomes in which Marissa “wins” by flipping more heads than Steve:

(THT), (T,TH), (T HH), (H,HH).

In each pair, the first entry is Steve’s flip and the second entry is Marissa’s two flips. Since Marissa wins

; o M |
4 out of 8 times, the probability of her winning is § = 3.

If Steve has 2 coins and Marissa has 3 coins, there are now 2° = 32 possible outcomes. We could try
to list them all out, but instead we can do a bit of casework.

If Steve flips 0 heads (which he can do in 1 way), then Marissa wins as long as she avoids TTT. This
gives her 7 ways to win.

If Steve flips 1 head (which he can do in 2 ways), then Marissa wins if she flips 2 or 3 heads, which
she can do in 4 ways. This gives her 8 ways to win.

If Steve flips 2 heads (which he can do in 1 way), then Marissa must flip HHH to win. This gives
her 1 way to win.

So Marissa has 7 + 8 + 1 = 16 successful outcomes, and the probability of her winning is 35 = 3.
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This is probably not a coincidence, so we now conjecture that as long as Marissa has one more coin
than Steve, her probability of winning is 3. This suggests looking for a 1-1 correspondence between the
winning outcomes and the non-winning outcomes. (This is similar to the method we used in Problem
+13)

The natural way to get a 1-1 correspondence between coin-flipping outcomes is to reverse the
cutcome of every coin flip (in other words, change every H to T and every T to H). This does indeed
Zive a 1-1 correspondence between winning and non-winning outcomes, as follows: Suppose we have
= winning outcome where Steve has 2 heads and Marissa has b heads, with @ < b. When we reverse
~eads and tails, Steve now has 499 —a heads and Marissa has 500 — b heads. We would like to show that
s is a non-winning outcome for Marissa, meaning that Steve has as least as many heads as Marissa
Zoes. We see this as follows:

499 -4a>500-b © —-a>1-b,
& a<b-1,

& a<hb,

where the last equivalence follows since 2 and b are integers. This works the other way as well: if we
siart with an outcome in which Steve has as least as many heads as Marissa, and reverse all the heads
znd tails, then we have an outcome in which Marissa has more heads than Steve.

So winning and non-winning outcomes are in 1-1 correspondence, hence each make up half of the
“otal outcomes, and Marissa has a % chance of winning. O

£6.1 Use an argument similar to that in Problem 4.16 to find the number of legal positions in a game
22 Chomp played on an m X n board, where m and n are positive integers.

£6.2 Show that the number of partitions of 7 into parts of even size equals the number of partitions
of 17 into parts that occur an even number of times. Hints: 236

£6.3 A class of 10 students took a math test. Each problem was solved by exactly 7 of the students.
= the first nine students each solved 4 problems, how many problems did the tenth student solve?
Source: HMMT) Hints: 76

£6.4x In the diagram at right, the side length of the large equilateral triangle is 3.
“here are 15 parallelograms of various sizes that are formed by segments in the grid
one example is shown in bold). Find a formula for the number of parallelograms
Dzt are formed by an analogous triangular grid with side length n. (Source: Canada)
Hints: 266, 338, 342

£5.5 Let [x] denote the greatest integer less than or equal to x. (For example, |3] = 3 and |6.73] = 6.)
“rove that for any positive integer n,

r;lklnzzbV;4J+V;8J+---=n.

Hints: 283, 14
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4.6.6 Are there more partitions of 2006 into only even parts or into only odd parts?

4.6.7x Let Sbetheset{l,2,...,n}. Let k be the number of subsets T of S such that the elements of T
have an integer average. Prove that n + k is even. (Source: Putnam) Hints: 112, 340

4.7

>

Summary

The basic idea of constructive counting is to think about how you would construct the items that
you're trying to count, while keeping track of the number of possibilities at each stage of the
construction.

Often, a big part of the problem is simply figuring out if a construction exists or not.

Whenever we can match every element in set A to exactly one element in set B and vice versa, we
have a 1-1 correspondence.

Two finite sets can be placed into 1-1 correspondence if and only if they have the same number oz
elements.

We generally use 1-1 correspondences to count a hard-to-count set, by placing the set in 1-
1 correspondence with an easy-to-count set, which then necessarily has the same number of
elements as our original set.

To prove that two sets A and B are in 1-1 correspondence, we have to show that every element of
A corresponds to exactly one element of B, and that every element of B corresponds to exactly one
element of A. Showing the correspondence in only one direction is not sufficient.

When you suspect that a set that you're trying to count has the same number of elements as a set
that’s easy to count, look for a 1-1 correspondence between the set you have and the “easy” set.

A partition of a positive integer n is a decomposition of n into a sum of positive integers (not
necessarily distinct), where we don’t care about the order of the integers in the sum. Many
problems involving partitions can be solved using Ferrers diagrams.

Here are some general problem-solving strategies that are applicable to constructive counting:

Concept: If doing the entire problem at once seems too cdmpli;::atéd to handle, try
( == breaking it up into manageable parts.

Concept: Sometimes, it’s easier to think about how yo_u would construct the items
that you don’t want to count, and subtract the count of these items from
the total.

Concept: When stuck on a “find a general fbrmula”—type problem, experiment with
(3% some small values, and look for a pattern.
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REVIEW PROBLEMS

Concept:  Often, we can better understand comp]jcated-concepts by using a suitable
(=== diagram.

Conceptﬂ: Before diving into a problem, make sure that you: '
® Read the problem carefully.
¢ Understand what the problem is asking.

o If necessary, work through an example to get a feel for the problem.

£21 For how many ordered triples (2, b, ¢) of positive integers less than 10 is the product abc divisible
ov 20? (Source: HMMT)

%22 How many nonempty subsets of {1,2,3,...,12} have the property that the sum of the largest
==ment and the smallest element is 13? (Source: HMMT)

£23 Each face of a cube is painted either red or blue, each with probability 3. The color of each face is
“ctermined independently. What is the probability that the painted cube can be placed on a horizontal
surface so that the four vertical faces are all the same color? (Source: AMC)

£24 What is the probability that a randomly chosen divisor of 30* is a multiple of 3029?

£25 Forty slips are placed into a hat, each bearing a number 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, with each
sumber entered on four slips. Four slips are drawn from the hat at random without replacement. What
= the probability that two of the slips bear a number a and the other two bear a number b # 4? (Source:
AMC)

£26 A hotel packed a breakfast for each of three guests. Each breakfast should have consisted of three
“ipes of rolls, one each of nut, cheese, and fruit rolls. The preparer wrapped each of the nine rolls, and,
once they were wrapped, the rolls were indistinguishable from one another. She then randomly put
“iree rolls in a bag for each of the guests. Find the probability that each guest got one roll of each tvpe.
Source: AIME)

£27 Suppose we have a 10 x 10 grid of points, such as the set of lattice points with both coordinates
setween 0 and 9 (inclusive). How many squares (with sides parallel to the sides of the grid) can be
“ormed by connecting 4 of these points?

228 Consider the sequence 1,4,5,16,17,20,21, 64,65, . .., which is formed by including only positive
miegers that can be expressed as the sum of distinct powers of 4. What is the 50 term in this sequence?

£29 Show that, for any nonempty finite set S, the number of subsets of S with an even number of
=lements is equal to the number of subsets of S with an odd number of elements.

115



CHAPTER 4. CONSTRUCTIVE COUNTING AND 1-1 CORRESPONDENCES

4.30 Show that the number of partitions of an integer n into at most r parts is equal to the number of
partitions of n into parts of at most r.

4.31 Let f(n, k) denote the number of partitions of # into k parts. Prove that
fk)=f(n-1k-1)+ f(n -k k).

4.32  On the Cartesian plane, Johnny wants to travel from (0, 0) to (5, 1), and he wants to pass through
all twelve lattice points (x, y) such that 0 < x < 5and 0 < ¥ < 1. On each step, Johnny can go from one
point to any other point via the straight line segment connecting the two points. How many paths are
there from (0, 0) to (5, 1), passing through all 12 points, such that the path never crosses itself? One such
path is shown below. (Source: HMMT)

(5,1)

(0,0)

4.33 Eight knights are randomly placed on a chessboard (not necessarily on distinct squares). A knight
on a given square attacks all the squares that can be reached by moving either (1) two squares up or
down followed by one square left or right, or (2) two squares left or right followed by one square up
or down. Find the probability that every square, occupied or not, is attacked by some knight. (Source:
HMMT) Hints: 331

4.34 A true-false test has 10 questions. Suppose that if you answer any five questions “true” and the
remaining five questions “false,” then your score is guaranteed to be at least four. How many answer
keys are there for which this is true? (Source: HMMT) Hints: 34, 176

4.35 Inhow many ways can 4 purple balls and 4 green balls be placed into a 4 x 4 grid such that every
row and column contains one purple ball and one green ball? Only one ball may be placed in each
box, and rotations and reflections of a single configuration are considered different. (Source: HMMT)
Hints: 109, 198

4.36 How many 4 x 4 matrices whose entries are each 1 or —1 are such that the sum of the entries in
each row is 0 and the sum of the entries in each column is 0? (Source: AIME) Hints: 94, 24

4.37 A lattice point is a point (x, y) such that x and y are both integers. Suppose we color each of the
lattice points within the square 0 < x, y < 10 either black or white. Find the number of colorings in
which each of the 100 unit squares (bounded by the colored lattice points) has exactly two white vertices.
Hints: 107

4.38 10 points in the plane are given, with no 3 collinear. 4 distinct segments joining pairs of these
points are chosen at random, all such segments being equally likely. Find the probability that some 3 of
the segments form a triangle whose vertices are among the 10 given points. (Source: AIME)
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CHALLENGE PROBLEMS

£3% Consider the set S = {1,2,3,4,5,...,100}. How many subsets of this set with 2 or more elemenss

Iy:

e terms of the subset form an arithmetic sequence, and

~ we cannot include another element from S with this subset to form an even longer arithmetic
sequence?

Hints: 311, 47

B

H

=20 Define the alternating sum of a set of positive integers as follows: List the elements of the set in
Zecreasing order. Take the first number in the list, subtract the second, add the third, subtract the fourth,
&2 s0 on. For example, the alternating sum of the set {3,5,11,7) is 11 = 7 + 5 — 3 = 6. Find the sum of
e alternating sums of all of the subsets of {1,2,3,4,5,6,7,8,9,10). (Source: AIME ) Hints: 133, 270

=41 Inaclassroom, 34 students are seated in 5 rows of 7 chairs. The place at the center of the room is
“moccupied. A teacher decides to reassign the seats such that each student will occupy a chair adjacent
= nis’her present one (i.e. move one desk forward, back, left, or right). In how many ways can this
s=zssignment be made? (Source: HMMT) Hints: 187, 164

%22 Inhow many ways can we place a positive number of rooks on an 8 x 8 chessboard, such that no
“wo lie in the same row or the same column, and so that none of the rooks lies to the left of and below
amother rook? (Source: HMMT) Hints: 323

=45 FEight congruent equilateral triangles, each of a different color, are used to construct a regular
“==hedron. How many distinguishable ways are there to construct the octahedron? (Two colored
“=zhedrons are distinguishable if neither can be rotated to look just like the other.) (Source: AMC)
Sints: 307, 181

“&x  [s there a 2000-element subset of the set {1,2,3, .. .,3000} such that no element in the subset is
=s=cily double another element of the subset? Hints: 113, 155

=45« Find the number of ways to color each square of a 2007 x 2007 square grid either black or white
= that each row and each column has an even number of black squares. (Source: Mandelbrot)
BEnis: 89, 151

%25x Threenumbers,ay,a,,a;, are drawn randomly, without replacement, from the set {1,2,3, ..., 1000!.
“ree other numbers, by, by, by, are then drawn randomly, without replacement, from the remaining set

¢ =7 numbers. What is the probability that, after suitable rotation, a brick of dimensions a1 X az X a3

== be enclosed in a box of dimension by x by X b, with the sides of the brick parallel to the sides of the

e (Source: AIME) Hints: 297, 300

%47 This problem continues our discussion (from page 104) of 1-1 correspondences between infinite
=== Recall that any infinite set that can be placed into 1-1 correspondence with the set of all positive
i=zers is called countable, and any infinite set that cannot is called uncountable.

= Prove that Z (the set of all integers) is countable. Hints: 26
= = Prove that Q (the set of rational numbers) is countable. Hints: 223

= Prove that R (the set of real numbers) is uncountable. (You may use the fact, discussed on page
t04, that no set S is can be placed in 1-1 correspondence with its power set P(S).) Hints: 101, 144
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CHAPTER 5. THE PIGEONHOLE PRINCIPLE
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CHAPTER

| The Pigeonhole Principle

5.1 Introduction

Once again, we have a simple concept with a fancy name: the Pigeonhole Principle. It actually has 2
fancier name, the Dirichlet Principle, after the German mathematician Johann Peter Gustav Lejeune
Dirichlet, and an even fancier name, the Dirichlet Box Principle, but it is usually referred to (in the
United States) as the Pigeonhole Principle.

Imagine a mailroom with a bunch of small mailboxes (sometimes called pigeonholes). If we have,
say, 100 mailboxes in the room, and 101 letters arrived today, then we know that at least 2 of the letters
must go in the same pigeonhole. More generally, if there are more letters than pigeonholes, then some
pigeonhole must get more than one letter. That’s really all there is to it!

Although the Pigeonhole Principle may seem “obvious,” it is extremely useful in solving a wide
variety of counting problems.

5.2 It’s Just Common Sense!

Problem 5.1: Suppose that I have 5 balls and 4 boxes. Prove that, no matter how I place the balls into
boxes, at least one box must contain more than 1 ball.

The Pigeonhole Principle couldn’t be more simple. It merely states that if we have more objects than
slots to place them in, then at least one slot must contain more than one object.
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5.3. BASIC PIGEONHOLE PROBLEMS

Here's a basic example:

Feoblem 5.1: éﬁppose that T have 5 balls and 4 boxes. Prove that, no matter how I plaée the balls
= boxs at least one box must contain more than 1 ball.

“wission for Problem 5.1: We can prove this very easily by contradiction. Suppose that the 4 boxes have
+ = ¢ and d balls in them, respectively. If each box has no more than 1 ball, thena <1,b<1,¢ <1, and
& = 1 Therefore,a+b+c+d<1+1+1+1 =4 Butweknow thata+b+c+d =5,505 < 4. Obviously

s 1s a contradiction, so not all of the boxes can have at most one ball. O

e can generalize this simple example:

Inq;)rt;nt _ _ﬁe_figedﬁhoie Pﬁﬁéiple: IfI place rfrc”balls i}ito i _box_es, wherek >n,|
W then at least one box must contain more than 1 ball.

The proof is essentially the same as in the specific example from Problem 5.1—we will leave it as an
ERETCise.
Don't let all this detail obscure the fact that the Pigeonhole Principle is just common sense.

aﬁcept:  The Pigébnhole Prm(:lple is jusf common sense. If you have more items
than boxes to place them in, then at least one of the boxes must contain
more thanoneitem. el s

521 Prove the general statement of the Pigeonhole Principle: If I place n balls into k boxes, with 7 > k,
“en at least one box must contain more than 1 ball.

522 Prove thatif I flip 3 coins, I must get at least two heads or at least two tails.

523 How many cards do we have to draw out of a standard 52-card deck in order to guarantee that
W= draw at least one pair (two cards of matching rank)?

53 Basic Pigeonhole Problems

blem 5.2: I have a drawer with a large number of white, brown, and black socks. How many
do I have to pull out of the drawer in order to ensure that I get a matching pair?

Extral [ have reached an age where if someone tells me to wear socks, I don't have to. — Albert Einstein
E 2 Ay -
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CHAPTER 5. THE PIGEONHOLE PRINCIPLE

| Problem 5.3: We wish to prove that given any 6 integers, there are 2 of them whose difference =

divisible by 5.

(a) Since we want to prove that at least 2 of 6 items share a property, how many “boxes” will we
need in order to apply the Pigeonhole Principle?

(b) Given that we are considering divisibility by 5, what would be a natural choice for our boxes?

(c) Finish the problem.

Problem 5.4: Given a unit square and 5 points in the square, we wish to prove that there must exist 2

pair of these points that are at most ¥2/2 distance apart.

(a) We have 5 points and we wish to show that a pair of them have some property. How many
“boxes” will we need to apply the Pigeonhole Principle?

(b) How can we choose our boxes?

(c) How does our choice of boxes in (b) force two points in the same box to be at most v2/2 distance
apart?

Problem 5.5: A group of 25 people are at a party. Over the course of the party, some of the attendees
shake hands with each other. Prove that, at the end of the party, there exist two guests that have
shaken hands with the same number of people.

Remember, the general idea of the Pigeonhole Principle is that we have more balls than boxes, so
some box must contain more than one ball. Often the main difficulty is trying to decide what the “balls”

and the “boxes” are.

Problem 5.2: Ihave a drawer with a large number of white, brown, and black socks. How many |
socks do I have to pull out of the drawer in order to ensure that I get a matching pair? '
Solution for Problem 5.2: Since we want two socks of the same color, it makes sense to think of “colors” as
our “boxes” for this problem. For example, we can imagine having 3 boxes labeled “White,” “Brown,”
and “Black,” and as we pull socks out of the drawer, we put them into the appropriate box.

White Brown Black E L

Since we have 3 colors—white, brown, and black—we need 4 “balls,” or socks, to put into these
boxes in order to ensure that one box has at least two. For example, if we only pull out 3 socks, we
might pull out one of each color (as shown above), and thus would have 1 sock in each box. If we pull
out a 4™ sock, it will have to go into one of the boxes, and then that box will have 2 socks (a matching
pair). Therefore, we need to pull 4 socks out of the drawer. O

Problem 5.3: Prove that given any 6 integers, there are 2 of them whose difference is divisible by 5. &
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5.3. BASIC PIGEONHOLE PROBLEMS

=¥ _x ¥

5 5 5

= zn integer. This only happens when x and y have the same remainder upon division by 5. More
“ormal ways to write this are:

5x—y) or x=y (mod 5).

“ow our course of action is more clear. Our “boxes” for this problem are remainders when dividing
=% 5. Since we have 6 integers, we may conclude, by the Pigeonhole Principle, that at least two of them
must have the same remainder upon division by 5 (since there are only 5 possible remainders: 0, 1, 2,
= or 4). The difference of these two integers will be divisible by 5. O

Problem 5.4: Given a unit square and 5 pomts in the square, show that there must exist a pair of |

Sese points that are at most V2/2 distance apart.
g~ — S b T N S e S

Swiution for Problem 5.4: We're looking for a pair of points out of 5 that satisfy a certain condition, so this

2zzests the Pigeonhole Principle, in which the points are placed into 4 boxes, guaranteeing that at least
“w0 of the points are in the same box. We also want the condition that “two points are in the same box”
= imply that “two points are at most V2 /2 distance apart.” Furthermore, we think of what distance
%2 2 represents, and one common distance that should come to mind is the diagonal of a square of side

ezth 1. We have all the pieces—it remains to assemble them into a solution.

Divide the unit square into four smaller squares of side length 1 as shown in the diagram
= Deright. By the Pigeonhole Principle, given any 5 points, at least two of them must be
= he same small square. These two points then can be apart by at most the diagonal of a

s=zll square, which is V2/2. o

Concept: Whenever we have to show that “a pair"’ of objects or “at least 2” objects
(=== sharesome property, that’s our cue to think about the Pigeonhole Principle.

Froblem 5.5: A group of 25 pédplé' areata parfy. Over the course of the pr.i'i'ty,wsbme of the attendees i
snzke hands with each other. Prove that, at the end of the party, there exist two guests that have |
“szken hands with the same number of people. !

T e N Er N :rmsx‘g

Swiution for Problem 5.5:  Since we want to prove that two guests have shaken hands with the same
mumber of people, it makes sense to think of “# of handshakes” as our boxes. Since there are 25 people
& e party, each person could shake hands with 0, 1, 2, ..., 23, or 24 of the other people.

LUh-oh. There are 25 numbers in the list 0,1, ..., 23, 24, and there are 25 people. We need more people
=20 numbers in order to apply the Pigeonhole Principle. Are we doomed?

o, we're not doomed, because we can’t simultaneously have someone who shook no hands (and
s would be in the 0 box) and someone who shook everybody’s hand (and thus would be in the 24
Sow . So there are really only 24 boxes, and we can apply the Pigeonhole Principle to prove that there
st be two people who have shaken the same number of hands. O
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'5,3.4 What is the size of the largest subset S of {1,2,3,...,50} such that no pair of distinct elements o=

- 5.3.5 Prove the general version of Problem 5.3: given any positive integer 7, and any set of n+1

CHAPTER 5. THE PIGEONHOLE PRINCIPLE

Concept: Sometimes, before applying the Pigeonhole Principle, we have to do a|
(O== little work to reduce the number of boxes. 5

5.3.1 Prove that given any 11 integers, there will be at least two with the same units digit.
5.3.2

(a) What is the maximum number of rooks that can be placed on an 8 X 8 chessboard such that eacs
row and column contains no more than 1 rook?

(b)* What is the maximum number of bishops that can be placed onan 8 x8 chessboard such that eac>
diagonal contains no more than 1 bishop? Hints: 265

5.3.3 Prove thatamong any 8 positive integers that sum to 20, there must be a group of them that sums
to4.

S has a sum divisible by 7? (Source: AMC)

integers, there are 2 of them whose difference is divisible by 7.

5.3.6 A subset B of the set of integers from 1 to 100, inclusive, has the property that no two elements o=
B sum to 125. What is the maximum possible number of elements in B? (Source: AMC) Hints: 115, 27<

5.4 More Advanced Pigeonhole Problems

Problem 5.6: Suppose that I place 25 balls into 6 boxes. Prove that one of the boxes must contain at
least 5 balls.

Problem 5.7: Suppose that I place  items into k boxes. What is the largest number m such that I can
be guaranteed that one of the boxes contains at least m items?

Problem 5.8: There are 20 children in a small mountain town. Any two of them have a common
grandfather, and each child has two distinct grandfathers. :

(a) How many grandfathers can there be in the town?

(b) Prove that there are 14 children who have a common grandfather.
(Source: ToT) :

Problem 5.9: Given any set of ten distinct 2-digit numbers, prove that there exist two disjoint subsets
' (of the 10 numbers) with the same sum. (Source: IMO) '
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5.4. MORE ADVANCED PIGEONHOLE PROBLEMS

Problem 5.10: Aimee plays at least one game of chess a day for eight weeks, but she plays no more
than 11 games in any 7-day period. Show that there is some period of consecutive days in which she
plays exactly 23 games.

As we've seen, the Pigeonhole Principle can be used to show that more than 1 item share some
cuality. But what if we want to show that more than k items share some quality, where k > 1 is a positive
mteger? Fortunately, given the right conditions, we can do that too.

Here’s a basic example:

Problem 5.6: Suppose o that T piace 25 balls into 6 boxes. Prove that one of the boxes must contain at
ESt 5 balls e 3 P > ; e - T T e T R

e R R e P i o Pl

solution for Problem 5.6:  As with the basic Pigeonhole Principle, we can think about this just using
common sense. If we place 4 balls into each of the 6 boxes, that accounts for 24 balls; any other
Zistribution of the first 24 balls will result in 5 balls in at least one box. But we still have one ball left
wver, so whichever box we place it in will have 5 balls.

Although this is good common-sense reasoning, it is not a formal proof, so let’s formally prove the
ssatement. Suppose that the boxes are numbered from 1 to 6, and that there are a,, a,, .. ., a5 balls in the
==spective boxes. Since there are 25 total balls, we must have

a1 +a+ - +ag = 25.
= every box contains at most 4 balls, then a; < 4,4, <4, ..., as < 4. Therefore
D=m+mt+as+a+as+ag<4+4+4+4+4+4=24,

—wving 25 < 24, a contradiction. So some box must contain at least 5 balls. O

This is an example of a more general version of the Pigeonhole Principle. It basically says that some
Sox is guaranteed to have at least a certain number of balls. Exactly how many balls are guaranteed in
z=neral? We'll work that out in the next problem.

Problem 5.7: Suppose that I place n items into k boxes. What is the largest number m such that I E

c=n be guaranteed that one of the boxes contains at least m 1tems7
e e R e e e R s i R e o G A s e e e e e

Sclution for Problem 5.7: 'We want to take our reasoning from Problem 5.6 and apply it to the general
czse. So what's wrong with the following argument?

L balls into each of the k boxes. This accounts for

Bogus Solution: We can put &

i‘r! k( L ; 1) = n — 1 of the balls. There is 1 ball left over, which must
go in some box, and thus some box must contain at least == +1
balls
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CHAPTER 5. THE PIGEONHOLE PRINCIPLE

Seems reasonable, and it works with n = 25 and k = 6 as in Problem 5.6. So why is this not quit=

correct?

# —1 : ;
might not be an integer. The best we can do in our initial step is to put

The problem is that

[n _ 1} balls in each box, where x| is the “floor” function, meaning the greatest integer less than oz

-1
equal to x. Then our leftover ball(s) ensure that at least one box will have r P l + 1 balls.

This is the best that we can do, as follows: Suppose that n > k, and write n — 1 = gk + r, where g is 2
} +1 balls in the

positive integer and 0 < 7 < k is the remainder of (n — 1)/k. Then we can place [n
=

n-1 balls in the remaining k — (r + 1) boxes. Noting that l T J = g, we see that

first r + 1 boxes and {
this account for all n balls:

(r+1)(q+1)+(k—(r+1))q=(r+1+k—(r+1))q+(r+1)
= g +1
=n-1+1=n.

Finally, if n < k, then there’s nothing to prove: we can only guarantee at least 1 box in some box. O

Important: ~ The ge'neralrized Pigeonhdle Principle: If we place n balls into k boxes,
= 1J
+ 1 balls.

then at least one box must contain at least l

Concept: Don’t memorize this formula! It's better to use your common sense when
applying the Pigeonhole Principle than to memorize a somewhat obscure
formula.

Problem 5.8: There are 20 children in a small mountain town. Any two of them have a common |
grandfather, and each child has two distinct grandfathers. Prove that there are 14 children who have !

Solution for Problem 5.8: Since we're trying to prove that a group of things all share some property in
common—specifically, that 14 children have a common grandfather—this problem is a good candidate
for the Pigeonhole Principle. But how can we use it? It seems clear that the children are our “balls” and
the grandfathers are our “boxes,” but we only have 20 children. How are we going to be able to get 14

of them in the same “box"?
The first thing to observe is that we actually have 40 “balls,” since each child has two distinct

grandfathers. In other words, each child is going to be placed into two boxes, one per grandfather. So
we need to be able to use Pigeonhole in a way such that placing 40 balls into the boxes will result in at

least 14 balls in one box.

Now we look at the numbers. We might notice that if we only had 39 balls, we could get exactly 13
balls in each of 3 boxes. We could also look at our formula from above: placing 40 balls into k boxes

a common grandfather. (Source: ToT)

R e L R A O s N SO S AR R A =S R
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5.4. MORE ADVANCED PIGEONHOLE PROBLEMS

W guarantee that at least one box contains

2

=2ls; if we want this to equal 14, we need L}%J = 13, which suggests k = 3. So if there were only 3
srandfathers in the entire town, then there’d be 3 “boxes” (grandfathers) for 40 “balls” (grandchildren),
22 hence one of the boxes would have 14 balls, and we’d be done.

S0 we're left to try to prove the (perhaps surprising) claim that there are only 3 (or fewer) grandfa-
“ers. Let's see how we might do this. Suppose the 1* kid has grandfathers A and B. The 2" kid has to
e a grandfather in common with the 1% kid, so suppose it's A that they have in common (it doesn't
Tatter; the argument works the same if we supposed it was B). So the 2™ kid has grandfathers A and
— Now there are two possibilities.

One possibility is that every kid might have grandfather A. If this is the case, then there might be
=ore than 3 grandfathers in the town (every kid might have a unique 2" grandfather), but that’s no
worry, because in this case, the problem becomes trivial: not only are there 14 kids with a common
==ndfather, but in fact all 20 kids have a common grandfather!

The other possibility is that there’s some kid who doesn’t have A as a grandfather. But since this kid
=ust have a grandfather in common with each of the first two kids, we know that this new kid must
“ave Band C as her grandfathers. At this point, we have kids with the following sets of grandfathers:

(A and B) (A and C) (Band C)

=nce every other kid must have a grandfather in common with all 3 of these children, we see that
. B,C} are the only possible grandfathers. If there were a 4th grandfather called D, and some child
“=d grandfather D, then that child’s other grandfather would have to be in common with all 3 of the
s2ds listed above, but those 3 kids don’t have a grandfather in common. Therefore, there are only 3
zrandfathers, and we can use the Pigeonhole Principle as described earlier to complete the proof.

Here’s a summary of our solution:

One possibility is that all the children have a grandfather in common, in which case the problem
Secomes trivial. If they don't all have a grandfather in common, then we showed that there are only
- grandfathers in the entire town. But this means that we have 40 children “balls” to place into 3
=randfather “boxes,” since each child has 2 grandfathers, and hence, by the Pigeonhole Principle, one
ot the grandfathers must have at least 14 grandchildren. O

We'll finish this section with a couple of harder applications of the Pigeonhole Principle.
Problem 5.9: Given any set of ten distinct 2-digit numbers, prove that there exist fwo disjoint subsets
‘of the 10 numbers) with the same sum. (Source: IMO)
R R e N D e T e O T S I

e

Solution for Problem 5.9: The fact that we're trying to prove the existence of two of something with the
same property (in this case, two subsets with the same sum) is our tipoff that we may want to consider
=sing the Pigeonhole Principle. So subsets are going to be our “balls” and sums are going to be our
“boxes”. In order to apply the Pigeonhole Principle, we need to count how many of each of these there
are.
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CHAPTER 5. THE PIGEONHOLE PRINCIPLE

A set with 10 elements has 219 = 1024 subsets, since each of the 10 elements can either be in or nae
in any particular subset. However, we can exclude the empty set (since it has sum 0) and the subses
consisting of the entire set (since there cannot be another subset disjoint to this). Therefore we reals
have only 1024 — 2 = 1022 subsets to consider.

Now we count the number of possible sums. The smallest possible sum is 10, coming from e
subset {10}, and the largest possible sum is

91 492 +--- +99 = 9(95) = 855,

coming from the subset {91,92, ...,99}. Therefore, there are 855 — 10 + 1 = 846 possible sums of subset=
consisting of between 1 and 9 elements of the set.

Since 1022 > 846, we are guaranteed (by the Pigeonhole Principle) that at least 2 different subses
have the same sum. But how do we know that these subsets are disjoint?

We don’t know that they're disjoint, but it’s not a problem! Simply remove any elements that the
two subsets have in common. Since we're removing the same elements, and the subsets originally hac
the same sum, they will still have the same sum after we remove the (same) elements from each. O

Note that 10 elements is the minimum value for which this argument works. If we had startec
with only 9 elements, then we would have 2° — 2 = 510 subsets, but the sums could range from 10 to
92 +---+99 = 8(95.5) = 764, so there would be 764 — 10 + 1 = 755 possible sums. Hence, since 510 < 755
we couldn’t apply the Pigeonhole Principle. (This doesn’t mean that the result is not true for 9 elements.
it just means that our proof wouldn't work.)

Problem 5.10: Aimee plays at least one garhe of chess a aayrfo'r eight weeks, but she plays no more
than 11 games in any 7-day period. Show that there is some period of consecutive days in which she
plays exactly 23 games.

Solution for Problem 5.10: It's not immediately clear how to apply the Pigeonhole Principle to this
problem. For one thing, we want to show that there’s a period in which Aimee plays exactly 23 games,
but the Pigeonhole Principle, as we typically use it, only guarantees at least some amount of something.

Is there another way that we can think about this problem so that it is equivalent to showing that there
are at least 2 of something?

Suppose that we keep a running total of the number of games that Aimee plays through the first :
days, where 0 < i < 56. Specifically, let g; be the total number of games that she plays starting at Day 1
and going through Day i; note that gy = 0 since she plays 0 games in the first 0 days. The statement that
we want to prove—that Aimee played exactly 23 games during some period—is equivalent to showing
that there must exist integers 0 < i < j < 56 such that g; — ¢; = 23. This should remind you a bit of
Problem 5.3, so we'll try to use a similar approach.

Consider the remainders when each g; is divided by 23. The possible values of these remainders are
the first 23 nonnegative integers: {0,1,...,22}. Eight weeks is 56 days, thus by the Pigeonhole Principle,
there must be some remainder r which occurs on three different days. Againby the Pigeonhole Principle,
two of these days must be at most 4 weeks apart: if there were more than 4 weeks between the first and
second days and the second and third days, then there would be more than 8 weeks between the first
and third, which is too long. So we know that there exist integers 0 <i < j < 56, with j —i < 28, such
that ¢; — ¢i is a multiple of 23. But we need to show that it is exactly 23.
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5.5. SUMMARY

There’s still information in the problem statement that we haven’t used!

| Concept: When you”séein to be stuck on a problem, think if there is any information
in the problem statement that you haven't yet used.

WWe also have the information that Aimee plays at most 11 games in any 7-day period. This means
==tin 4 weeks she will have played at most 44 games. Thus 0 < g; - g; < 44. But g;—g; is also a multiple
¢ 23. The only multiple of 23 greater than 0 and less than or equal to 44 is 23. Thus g; — g; = 23, and we
“onclude that starting with Day i + 1 and ending with Day j, Aimee played exactly 23 games. 0

541 Show that, in a 13-card bridge hand, there must be at least 4 cards of the same suit.

=22 Prove that, for any set of 17 positive integers, there is some subset of 5 of them whose sum is a
multple of 5. Hints: 106

543 Every triangle with vertices among 11 given points (no 3 of which are collinear) is assigned one
¢ “our colors: amber, burgundy, chartreuse, or dark green. What is the largest number N for which we
=2 be sure that at least N of the triangles are assigned the same color? (Source: Mandelbrot)

544 A pen-pal club has 12 members. In August, each member of the club sends a letter to 6 of the
~er members, chosen at random.

= Prove that some pair of members of the club will send each other letters. Hints: 226

= In September, each member of the club sends a letter to only 5 of the other members. Does the
conclusion from part (a) still hold? Why or why not? Hints: 17

%45« Somewhere in the universe, n students are taking a 10-question math competition. Their
“uiective performance is called laughable if, for some pair of questions, there exist 57 students such that
=er all of them answered both questions correctly or none of them answered both questions correctly.
~_ompute the smallest n such that the performance must be laughable, no matter how the students
se=tormed on the competition. (Source: HMMT) Hints: 137, 53, 126

Summary

v

Formally, the Pigeonhole Principle states that if we place # balls into k boxes, where # > &, then at
least one box must contain more than 1 ball.

» Informally, the Pigeonhole Principle is just common sense. If you have more items than boxes to
place them in, then at least one of the boxes must contain more than one item.

» More generally, if we have n items to be placed in k boxes, then at least one box must contain at
|
least VTJ +1 balls.
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> Don’t memorize a “formula” for the Pigeonhole Formula (like the one above). Instead, use yous
common sense when applying it.

» Whenever we have to show that “a pair” of objects or “at least 2” objects share some propers:
that’s our cue to think about the Pigeonhole Principle. More generally, it can often be used =
show “at least n” objects share some property, or in problems that ask you to find the maximu=
number of objects satisfying some property.

»  Sometimes, before applying the Pigeonhole Principle, we have to do a little work to reduce the
number of boxes.

» Usually, the tricky part of applying the Pigeonhole Principle to a problem is identifying what az=
the “boxes” and the “balls.”

511 My sock drawer has lots of socks of four different colors (white, black, brown, and blue). How
many socks do I have to pull out to ensure:

(a) at least one matching pair?

(b) at least two matching pairs?

512 The Aopslandia Grand Championship lacrosse tournament has 38 teams and lasts for severa:
weeks. Each team will play each other team exactly once over the course of the tournament. Prove
that, at any point in the tournament, there must be two teams who have completed the same number
of games.

513 Prove that for any set of five positive integers, there are three of them whose sum is divisible bx
3,

-5.14 10 students took a 35-question history test. The test was very hard: each question was solved by
exactly 1 student. If we know that at least one student got exactly 1 question right, at least one student
got exactly 2 questions right, and at least one student got exactly 3 questions right, show that there mus:
be a student that got at least 5 questions right.

. 515 The farmer’s market down the street from my house has 7 different kinds of apples: Golden
Delicious, Fuji, Granny Smith, Gala, McIntosh, Cortland, and Braeburn. I want to bake a pie, for which
I need 5 apples of the same type (because a pie with more than one type of apple, well, that would be
disgusting).

(a) If I randomly select apples, how many do I need to buy to guarantee that I will be able to bake my
pie?
- (b) IfI'want to bake 3 pies, now how many randomly-selected apples do I have to buy?

/516 Prove that for any set of 11 positive integers, there is some nonempty subset of them whose sum
is divisible by 11.

128




CHALLENGE PROBLEMS

=17 A group of 15 friends has $100 among them, and each person in the group has an integer number
¢ Zollars. Prove that two of them must have the same amount.

Show that if 16 people are seated in a row of 20 chairs, then some group of 4 consecutive chairs
mmest be occupied.

515 What is the maximum number of kings that we can place on an 8 x 8 chessboard, such that no
o kings are adjacent (including diagonally)?

=% A certain (small!) college has 20 students and offers 6 courses. Each student can enroll in any or
& ot the 6 courses, or none at all (which is a real waste of tuition). Prove or disprove: there must exist 5
“ucents and 2 courses, such that either all 5 students are in both courses, or all 5 students are in neither
“wurse. (Source: Putnam) Hints: 244

521 Sam’s band has 6 members, but only 4 of them play together in a concert. Additionally, no 3
embers can play together in more than one performance. How many concerts can Sam’s band give,
= most? (Source: Mandelbrot) Hints: 258

= Prove that for every prime p except 2 and 5, there is a power of p that ends with the digits 0001.
BEnts: 273

=5 Letrby any real number, and n > 1 be a positive integer. Show that at least one of 7, 2r, ..., (n—1)r
“ers from an integer by at most 1. Hints: 278

=% Every point in the plane is colored either red, green, or blue. Prove that there exists a rectangle in
= plane such that all four of its vertices are the same color. Hints: 319, 289

535+ In a6 x 6 grid, what is the largest number of squares that can be colored such
izt no four of the colored squares form the corners of a rectangle with vertical and
Serizontal sides? For example, the coloring pattern shown at right is not allowed, since
e four marked squares form the corners of such a rectangle. (Source: Mandelbrot)
SEnts: 293, 227

Let X = {x1,x2,...,xu} be a set of m positive integers, all less than or equal to n, and let
"~ = V1, Y2,...,Ys} beasetof n positive integers, all less than or equal to m. Prove that there isa nonempty
sutset of X and a nonempty subset of Y with the same sum. (Source: Putnam) Hints: 130, 170, 175

~S27= 40 teams play a tournament in which every team plays every other team exactly once. No ties
“wcur, and each team has a 50% chance of winning any game it plays. Find the probability that no two
“=2ms win the same number of games. (Source: AIME) Hints: 260

=23~ Aninternational society has its members from six different countries. The list of members has
~ == names, numbered 1,2,...,1978. Prove that there is at least one member whose number is the
“um of the numbers of two (not necessarily distinct) members from his own country. (Source: IMO)
Sints: 80, 162, 108
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CHAPTER 6. CONSTRUCTIVE EXPECTATION

CHAPTER

| k|

Constructive Expectation

6.1 Introduction

Recall that expected value is essentially a weighted average, where the values of different outcomes o*

an event are weighted based on their probability. If every outcome is equally likely, then the expected
value is just the average of the possible outcomes.

In many situations, we can just use our basic definition of expected value:
E(X) = )" P(X)V(X),

where P(X;) is the probability of event X; occurring, and V(X;) is the value of outcome X;.

However, often it is quite difficult to list all of the possible outcomes directly, determine their
probabilities and values, and compute the expectation in the usual manner. Instead, for many problems,
we can take a more constructive approach to computing expectation.

The key fact that we will use is that we can sum expected values across different events. What we
mean by this is that if we have a series of events that occur in succession, then the expected value of
the sum of the outcomes of the events is equal to the sum of the expected values of the outcomes of
the individual events. This is true even if the events are not independent of one another. This is a

powerful tool that lets us find expected values of complicated events by breaking them down into more
manageable sub-events.

This is a bit hard to describe in words, but hopefully a few problems will make the concept clear.

Extral  High achievement always takes place in the framework of high expectation. — Charles Kettering
11T 1 i - s : -
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6.2. BASIC EXAMPLES

52 Basic Examples

Problem 6.1: We simultaneously flip a penny, a nickel, a dime, and a quarter.

List all 16 possible outcomes and the total value of the coins that land heads-up. What is the
expected value of this total? :

| Separately compute the expected values of each coin’s contribution to the total.

Sum your answers for (b) and compare this sum to your answer from (a).

lem 6.2:
We roll a pair of dice. What is the expected value of the total of the dice?

We simultaneously roll 10 dice. What is the expected value of the total of the dice?

lem 6.3: In the Showcase Showdown on the immensely popular TV game show The Price Is Right,
= contestant spins $1 on the Big Wheel, she wins $1,000 and gets a bonus spin in which she hasa 1/20
e of winning an additional $10,000 and a 1/10 chance of winning an additional $5,000. Suppose
a contestant has a 1/10 chance of spinning $1 What is the expected value of the contestant’s

gz

Eblem 6.4: If X and Y are independent events, show that E(X + Y) = E(X) + E(Y).

WWe can often exploit the fact that we may sum expected values across multiple events. Let’s see a
Sesic example of this.

Peoblem 6.1: We simultaneously flip a penny,' a nickel, a dime, and a quarter; What is the expected §

w2 ue of the sum of the values of the coins that land heads-up” E
I S R e R B R R R o P P e i SRR X TR

Sru o for Problem 6.1: Since each of the four coins are equally likely to come up heads or tails, there
= 2° = 16 equally likely outcomes. We can find the expected value by simply averaging the values of
@l the possible outcomes. For this, we can make a chart:

| Permy |T H|T|H|T|H|T|H| T H|T H|T| H | T | H
| Nickel | T|T|H|H|T| T\ H| H| T|T|{H H|T|T H H
Dime | T|T|T|T H H H|H| T | T|T| T H H H H
Quarter | T|T | T|T|T | T|T| T H H HIHH H H H
Total!0|1]5}6}10|11\15116]25]26{30]31!35 36 40 41

So we see that the expected value is

U+1+5+6+10+11+15+16+25+26+30+31+35+36+40+41_328_205
16 G
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However, we could have done this more simply by looking at each coin separately. The penny has
an expected value of 3(0) + 3(1) = 1. Similarly, the nickel has expected value 3, the dime has expecte=
value 329 = 5, and the quarter has expected value % Therefore, the expected value when we flip them

allis 1 +3+5+% =% =205.0
‘Concept: The expected value of a sum of events is the sum of the expected values.

(= of the individual events.

'Problem 6.2:
(a) We roll a pair of dice. What is the expected value of the total of the dice?

(b) We simultaneously roll 10 dice. What is the expected value of the total of the dice?

Solution for Problem 6.2: Rather than list all 36 possible outcomes for the pair of dice, we can use the fact
that the expected value for a roll of a single dieis §(1 +2+3+4+5+ 6) = 3.5. Therefore, the expected
value of the total of two dice is 2(3.5) = 7, and the expected value of the total of 10 dice is 10(3.5) = 35. =
Problem 6.3: In the Showcase Showdown on the immensely popular TV game show The Price Is
Right, if a contestant spins $1 on the Big Wheel, she wins $1,000 and gets a bonus spin in which
'she has a 1/20 chance of winning an additional $10,000 and a 1/10 chance of winning an additional
$5,000. Suppose that a contestant has a 1 /10 chance of spinning $1. What is the expected value of

the contestant’s winnings?

Solution for Problem 6.3: There are four possible outcomes:

e The contestant wins nothing with probability -19—0

. ; L. 1 17 17
e The contestant wins $1,000 with probability 1020 = 500
e The contestant wins $6,000 with probability L.oL.
10 10 100
e The contestant wins $11,000 with probability L —1—
10 20 200

Therefore, the expected value of her win is:

40000
P2 = $200.
100 200 200 T

b4
200

17($1000) + 2($6000) + $11000 _ $

1—9[5(&60) + 17 (61000) + —-(86000) + === (511000) =

We can do this more simply by calculating the expected value of the regular spin and the bonus spin
separately. The regular spin has expected value 75($1000) = $100. The bonus spin has expected value

1 ($5000) + 55($10000) = $1000, but we have to remember that the contestant only gets the bonus spin

10 ($1000) = $100 + $100 = $200. C

with probability f5. Therefore, the overall expected value is $100 + 10
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Note that in Problem 6.3, the two events that we are summing are not independent: the plaver only
==ts a bonus spin if she wins on the regular spin, so the bonus outcome is dependent on the regular

“utcome. Nonetheless, we saw that we could still sum the individual expected values to get the overall
expected value.

Now that you've seen a few examples, you hopefully have a good feel for what we’re doing. We
== computing the expected value of the sum of outcomes of individual events, and we have seen (so

1) that we can do this by summing the expected values of the individual events. Let’s try to make this
=10 a formal statement, and see if we can prove it.

Problem 6.4: If X and Y are independent events, show that E(X + Y) = E(X) + E(Y).

'WARNING!! This proof is somewhat algebraicajly intense. Don't WO-IZI'y if y(_):
1 'y don't see every detail on the first reading. !

Scution for Problem 6.4: 'We'll need to write formulas for the expected values of X and Y, and for that,
w= 1Tl need to introduce some notation. (Also, we're only going to consider the situation in which both
~ and Y have a finite number of possible outcomes; if X and Y have infinitely many outcomes, the result
= still true, but it is somewhat difficult to prove.)

Suppose that X has 1 possible outcomes, which have probabilitiespy, py, . .., pmand values xy, x5, . ..., X,

“5is means that py +p2 + -+ + p,, = 1 and that

EX) =p1x1 +paxg + -+ + Py = Z Pk
i=1

Similarly, suppose that Y has n possible outcomes, which have probabilities 41, 42, . . ., g, and values
%2,--.,Yn- This means that g, + g2 + - -- + g, = 1 and that

'l*

E(Y) = quiy + qayz + -+ Guu = 3,410
=1

What do we know about the event “X + Y”? Since X and Y are independent events, we know that

= = Y” has mn possible outcomes: value x; + yj occurs with probability p,q;, for all 1 < i < m and
< j<n So

E(X+Y) =pig1(x1 + y1) + prga(xcs + y2) + -+ + p1gu(xs + 1)
+ p2qi(x2 + Y1) + paga(xa + y2) + -+ + pagu(xa + 1)
+:
+ P g1 (X + Y1) + o (X + 12) + < *+ Pt (X + Y
m n
=Y. ) pajixi+v)).
=1 j=1

W55 is this equal to E(X) + E(Y)?
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We can isolate the x terms in each row. For example, in the first row of the above equation for
E(X +Y), we have

p1qix1 + prgaX1 + -+ p1gaX1 = prxa(gu + -+ gn) = P1xu,

since g1 + + -+ + g, = 1. Similarly, the x terms in the second row sum to pax,, and so on. Thus all the =
terms, summed over all rows, give

pix1 +paxa + 0+ Pk = E(X).

We can also isolate the y terms, but this time by column. For example, in the first column of the
above equation for E(X + Y), we have

Pqy1 + P2qays + o+ Py = uya(pr + 0 Pe) = 1Y,

since py + -+ + py = 1. Similarly, the y terms in the second column sum to g2¥2, and so on. Thus all the
y terms, summed over all columns, give

iy + Qa2 + -+ Guyn = E(Y).
This shows that E(X + Y) = E(X) + E(Y). O

Concept: Don’t worry if you didn’t follow all of the details in the above proof—the

algebra used is somewhat complicated. It's vastly more important that
you understand the concept: we can sum expectations across separate
events to get the expectation of the combined event.

In fact, the result E(X + Y) = E(X) + E(Y) is still true even if X and Y are dependent events, as we saw
as example of in Problem 6.3. It is a lot more difficult to prove, however: the algebra is a lot messier.
and we’d need to introduce notation that we haven’t yet developed. So we're not going to try to prove
this here, but you can accept it as true from now on.

This is not limited to just 2 events: we can sum any number of events in the same fashion. To
summarize:

Impoﬂént: If Xlr, X5, . ', Xk are several events (indepéhdent or not), then

W | E(Xl+X2+---+Xk)=E(_}§1)+E(X2)+---+E(Xk).

6.2.1 I flip 20 coins. I then discard the coins that come up heads, and re-flip those that come up tails.
What is the expected number of coins that again come up tails?

6.2.2

(a) IfIroll one green die and two blue dice, what is the expected value of the sum of the values of the
blue dice minus the value of the green die?
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= IfI'roll 37 green dice and 38 blue dice, what is the expected value of the sum of the values of the
blue dice minus the value of the sum of the green dice?

=23 Kai picks a number and Jae picks a number. Kai picks w with probability p and x with probability
- = p. Jae picks y with probability q and z with probability 1 - g.

What is the expected value of Kai’s number?
= What is the expected value of Jae’s number?

Find an algebraic expression for the expected value of the sum of Kai's and Jae's numbers by finding
the probabilities of each of the 4 cases and then computing the expected value manually. Is your
expression equal to the sum of the expressions you found in (a) and (b)?

524 Henry flips 10 coins and lays them on the desk. He then chooses one of the coins at random, and

1 1s tails, he flips it to heads. What is the expected number of heads showing? (Source: Mandelbrot)
Hints: 37

225x What is the expected number of turns of a randomly-chosen 9-step path B
=om point A to point B in the grid at right? (A turn is any point where the path l 4
“hanges direction; for example, the path shown at right has 3 turns, one at each of
e marked points.) Hints: 150

53 Summing Expectations Constructively

lem 6.5: I flip a coin 10 times.
What is the probability that the 1% and 2 flips come up heads?
What is the probability that the 2" and 3™ flips come up heads?:

What is the expected number of pairs of consecutive tosses that come o heads? (For example,
the sequence THHTHHHTHH has 4 pairs of consecutive HH's.)

lem 6.6: I have 12 addressed letters to mail, and 12 corresponding pre-addressed envelopes. For
wacky reason, I decide to put the letters into the envelopes at random, one letter per envelope.
tis the expected number of letters that get placed into their proper envelopes?

lem 6.7: An equilateral triangle is tiled with n? smaller congruent equi-
triangles such that there are n smaller triangles along each of the sides
he original triangle. (The case n = 11 is shown at right.) For each of the
equilateral triangles, we tandomly choose a vertex V of the triangle
draw an arc with that vertex as center connecting the midpoints of the
sides of the small triangle with V as an endpoint. Find the expected ARBEASRAAD
of the number of full circles formed in terms of n. (Source: USAMTS) /o7 7 KLH ==
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Problem 6.8: There are 650 special points inside a circle of radius 16. You have a flat washer in the
shape of an annulus (the region between two concentric circles), which has an inside radius of 2 and
an outside radius of 3. Our goal is to show that it is always possible to place the washer so that it
covers up at least 10 of the special points.

(a) Suppose we can show that the expected number of points covered by a randomly-placed washer
is at least 9. Explain why this would prove our result that it is possible to choose a placement of
the washer that covers at least 10 points.

(b) Let G be one of the special points. Determine the probability that G is covered by a randomly-
placed washer.

(c) Compute the expected number of points covered by a randomly-placed washer, and finish the
problem.

(Source: PSS)

Just as we can often count items by constructing them and keeping track of the number of choices
along the way, we can also often compute expectations using a similar constructive method. As we saw
in Problem 6.4, we have a very powerful tool: we can sum expectations, even across dependent events.

This first problem of this section shows the power of this idea.

P;Ob_len{ 6.5: 1 flip a coin 10 times. What is the 7éxpected numberrgfﬁpréirs of consecutive tosses that
mple, the sequence THHTHHHTHH has 4 pairs of consecutive HH’s.)

come up heads? (For exa
I R S T = R T e

e SR = 2 SR e

Solution for Problem 6.5: There are several tactics that we might think about. For instance, we might try
to count the number of sequences with 1 pair of heads, with 2 pairs of heads, and so on, but this quickly
devolves into a really messy PIE calculation. (If you don’t believe this, try it and see.)

We might also try a straightforward constructive counting argument, but the problem with this
approach is that the probabilities of the existence of pairs of heads in consecutive locations are not
independent. For example, if the first two flips are HH, then there’s a % chance of a second pair of heads
in the next slot (in other words, of the first three flips being HHH), but if the first two flips are TT, then
there’s 0 chance of a pair of heads in the next slot (since the first three flips will be either TTH or TTT).
This makes it hard to construct the sequences without a lot of messy casework.

Fortunately, we don’t have to do that!

Any particular pair of consecutive flips is HH with probability 1. Therefore, each pair of consecutive
flips contributes ; to the overall expected value. Since there are 9 possible pairs of consecutive flips that
could be HH, the expected number of pairs of consecutive flips of heads is 9(%) = %.

If you don't quite buy this explanation, there’s another way to think about it. We know that there
are 2% = 1024 possible sequences of ten coin flips (and they're all equally likely). We also know that
2% = 256 of them begin with HH (since we have 2 choices for each of the remaining 8 flips). Similarly, for
any particular choice of consecutive flips, we know that 256 of the sequences have HH in that position
(for example, there are 256 sequences of the form ???HH??2???, where ? can be anything), since we have
2 choices for each of the other 8 positions.
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Therefore, when we sum the number of pairs of consecutive heads over all 1024 sequences, we find
that 256 of the sequences contribute a pair of heads in the first position, 256 of the sequences contribute
= pair of heads in the second position, and so on for each of the 9 possible positions. Therefore, there

are 9(256) total consecutive pairs of heads among the 1024 sequences, and hence the expected value for

- . i . - 9(256) _ 256\ _ 1y _ 9
“1e number of consecutive pairs of heads in any sequence is = =9 (@) =9 ( 4) =3.0

Problem 6.6: T have 12 addressed letters to mail, and 12 cori*espoﬁding pre~addressed envelopes: For |
some wacky reason, I decide to put the letters into the envelopes at random, one letter per envelope. |

“What is the expected number of letters that get placed into their proper envelopes?
R E8E R R e e SISy e e T s 2 SN U e e e

i s e

=ciution for Problem 6.6:  Once again, we could try to count the number of outcomes with 0 correct

=tters, 1 correct letter, etc., but this would become a messy PIE calculation. We can instead sum the
=xpected value constructively.

Each envelope individually has a 75 chance of receiving the correct letter (since it is equally likely
@ receive any of the 12 letters). Therefore, each envelope contributes # to the total expected number
o letters in their correct envelopes. Since there are 12 envelopes, and each contributes 3, the expected
sumber of letters in their proper envelopes is 12(%)=1.

Again, if you don’t feel completely comfortable with this argument, note that for each envelope, 11!
°F the 12! possible arrangements will have that particular envelope correctly filled. Therefore, when

= sum over all 12! arrangements, we get a total of 12(11!) envelopes correctly filled, and hence the
=spected number of such envelopes is 12(11!)/12! = 121/12! = 1. O

Sidenote: It is natural to ask, in connection with Problem 6.6, what is the probability
.h that none of the envelopes receives its correct letter? This is an example

of a permutation called a derangement. We looked at derangements in

Challenge Problem 3.41 when we were studying PIE. As we saw then,

we can count the number of such permutations using PIE, by counting

the number of arrangements in which at least 1 letter gets placed into its

proper envelope. However, a nicer solution is to use recursion, which we
will discuss in Chapter 10.

Fmeblem 6.7: An equilateral triangle is tiled with #2 smaller congruent -
“auilateral triangles such that there are n smaller triangles along each of AR b
5 sides of the original triangle. (The case n = 11 is shown at right.) — :
“ur =ach of the small equilateral triangles, we randomly choose a vertex V AT AR TP i
¢ Te triangle and draw an arc with that vertex as center connecting the T _
=points of the two sides of the small triangle with V as an endpoint. AN R/NX AR !
S5 the expected value of the number of full circles formed in terms of n. /- : '

Source: USAMTS)
N

o for Problem 6.7: We can see that at any interior point inside the big triangle, we'll
o zetacircle if all 6 of the little triangles surrounding that point line up exactly correctly,
% = the picture at right. Each little triangle lines up with probability 3, so the probability -,

¢ ====ing a full circle at any particular point is (%)6 = %.

] |
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Now we have to determine how many interior points there are. We can see that there is 1 interie=
point near the top (at the bottom of the 2" row of triangles), then 2 interior points in the next row, ans
so on, down to 7 — 2 points in the bottom interior row. Therefore there are

(n-2)(n-1)
2

interior points. Since each of these points contributes 55 to the expected number of circles, we get 2
final answer of

1+---+4n-2)=

(n—=2)(n-1)
1458

One very powerful application of expected value is in geometric optimization problems, as in the
next example.

Problem 6.8: There are 650 special points inside a circle of radius 16. You have a flat washer in the
shape of an annulus (the region between two concentric circles), which has an inside radius of 2 and
an outside radius of 3. Show that it is always possible to place the washer so that it covers up at least
10 of the special points. (Source: PSS)

R R R T S R R e e A e T T P o T P oy O T S O R TR,

Solution for Problem 6.8: This is an existence problem. We wish to show that there exists some position
at which we can place the washer so that it covers at least 10 points. But why is this related to expectec
value?

Suppose that we could compute the expected number of points covered by a randomly-placed
washer, and that this value was greater than 9. What could we conclude? If the average washer covers
more than 9 points, then there must exist some washer that covers 10 or more points. Because, if every
washer covered 9 or fewer, how could the average possibly be greater than 9?

So our goal is to show that the expected value of the number of points covered by a washer placed
at random is greater than 9. If we can show this, then we can conclude that there must be some place
where we can put the washer to cover 10 or more points. Note that this is essentially a geometric version
of the Pigeonhole Principle.

Calculating this expected value, however, doesn’t appear to be so simple. For starters, there are
infinitely many possible places to put the washer! Evaluating each possible position of the washer will
literally take forever, since there are an infinite number of places we can put it.

However, there are only 650 points in the circle we have to consider. Therefore, we can take an
element-by-element approach, similar to what we did in Problem 6.5. Recall in that problem, we noted
that 1 of the total sequences of flips had a pair of consecutive heads in any particular position, and we
could sum this over each possible position to get a total expected value of 2 consecutive pairs of heads.
We'll do the same thing here: we'll calculate, for each possible special point, the portion of the washer
placements in which that special point is covered.

Extral  One of the common denominators I have found is that expectations rise above that which is
- expected. — George W. Bush :
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Let P be one of our special points. P is covered by the washer if and Washer
v if the center of the washer is at least 2 units away from the point, but
= more than 3 units away. This region (the region between 2 and 3 units
“way from P) we will call our “success” region, and it is the region between
= heavy dashed circles in the diagram to the right.

For example, in the picture at right, a washer is shown with center W
m=ide the “success” region, so the washer covers our point P. Any washer
W 50se center is in the “success” region will cover point P, and conversely,
#=+ washer that covers point P will have its center in the “success” region.

Therefore, the area of the region in which the center of the washer must
== = order to cover P is just the area of the “success” region. The region is
e difference between a circle of radius 3 and a circle of radius 2, so its area is 321 — 2271 = 57.

Success Region

Now we consider the overall region where the center of the washer
might be. We must be careful to include those cases in which the center
of the washer is just outside our initial circle, but still covering special
points near the circumference of the circle, as shown at left. To take into
account the possibility of a washer centered outside the circle covering
special points inside the circle (an example of which is shown at left), we
note that the “possible” region, in which the center of our washer can
be placed and still have the washer cover special points, is a circle with
radius 19, not 16.

Now, we can evaluate the probability that a washer placed at random
covers a given special point. Out of the 19?7 = 3617 area in which we
= place the center of our washer, there is a 57 area in which it can be placed to cover P. Therefore, the
moability P is covered by a randomly placed washer is (57)/(3617) = 5/361.

“owever, there’s nothing special about the P we examined. For each of the 650 special points, the
cability that a randomly placed washer covers that point is 5/361. Therefore, each special point
~“wemibutes 5/361 to the expected value of the number of special points covered by a randomly placed
waster. So, the total expected value of the number of special points covered by a randomly placed
Bas=her is 5

650 36l 9.003:

= the expected value of the number of special points covered by a randomly placed washer that
==2ps some portion of our circle is greater than 9, there must be some placement of the washer that
== at least 10 special points. O

There are 20 houses along the shore of a lake. Each is painted one of four colors at random. I
“=my house (one of the 20) and walk around the lake. Each time I pass a house that is the same color
= previous house, I laugh. (This includes comparing the first house I see to mine, and comparing
¥ Souse to the previous house I passed when I finish my journey.) I don't laugh at any other time
==z my walk. What is the expected value of the number of times that I laugh during my walk?
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6.3.2 George has six ropes. He chooses two of the twelve loose ends at random (possibly from =
same rope), and ties them together, leaving ten loose ends. He again chooses two loose ends at rancom
and joins them, and so on, until there are no loose ends. Find, with proof, the expected value of e
number of loops George ends up with. (Source: USAMTS)

6.3.3 One fair 6-sided die is rolled; let # denote the number that comes up. We then roll a2 dice: =
the sum of the resulting 2 numbers be b. Finally, we roll b dice, and let ¢ be the sum of the resulting &
numbers. Find the expected value of c. (Source: HMMT)

6.3.4* 51 points are inside a square of side length 1. Prove that we can cover some three of them &+ &
circle with radius 2. Hints: 67, 123

6.3.5x For any subset S C {1,2,...,15}, call a number n an anchor for S if n and n + #(S) are boss
members of S, where #(S) denotes the number of members of S. Find the average number of anchaos
over all possible subsets S C {1,2,...,15}. (Source: HMMT) Hints: 235

6.4x A Coat With Many Patches (Reprise)

Problem 6.9: Recall Problem 3.24:

I have a coat with area 5. The coat has 5 patches on it. Each patch has area at least 2.5.
Prove that 2 patches exist with common area of at least 1. (Source: PSS)

Our goal is to prove it directly using expected value, without using PIE.

(a) Define a function f such that f(p) is the number of patches containing point p. If p is chosen a:
random, compute a lower bound for E(f(p)).

(b) Show that (}ZC) > 2k — 3 for any integer k such that 0 < k < 5.

(c) Use parts (a) and (bj to show that E ((f (zp'))) >0

(d) Use part (c) to show that some pair of patches must have common area at least 1.

Let’s revisit the coat-and-patches problem from Chapter 3. You may recall that when we considerec
this problem earlier, we solved it using a series of PIE computations. Now let’s find a completely
different solution, using expected value.

Problem 6.9: Recall Problem 3.24: ' ' s ﬂ
I

[ have a coat with area 5. The coat has 5 patches on it. Each patch has area at least 2.5.
Prove that 2 patches exist with common area of at least 1. (Source: PSS)

PR e

Prove it directly using expected value, without using PIE.
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Swiution for Problem 6.9: 'We will use a very clever expected value argument (due to Ravi Bopanna ).

Here’s the general strategy: we know that there are (g) = 10 pairs of patches. If the result is not
=e—that is, if every pair of patches has an overlap with an area of less than 1—then the 10 pairs
“wzether overlap with an area less than 10. This would mean that a randomly chosen point on the coat
= 2rea 5) would be covered by fewer than 10/5 = 2 pairs of patches.

So, working the other way, if we can show that a randomly-chosen point on the coat is covered (on
#=rage) by at least 2 pairs of patches, then one of the pairs of patches must have overlapping area of at

E=st 1,

Let’s try to make this argument a bit more formal. Define a function f where, for any point p on
e coat, f(p) is the number of patches containing point p. In particular, note that f(p) is a nonnegative
“=i=ger between 0 and 5 (inclusive) for all points p.

The quantity that we're interested in, though, is the number of pairs of patches containing p. If p is

A7)

‘e don’t know anything immediately about f (2;9 ) , but we do have information about f(p). Because

~wered by f(p) patches, then it is covered by (f 4 )) pairs of patches. So our goal is to show that

8= sum of the areas of the patches is at least 12.5, and the area of the coat is 5, we know that

E(f(p) = 22 = 25.

== we're dealing with integer values in this problem, let’s double this expression and write it as

2 f(n)) > 5.

e need to relate f (2p ) to f(p). Since we know that f(p) can only take on the values 0,1,2,3,4, 5,

* = ust make a chart:

N
W
N
1

flp) |01
2f(p) [0[2]4]6]8]10

(f(p)) 0/0/1/3]6/|10

2

“= notice that for our middle two values of f(p), we have

(f (Zp )) =2f(p) -3,

- “urthermore, for all possible values of f(p) we have

D)2 2500
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Now we can compute our bound for E ((f (ZP))):

. ((f(zp))) > EQf(p) - 3) = 2E(f(p)) -3 2 2(2.5) -3 =2

Therefore, the expected value of the number of pairs of patches that containa randomly chosen point =
at least 2, and as described at the beginning of our solution, this means that some pair of patches mus:
overlap with an area of at least 1. O

6.5 Summary

» To compute the expected value of a complicated event, think about breaking up the event intc
easier-to-manage components. If the value of an event is the sum of values of several intermediate
components, then we can compute the expected value of each component and sum them to ges
the expected value of the overall event.

»  More precisely, if X1, X, ..., X,, are events, then

EXi+Xo+-+ X)) = E(X1) + E(X2) + - + E(X,).

» This works even if the events are not independent: the expected value of a sum of events is always
the sum of the expected values of the individual events.

» Expected value can also be used in geometric optimization problems.

6.10 1have mn identical game pieces. Each one is a square with side length 2 inches. Each piece has
a quarter circle drawn on it with its center at one of the corners and with radius 1. If I put the game
pieces in an m X n grid, what is the expected value of the number of full circles I form?

6.11 A 10-digit binary number with four 1's is chosen at random. What is its expected value?

6.12 Five balls numbered 1 through 5 are in a bin. You draw them out one at a time, without
replacement. Every time the number on the drawn ball matches the number of the draw, you win a
dollar. For example, if you draw ball #2 on the second draw, you win a dollar for that draw. What is
the expected amount of your winnings?

6.13 The Happy Animals Kennel has 18 cages in a row. It will allocate 6 to dogs and 12 to cats. Let A
be the number of times in the row of cages that a dog cage and a cat cage are adjacent. For example, in
the arrangement cdcdddcdcceceedeec, we have A = 8. Given that the kennel will choose an arrangement
at random from among all the possible arrangements, find the expected value of A.
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CHALLENGE PROBLEMS

5.14 Select numbers a and b between 0 and 1 independently and at random, and let ¢ be their sum_ Let

<. B, and C be the results when a, b, and c, respectively, are rounded to the nearest integer. (Assume

$at 1 is rounded up to 1, and similarly that n + 1 is rounded up to 1 + 1 for all nonnegative integers .
2 What is the probability that A + B = C?
o) Find E(C - (A + B)).

<! Suppose 41,4y, ...,a410 are chosen randomly between 0 and 1, and let ¢ = a; + a5 + -+~ + a100. As
before, let A; be the result when g; is rounded to the nearest integer (for all 1 < i < 100), and let C
be the result when c is rounded to the nearest integer. Find E(C — (A1 + Ay + - + Aqp)).

Source: AMC)

=15 Suppose that in the country of Aopslandia:

* 20% of families have no children

* 20% of families have exactly 1 child
30% of families have exactly 2 children
20% of families have exactly 3 children
10% of families have exactly 4 children

* no families have more than 4 children

+ child is chosen at random. What is the expected number of siblings of the child?

%156 Fifteen freshmen are sitting in a circle around a table, but the course assistant (who remains
s=nding) has made only six copies of today’s handout. No freshman should get more than one
Sandout, and any freshman who does not get one should be able to read a neighbor’s. If the freshmen
== distinguishable but the handouts are not, how many ways are there to distribute the six handouts
s=tect to the above conditions? (Source: HMMT) Hints: 345, 301, 87

%17 Show that we can color the elements of the set S = {1,2,... ,2007} with 4 colors such that any

suoset of S with 10 elements, whose elements form an arithmetic sequence, is not all one color. (Source:
W0) Hints: 33, 185

%18 For any positive integer 7, let p,,(k) be the number of permutations of the set {1,2, ..., ) that have
=wactly k fixed points. (A fixed point of a permutation is an element i such that i is in the position of
e permutation. For example, the permutation (3,2, 5,4,1) of {1, 2,3, 4, 5} has two fixed points: the 2 (in

e 2% spot) and the 4 (in the 4™ spot).) Prove that Z kp.(k) = n!. (Source: IMO) Hints: 3
k=0
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6.19% There are several circles inside a square with side length 1. The sum of the circumferences
the circles is 10. Prove that there exists a line that intersects at least 4 of the circles. Hints: 43, 177

6.20x A standard 52-card deck is shuffled, and cards are turned over one-at-a-time starting with =
top card. What is the expected number of cards that will be turned over before we see the first Ac="
(Recall that there are 4 Aces in the deck). Hints: 325, 52

6.21% In a competition, there are a contestants and b judges, where b > 3 is an odd integer. Each jucas
rates each contestant as either “pass” or “fail.” Suppose that k is a number such that, for any two judges.

-1
their ratings coincide for at most k contestants. Prove that ; > =5 (Source: IMO) Hints: 202
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esolved to stop accumulating and begin the infinitely more serious and difficult task of wise distribution.

— Andrew C arnegie

CHAPTER

Distributions

7.1 Introduction

= vouread Introduction to Counting & Probability, then you're already a bit familiar with a distribution.
Sasically, whenever we have to assign (or “distribute”) indistinguishable items among distinguishable

==ople or objects, we have a distribution problem.

[n this chapter, we'll start by looking at the basic problem: distributing indistinguishable objects to
“stinguishable recipients, such that each recipient receives at least one object. This problem is well
“nderstood, and its solution is fairly easy, although it requires a slight bit of cleverness.

However, it turns out the solutions to many more complicated distribution problems can be put into
~-* correspondence with the solutions of our basic distribution problem. In other problems, we can
“=d a different 1-1 correspondence to relate a distribution to a different problem that we know how to

siive. In the most difficult sort of distribution problem, we’ll have to think “outside the box” and come
“= with a more clever solution.

An important lesson to learn about solving distribution problems is not to rely on a formula to
siive them. Instead, reason out the answer each time you're presented with a distribution. This will
“o¢ only minimize the possibility of incorrectly solving basic problems, but also increase your success
& solving more difficult distribution problems. Also, many seemingly-difficult counting problems
#e= really distribution problems in disguise. Once you have a better understanding of how to solve

“smibution problems, you will be able to use this knowledge to solve an even wider variety of counting
pmoblems.

Extral  Of all things, good sense is the most fairly distributed: everyone thinks he is so well supplied
=== with it that even those who are the hardest to satisfy in every other respect never desire more of
it than they already have. — René Descartes
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7.2 Basic Distributions

Problem 7.1: A working crew of 4 people just finished work on your yard. You pay the crew
$200, using ten $20 bills. In how many ways can the four crew members divide the 10 bills among
themselves if each member must get at least one bill? Assume the crew members are distinct, but the
$20 bills are not.

Problem 7.2: In how many ways can [ pass out 11 identical lollipops to 6 kids, if each kid must receive
at least one lollipop?

Problem 7.3: In how many ways can we distribute » indistinguishable items into k distinguishable
boxes, if each box must contain at least one item?

Problem 7.4: How many quadruples (a, b, ¢, d) of positive integers are solutions toa +b +c+d = 177

The basic idea of a distribution is simple. We have a bunch of indistinguishable objects that we want
to distribute into distinguishable piles. We don’t care which specific objects end up in each pile, jus:
how many of them end up in each pile.

Here's a basic example:

Problem 7.1: A working crew of 4 people just finished work on your yard. You pay the crew §
$200, using ten $20 bills. In how many ways can the four crew members divide the 10 bills among f
themselves if each member must get at least one bill? Assume the crew members are distinct, but "
the $20 bills are not. :
Solution for Problem 7.1: This is a distribution problem because we don’t care which specific $20 bills go

to which people; we only care about how many $20 bills each person gets. The bills are indistinguishable,
but the people are distinguishable.

It is possible to solve this problem through a lengthy casework process. This is somewhat tedious,
but leads to the interesting Hockey Stick identity. (See Chapter 13 of Introduction to Counting & Probability
if you'd like to see this method.) Here, we will show only the faster, more clever solution.

Imagine that we arrange the ten $20 bills in a row, where each “$” denotes a bill:

$555555555

We don’t care which specific bills each person receives, since the bills are indistinguishable. We only
care how many bills each person receives. So we can assume that the first person takes some number
of bills from the left side of the row, then the next person takes some bills from those remaining at the
left side of the row, and so on. For example, if person #1 gets $80, person #2 gets $40, person #3 gets
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500, and person #4 gets $20, we can think of that as:
$5$%% 3% 3$%% %

R e Sl S
#1 #2 #3 #4

Setter yet, we can place “dividers” between the $'s to separate them into groups:

$5$5155188%1$

= order to divide the 10 §’s into 4 groups, we need to insert 3 dividers. Since a divider can be placed
S=tween any pair of $’s and there are 9 consecutive pairs, we have 9 “slots” to choose from in which to

wsert the dividers. Note that we can place at most one divider into any slot, since we need to guarantee
Szt each person receives a positive number of bills.

To use our more formal language, there is a 1-1 correspondence between
= of ways to distribute 10 $’s among 4 people} &  {# of ways to insert 3 dividers into 9 slots} .

“5e right side of the above correspondence is easy to count: we can place 3 dividers into 9 slots in

=84 ways, since we simply have to choose 3 of the 9 slots in which to place dividers. So there are 84
=vs to distribute the money. O ‘

Let's see another example before going to the general case.
Problem 7.2 In how many ways can I pass out 11 identical lollipops to 6 kids, if each kid must }
s=ceive at least one lollipop?

“wiwtion for Problem 7.2: 'We can arrange the 11 lollipops in a row (we will use % to represent a lollipop):
ARRAAAXRXAXAXRR

= Sivide this into 6 groups, we need to insert 5 dividers. The first kid then gets the leftmost group, the

Sest Kid gets the next group, and so on. For example, to give 2 lollipops to each of the first two kids, 1

= =2ch of the next three, and 4 to the last kid, we insert dividers as:

33¢] 3¢ 3¢ 3¢] 3¢ 3¢] 3¢ 3¢ 3¢ 3¢

~ere are 10 slots into which we can insert the dividers, and we must choose 5 of them. Therefore there

wm= ) = 252 ways to give out the lollipops. O

Having seen a couple of examples, we should have an idea how to handle the general problem.

blem 7.3: In how many ways can we distribute 7 indistinguishable items into distinguishable
=s, if each box must contain at least one item?

o

~wsion for Problem 7.3:  We use the same general idea that we used in the two previous examples.
mzzine arranging the 7 items in a line. In order to divide them into k groups, we need to insert k — 1

“Scers. There are 11 — 1 slots between items into which the dividers can be inserted, and we need to
Soose k — 1 of these slots.

Sormally, we have a 1-1 correspondence:

mto k distinguishable boxes, with each box
getting at least 1 item

B —

Ways to insert k — 1 dividers into n — 1}
— .

Ways to distribute n indistinguishable items
} slots

147



CHAPTER 7. DISTRIBUTIONS

n
i th
Since there are ( E—1

) ways to choose k — 1 of the 1 — 1 slots to receive dividers, we conclude w

-1
the 1-1 correspondence described above that there are (z l) ways to distribute the items. O

We can summarize our results as follows:

Imp;)rtant ‘The number of ways to distribute 1 1nd1st1ngulshable items into k dis-
! W tinguishable boxes, where each box must receive at least one item, is

! =

, Concept: As we often say, don’t memorize the above formula! Instead, understand

' O% the concept that leads to the formula. That is, when presented with a

5 distribution problem, your thought process should be to think of dividers
and slots, not to try to reeall the above formula frorn memory.

Distributions often turn up in counting the number of solutions to certain Diophantine equations.
(A Diophantine equation is an equation in which we are looking for integer solutions.) Let’s see z=
example.

Problem 7.4: How many quadruples (a,b,c,d) of posmve mtegers are solutlons toa+b+c+d =177 I

W?P’\égﬂs* R SR e T R S A e, e e e e

Solution for Problem 7.4:  This is exactly the same as distributing 17 indistinguishable items into £
distinguishable boxes, with the condition that each box must get at least one item. The “items” ars
copies of the number 1, and the “boxes” are 4, b, ¢, and d. For example, setting a = 6 means that we
are placing six of the “1” “items” into the “box” labeled “a.” The fact that we are looking for positive
integer solutions means that each “box” must receive at least one 1.

More formally, we have the correspondences

{Positive integer solutionstoa +b+c+d =17} « {Ways to distribute 17 1's into four Variables,}

such that each variable receives at least one 1

< {Ways to insert 3 dividers into 16 slots}

Therefore there are (136 ) = 560 solutions. O

7.21 In how many ways can 10 kindergarten children eat 30 cookies, if each child must eat at least
one cookie?

7.2.2 Suppose the head of my 4-person work crew insists that she get at least 3 of the 10 $20 bills that
will be distributed to the crew. Each of the other members will get at least one. In how many ways can
the bills be distributed?
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“23 Find the number of positive integer solutions to the equation a + b + ¢ = 100.
“24 In how many ways can 8 licorice sticks and 10 chocolate bars be distributed to 5 kids, if:
each kid must receive at least one piece of candy of each type?

= = each kid must receive at least one piece of candy, but no kid can receive both types of candy?
Hints: 171

7.3 Distributions With Extra Conditions

blem 7.5: How many solutions does the equation v +w + x + y + z = 21 have, where v, w, x, Y,z are
nonnegative integers?

| Why is the answer not (%), using the formula that we learned in the previous section?

' How can we change this problem to look like a problem that we considered in the previous
section?

What is the answer to this problem?

lem 7.6: In how many ways can we distribute n indistinguishable balls into k distinguishable
. if some box(es) may remain empty?

lem 7.7: In how many ways can I distribute 20 candy canes to 7 children, if each child must
ive at least one, and two of the children are twins who insist on receiving the same amount?

What are the possibilities for the amounts of candy that I can give to the twins?

For each possible amount in (a), in how many ways can I distribute the rest of the candy to the
other 5 children? |

Use your answers to I(b) to finish the problem.

lem 7.8: In how many ways can I give out 15 pieces of candy to 4 kids, with each kid getting at
one piece, if the oldest kid insists on receiving more pieces than any other kid?

Explain why this solution does not work: The number of ways to distribute 15 candies to 4 kids
is (1;) = 364. But only ; of these have the oldest kid with the most candy (by symmetry), so the
number of distributions satisfying the condition of the problem is 364/4 = 91.

What are the possible amounts the candy that we could give to the oldest kid?

For each possible amount in (b), in how many ways can we distribute the rest of the candy to the
other kids?

Finish the problem.

lem 7.9: How many solutions does a + b + ¢ + d = 27 have in nonnegative integers, if 2 must be
and d must be a power of 3?

149



CHAPTER 7. DISTRIBUTIONS

In the last section, we discussed the basic distribution problem of counting the number of ways
distribute » indistinguishable items into k distinguishable boxes, such that each box has at least
item. However, many distribution problems will have different conditions on the types of allow
distributions. The most common of these is eliminating the condition that every box must contain
least one item. Let’s see an example of this:

Problem 7.5: How many solutions does the equation v + w + x +  + z = 21 have, where v,w,x, .=/
are all nonnegative integers?

Solution for Problem 7.5: We can’t use our straightforward “dividers and slots” approach here, because
we have to allow for the fact that some of the variables might be 0. But can we convert it to one of cus
earlier distributions?

‘Concept: When faced with a problem that you don't initially know how to do, try

What if we force the variables to be positive?

Letv'=v+1,w =w+1,and soon. If v, w, ... are nonnegative, then v/, w’, ... are positive, and vice
versa. Then

VAW + X+ Y+ =@+ D+ @+ D)+ x+ D+ Y+ D)+ + )= @w+w+x+y+2)+5=26

Aha—now we want to count the positive solutions to v’ + w’ + x’ + y’ +z’ = 26. We know how to do tha*

As usual, we could write this as a correspondence:

{Nonnegative solutions tov + w + x + y +z =21} & ({Positive solutions to v’ + w’' +x’ + ' +z' = 2&

< {Ways to insert 4 dividers into 25 slots}

53
So there are (24 ) = 12650 solutions. O

We can use our insight from Problem 7.5 to solve the general form of this distribution problem.

Problem 7.6: In how many ways can we distribute 1 indistinguishable balls into k distinguishable
boxes, if some box(es) may remain empty?

Solution for Problem 7.6: Here's the general idea:

1. Add k balls to our group of balls, so that we have 1 + k balls total.
2. Distribute the n + k balls into the k boxes, leaving no box empty.

3. Remove 1 ball from each box.
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early this operation is reversible, so this establishes 1-1 correspondences:

{Distribuﬁons of n balls to k boxes,} Distributions of 1 + k balls to k boxes,
with some box(es) possibly empty {With no boxes empty }

< {Insertion of k — 1 dividers into n + k — 1 slots} .

k-1
“herefore we can do this distribution in (” ; 1 ) ways. O

| Importéiﬁ: The number of Ways to distribute n 'indistin,o:ﬁ-iishable balls in k distin-
‘ W guishable boxes, where some box(es) may remain empty, is ‘

n+k-1
k=1 |
Concept: You know what I'm going to say (I‘i'lope): don’t memorize this formula.
( == Understand where it comes from. !

We've now handled the two most common distributions: those with no restrictions at all, and those
= which no box can be left empty. But many distribution problems tack on more exotic conditions.
=t = do a couple of examples.

lem 7.7: In how many waygcan I distribute 20 candy canes to 7 children, if each child must
ive at least one, and two of the children are twins who insist on receiving the same amount?

~wiwsion for Problem 7.7: Unfortunately, there’s no “slick” way of solving this problem. We're going to
e o get our hands dirty with some casework.

The twins can each receive between 1 and 7 pieces of candy (if they receive more than 7 each, then
“Seme's not enough candy left for the other 5 kids). This leaves the rest of the candy to be distributed to
B other 5 kids, which we know how to count.

Here’s a chart showing the cases:

= of candies given to each of | # of candies remaining to be | # of ways to distribute
the twins given to the other 5 kids remaining candy

1 18 )

2 16 (%)

3 14 D)

4 12 )

5 10 ()

6 8 3

7 6 @
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So the number of possible distributions is

17 15 138 11 9 7 5
(4)+(4)+(4)+(4)+(4)+(4)+(4) 2380 + 1365 + 715 + 330 + 126 + 35 + 5 = 4956

There doesn’t seem to be any good way to simplify this answer to a nicer expression, so there proba=is
wasn’t a simpler method that we could have used. O

Concept: Ifyougeta “nice” answer, then there’s often a relatively simple combinato-
(=== rial explanation for the simpler answer, and a relatively simple method of
obtaining it. However, if you get an “ugly” answer, then there’s probably

not a simple method for getting it.

Problem 7.8: In how many ways can I give out 15 pieces of candy to 4 kids, with each kid getting
at least one piece, if the oldest kid insists on receiving more pieces than any other kid?

Solution for Problem 7.8: It might be tempting to use this quick “shortcut™

Bogus Solution: The number of ways to distribute 15 candies to 4 kids is (134) = 364.
i‘r! But only 1 of these have the oldest kid with the most candy (by
symmetry), so the number of distributions satisfying the condition

of the problem is 364/4 = 91.

This doesn’t work since not every distribution will have a unique kid with the most candy—thers
might be a tie. For example, if I gave 5 to each of the first two kids, 3 to the third kid, and 2 to the
last kid, then there’s no kid with more pieces than any other kid. This isn’t allowed: the oldest kic
must have nore pieces than any other kid. If we could somehow compute the number of distributions
that have a unique kid with the most candy, then it would be valid to take 1 of that number to get our
answer. Unfortunately, there’s no easy way to compute that.

So instead, once again, we appeal to casework. This time, our cases will be determined by the
number of candies that we give to the oldest (greedy) kid.

We can give the oldest kid any amount of candies between 5 and 12 inclusive. If we give him more
than 12, then we don’t have enough candy left so that each of the other 3 kids gets at least one piece.
On the other hand, if we give him 4 or fewer, then there are at least 11 pieces left, so by the Pigeonhole
Principle at least one of the other 3 kids must receive at least 4 pieces, which is not allowed.

If we give the oldest kid between 7 and 12 pieces (inclusive), then we can distribute the rest of the
candy to the other 3 kids however we want, since there’s no way to give one of these kids as many as
the oldest. (Remember that each kid must get at least 1 piece.) So these cases give

2\ (3 7
(2)+(2)+---+(2)_1+3+6+10+15+21_56

possible distributions.
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Sidenote: Note that, in the line above, we could have used the Hockey Stick identity:

()< -f -

(If you're not familiar with the Hockey Stick identity, we’ll see it in greater
detail in Chapter 12.) As we just mentioned at the end of the last problem,
a simple answer like (3) often means a simple explanation. Can you find a
simple combinatorial explanation to why, if we give the oldest kid between

7 and 12 pieces (inclusive), the number of ways to distribute the candy is
A
just (3)?

If we give the oldest kid 6 pieces, then there are 9 pieces left. Normally, this would result in (g) =28
Zistributions, but we cannot distribute the candies in groups of 6,2,1 or 7,1,1 in any order, since that
would give some kid at least as many candies as the oldest kid has. So we must exclude these 3! + (?) =9
Ssstributions (since they can be in any order), and hence this case contributes 28 — 9 = 19 distributions.

If we give the oldest kid 5 pieces, then there are 10 pieces left. If none of the three remaining kids
==n have more than 4 pieces, then each kid must have at least 2 pieces (check this for yourself). The
“mlv way to do this is to distribute the candies in groups of 4,4,2 on in groups of 4,3, 3. Each of these
=oups can be arranged in 3 ways (for each group, we merely have to choose which kid gets the different

sumber of pieces), so there are 3 x 2 = 6 valid distributions in this case. As a check, we can list them
=ince there are only 6 of them):

54,4,2, 54,24, 5244, 54,33, 5343, 5334

Therefore, the number of distributions is 56 + 19 + 6 = 81. O
Problem 7.9: How many solutions does a + b + ¢ + d = 27 have in nonnegative integers, if » must be
=v=n and d must be a power of 3? i

g g naier ok

S G s e S S e =

Swiwtion for Problem 7.9:  Once again, there’s no nice way to do this except by getting into casework.
= zenerally want to start by looking at the most restrictive condition first, which in this case is the
“ondition that d must be a power of 3.

Concept: When dealing with restrictions, it usually is best to deal with the most
restrictive condition first.

This means that d must be 27, 9, 3, or 1. We can now make a chart.

d | Possible values for a | # of choices for b,c | Number of solutions

27 0 1 1
9 02 a0 18 19,17,...,1 100
3 0,2,...,24 25;23;....,1 169
1 0,2,...,26 273280451 196

“ereare 1+ 100 + 169 + 196 = 466 solutions satisfying the conditions. =
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7.3.1 Find the number of nonnegative integer solutions to the equation u + v + w + x + y = 22.

7.3.2

(a) Pat wants to buy four donuts from an ample supply of three types of donuts: glazed, chocola=
and powdered. How many different selections are possible?

(b) Pat is to select six cookies from a tray containing only chocolate chip, oatmeal, and peanut buttes
cookies. There are at least six of each of these three kinds of cookies on the tray. How many differess
assortments of six cookies can be selected?

(Source: AMC)

7.3.3 Compute the number of distinct ways in which 77 one-dollar bills can be distributed to 7 peopi=
so that no person receives less than $10. (Source: ARML)

7.3.4 Find the number of integer solutions to the equation x + y + z = 10 if x,y, and z are all less tha=
20.

7.3.5% Find the number of positive integer solutions to w + x + y +z < 25. Hints: 39, 12

7.3.6x Andrew has 10 candy bars, 10 packages of jelly beans, 10 lollipops, and 10 packs of chewinz
gum, and Andrew has two sisters. In how many ways can Andrew distribute the candies between his
sisters, so that each sister gets 20 items total? Hints: 256

7.4 More Complicated Distribution Problems

Problem 7.10: A triomino game piece has three numbers on it from 1 to 9. Two pieces are considered
different if they have different numbers; in other words, the order of the numbers on the piece doesn’t
matter. For example, the two triominos shown below are considered the same. A piece may have a
number repeated, or have the same number in all three positions. How many distinct triomino pieces
are there?

6 %)

3 6

Problem 7.11: How many cubic polynomials f(x) with positive integer coefficients are there such that
=9

Problem 7.12: How many 15-digit base 4 numbers are there with eight 0’s that appear in 3 groups?
(For example, 230001330210000 is one such number; the 3 groups are 000, 0, and 0000.)




7.4. MORE COMPLICATED DISTRIBUTION PROBLEMS

;:l:::m 7.13: How many arrangements of the word PROBABILISTIC have no two I's appearing
secutively?

n most cases, a distributions problem is not going to come with a huge flashing sign that says
~STRIBUTION!” in big neon letters. You are often going to have to look carefully to see that a more
~omplicated problem involves distributions.

Froblem 7.10: A triomino game piece has three numbers on it from 1 to 9. Two pieces are considered &
= ferent if they have different numbers; in other words, the order of the numbers on the piece doesn’t -
‘=atter. For example, the two triominos shown below are considered the same. A piece may have 2
= mumber repeated, or have the same number in all three positions. How many distinct triomino
ueces are there? :

~wwsion for Problem 7.10:  We could solve this pretty easily using casework—let’s do so for practice,
“etore seeing the solution using distributions.

e 1 Triominos with all three numbers the same. There are 9 of these.

= Triominos with two of one number and a third different number. There are 9 choices for the numbers
=ppears twice, then 8 choices for the different third number, so there are 72 of these.

3 Triominos with three different numbers. There are (g) = 84 of these.
o there are 9 + 72 + 84 = 165 possible triominos.

Zutwe can also solve this problem using distribution theory. If we letay, a5, . .. represent the number

~ = 2's, ...on a triomino, then there is a 1-1 correspondence between triominos and nonnegative
=7 solutions to

ap+ar+---+ag9 = 3.

250 know that these solutions are in 1-1 correspondence to positive integer solutions of
b1+b2+"'+b9=12,

== =g;+1. And we know that these solutions are in 1-1 correspondence with the number of ways
: 3 dividers into 11 slots. So the answer is (181) = (131) =165. O

anbeptz Sol‘?mga ﬁfbblem via two different methods is a gobd way to check your
answer.

7= main advantage of the distribution solution to Problem 7.10 is that it scales upward easily. For
"= if you were asked to count the number of hexominos (hexagons with six numbers from 1
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through 9 on them), the casework would be really messy, but the distribution-based solution would &=
quick. (You can see for yourself in the Exercises.)

Distributions can sometimes show up in unusual places, as we see in the next problem.

Problem 7.11: How many cubic polynomials f(x) with positive integer coefficients are there such
that f(1) = 9? l

Solution for Problem 7.11: We can write a such a cubic polynomial as f(x) = ax® + bx? + cx + d. Plugging
inx=1givesus9 =a+b+c+d. Soit'sjust a distribution problem! More formally, we have a 1-2
correspondence:

{Polynomjals f(x) = ax® + bx* + cx + d with

itive int luti =
positive integer coefficients such that f(1) = 9} ¢t {ROSMTRIGEEERSOINONEIT = o4 gy

« {Ways to insert 3 dividers into 8 slots}
Thus there are (g) = 56 such cubic polynomials. O
Problem 7.12: How many 15-digit base 4 numbers are there with eight 0’s that appear in 3 groups?
(For example, 230001330210000 is one such number; the 3 groups are 000, 0, and 0000.)

T R R R

Solution for Problem 7.12: We think about this problem constructively: how would we build such =
number? There are basically three steps:

e Decide how to break up the 0’s into 3 groups;
¢ Decide where to place the groups of 0’s within the 15-digit number;

e Choose the remaining non-0 digits.

We can count the number of choices for each step, then multiply (since the steps are independent) to
get the total number of such numbers.

First, we break up the 0’s into 3 groups. If the sizes of the groups are a, b, ¢, then we must have s, b, -
all positive and a + b + ¢ = 8, the total number of 0’s. This is a basic distribution problem: it’s the same
as inserting 2 dividers into 7 possible slots, so there are (z) = 21 ways that we can break up the 0’s into
3 groups.

Second, we have to place these groups into the 15-digit number. If 8 of the digits are 0, then the other
7 digits are non-0. We can think of the 3 groups of 0’s as dividers that divide the non-0 digits apart. The
slightly tricky thing to be aware of is that we cannot place a group of 0’s at the beginning, but we can
place it at the end. So there are 7 possible slots for our 3 groups (6 in the middle and 1 at the right end),
hence there are (]) = 35 ways that we can insert the digits.

Finally, there are 7 non-0 digits, and each can be 1, 2, or 3. So there are 37 = 2187 choices for the
non-0 digits.

Combining our counts, we see that there are (21)(35)(2187) = 1,607,445 such numbers. O
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Problem 7.13: How many é-fréngemen'f_sl of the word PROBABILISTIC have no two I's appearing |
consecutively? !

“wiution for Problem 7.13: There are 3 I's and 10 other letters. We can think of placing the 3 I's into slots
s=tween 2 other letters, or at the beginning or the end of the word. Therefore, there are 11 possible
sesitions for the I's, and 3 of them to place, so there are (4}) = 165 allowed positions for the I's. Then
e remaining 10 letters can be arranged in 10!/2 ways (don’t forget to divide by 2 since there are two

= 5. Hence, the total number of allowed arrangements is 165(10!)/2 = 15(11!)/2.

For practice, let’s also compute this using complementary counting and PIE, to check our work.
“here are 13!/312! arrangements of the letters without any restrictions. There are 12!/2! arrangements

Wi at least two I's together. There are 11!/2! arrangements with all three I's together. So, by PIE, the
“==l number of allowed arrangements is

130 120 111 1 15
e - = ! e —_|= | ff et
321 " 2 T 11'(13 6+2) 11'(2)’

w=2ch (of course) matches our distribution-based answer. 0O

oo

“21 Calculate the number of possible hexominos: 6-sided game pieces with 6 numbers from 1

“Srough 9 (inclusive), where a number may be repeated and where we don’t care about the position of
‘5 numbers, just how many of each number are on each piece.

22 ARMLovian, the language of the fair nation of ARMLovia, consists only of words using the

== A, R, M, and L. The words can be broken up into syllables that consist of exactly one vowel,
=sibly surrounded by a single consonant on either or both sides. For example, LAMAR, AA, RA,
SSMMAL, AMAL, LALA, MARLA, RALLAR, and AAALAAAAAMA are ARMLovian words, but
WEIMRLM, MAMMMAL, MMMMM, L, ARM, ALARM, LLAMA, and MALL are not. Compute the
Sumber of 7-letter ARMLovian words. (Source: ARMIL) Hints: 271

A gardener plants 3 maple trees, 4 oak trees, and 5 birch trees in a row. He plants them in random

“r. each arrangement being equally likely. Find the probability that no two birch trees are next o
= other. (Source: AIME) Hints: 194

£x How many degree 6 polynomials f(x) with positive integer coefficients are there such that

at

- =30and f(-1) = 12? Hints: 32, 36

The Aopslandia lottery consists of randomly drawing 6 balls (without regard to order) from a
°% 44 balls numbered 1 through 44. A group of citizens is concerned that the lottery may be rigged,
=use they have noticed that, historically, over 50% of the drawings have resulted in a least one pair
“omsecutively numbered balls being drawn. Should these citizens be concerned? Hints: 210, 15

Extral  The speed of communications is wondrous to behold. It is also true that speed can multiply the
=== distribution of information that we know to be untrue. — Edward R. Murrow
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2.5

>

Summary

Distributions are problems involving placing indistinguishable items into distinguishable boxes

If each box must contain a positive number of items, we can think of arranging the items in 2
row, and placing dividers between the items to divide them into the requisite number of boxes
Thinking of the problem in this way, we see that if there are n items to divide into k boxes, thes

we must place k — 1 dividers among 1 — 1 slots, and thus there are (Z :

1
1) possible distributions

If some of the boxes may be empty, then add 1 extra item to each box, and take advantage of &
1-1 correspondences:

{Distributions of n items to k boxes,} {Distributions of n+kitemstok boxes,}
with some box(es) possibly empty with no boxes empty

< {Insertion of k — 1 dividers into n + k — 1 slots| .

Don’t memorize the formulas. Understand where they come from. That is to say: when presentec

with a distribution problem, your thought process should be to think of dividers and slots, not =
try to recall a formula from memory.

Distribution problems with extra conditions may require casework or some other clever manipu-
lation to convert it to a distribution problem that we know how to do.

Many problems are distribution problems in disguise.

Here are some general problem-solving concepts that we saw in this chapter:

ICoru:ept When faced with a problern that you don't initially know how to do, try
! to convert 1t mto a problem that you do know how to do.

Concept If you get a “nice” answer, then there’s often a relatively sunple combinato-
rial explanation for the simpler answer, and a relatively simple method of |

obtaining it. However, if you get an “ugly” answer, then there’s probably | |
not a simple method for getting it.

i Conce_pt When dealmg with restrictions, it usually is best to deal with the most

' restrictive condition first.

Concept: Solvmg a problem via two different methods is a good way to check your

(O=== answer.




REVIEW PROBLEMS

B

714 Determine how many triples (x, y, z) satisfy each of the following:
2) x+y+z=10and x, y,z are positive integers.

2] x+y+z=10and x, y, z are nonnegative integers.

<) x+y+z=10and x,y,z are integers no less than —2.

2} x+y+z=10and x,y,z are positive even integers.

715 Find the number of quintuples (x1, X2, x3, X4, X5) of positive odd integers that satisfy

x| + Xo + x3 + x4 + x5 = 2003.

716 Thave 8 identical pieces of candy and 4 identical cookies to distribute to 3 children (2 boys and a
zl). In how many ways can I do this, if:

= each child must receive at least 1 of each type of item?
= each child must receive exactly 4 items?

= the girl must receive more pieces of candy than either of the boys, and the boys must receive an
equal number of cookies?

717 How many solutions are there in positive integers to the equation w + x + i + z = 30 if no variable
“=kes on a value greater than 16?

13  In how many ways can the integers from 1 to 36, inclusive, be ordered such that no two multiples
¢ 5 are adjacent?

713 How many terms are in the expansion of (x + y + z)!%? (For example, (x + y +2)? = x> + y* + 2> +
=% + 2xz + 2yz has 6 terms.)

720 In how many ways can three teachers and eight students sit in the front row of 11 chairs at the
‘sucitorium if there must be at least 2 students between each pair of teachers? (Source: AMC)

Al

B

20 chairs are set in a row. 5 people randomly sit in the chairs (no more than one person to a chair,
- course!). What is the probability that nobody is sitting next to anybody else? (Source: Mandelbrot)
16

[n how many ways can a word be formed with 8 A’s and 5 B’s if every A is next to another A and
v B is next to another B? Hints: 121
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7.23 Amy flipped a coin 20 times, and got the sequence THHTITTHTTHHTHTTITTTHH. She nc
that 3 times a heads followed a heads, 7 times a tails followed a tails, 4 times a tails followed a ¢
and 5 times a heads followed a tails. How many such sequences are possible? Hints: 326, 261

724x A bin has 10 red balls and 8 blue balls. We randomly draw out 6 balls, one at a time, witf
replacement. What is the probability that, at some point, we choose two consecutive balls that are =
Hints: 305

7.25% In a certain lottery, 7 balls are drawn at random from  balls numbered 1 through 7. I
probability that no pair of consecutive numbers is drawn equals the probability of drawing exactiy
pair of consecutive numbers, find n. (Source: Mandelbrot) Hints: 61
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¢ course I have played outdoor games. 1 once played dominoes in an open air cafe in Paris. — Oscar Wild

CHAPTER 1

Mathematical Induction

“5is short chapter will introduce a proof tool called mathematical induction.

The principle of mathematical induction (often called just induction) is one of the fundamental
=woof methods that we use to prove statements about positive integers. The classic metaphor used to
“escribe mathematical induction is a row of dominos all standing on end:

1111
119313913

a2 if each domino, as it falls, knocks over the next domino in line:

141914

= we tip the first domino over:
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This is the basis of mathematical induction. Suppose that we wish to prove some mathematica
statement that involves a positive integer #. Each “domino” represents the statement for a particulas
value of 7: the first domino is the statement where n = 1, the second domino is the statement wher=
7 = 2, and so on. If we can prove that the first statement (where 1 = 1) is true, and that each statemer=
implies the next one, then we can knock all the dominos down, and thus prove that the statement i
true for all positive integers .

In this chapter we'll formally state the principle of mathematical induction, and use it in severs:
examples. Mathematical induction is one of the most common proof techniques that we use in counting
problems, and you should master it until it becomes almost second nature.

Let’s begin with a simple example:

Problem 8.1: Prove, using mathematical induction, that for any positive integer 7, the sum of the
n(n+1)

first n positive integers equals 5

L
Solution for Problem 8.1: This proof, as with every proof that uses mathematical induction, consists o
two parts.

* A base case (this is analogous to “knocking over the first domino”)

* An inductive step (this is analogous to “proving that each domino knocks over the next one”)

So let’s do these two steps.

Base case: We need to prove the statement for n = 1. The sum of the first 1 positive integers isjust 1, anc
indeed, this equals

1(1+1)_g_l
2 207

Inductive step: We assume that the statement is true for some positive integer k; that is, we assume thas
the sum of the first k positive integers is @ This assumption is called the inductive hypothesis
Now we wish to show that the statement is also true for k + 1, so we compute the sum of the first k + 1
positive integers. Since we will want to use our inductive hypothesis, we break up the sum of the firs:

k + 1 positive integers into the sum of the first k positive integers plus k + 1:
142+ +k+(k+1D)=0+2+--+k)+(k+1).

Now we can use our inductive hypothesis. We have assumed that the sum of the first k positive integers

is “&1 50 we can substitute it into the previous equation:

1+2+---+(k+1)=

k(k+1)
> + (k+1).

The rest is just algebra:

k+D+2(k+1)  (k+D(k+2)  (k+1)((k+1)+1)
2 B 2 B 2 .

rer1y=H

1+2+---+(k+1)=k(k2+1)
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S0 we see that the original statement, that the sum of the first 1 positive integers is equal to “2~, is
true forn =k + 1.

We have completed both of the necessary steps for an induction proof, so we have proved that the
statement is true for all positive integers n. O

The important thing to remember about a mathematical induction proof is that your proof must
contain two separate parts: the verification of the base case, and the proof of the inductive step.

Important: We can use mathematical induction when we wish to prove a statement
' @ S(n) that depends on a positive integer 7. The proof consists of two steps:

1. Prove §(1).

For example, in Problem 8.1 above, the statement S(n) was “the sum of the first 1 positive integers
s equal to ﬂ’;ﬂ.” Our base case established this for 2 = 1, and our inductive step established that the

statement for n = k implied the statement for = k + 1.

Now that you've seen how mathematical induction works, try a few problems:

Problem 8.2: Prove that for any positive integer n,

P+2+ 4 =(1+2+ - +n?

Problem 8.3: Prove that the sum of the interior angles of a convex n-sided polygon is 180(n — 2)
degrees. (You may assume that the sum of the interior angles of a triangle is 180°.)

Problem 8.4: Letn be a positive integer. One square of a 2" x 2" chessboard is removed. [ ]

“rove that the remaining chessboard can be tiled with 3-square L-shaped tiles like the one 5
shown at right.

Problem 8.5: We start with a pile of 25 stones. We divide the stones into two piles (however we wish),
=nd write the product of the numbers of stones in the two piles on the blackboard. (For example, we
=ight choose to divide the stones into piles of 11 and 14, in which case we would write 154 on the
Soard.) We now choose one of the remaining piles, divide it into two smaller piles in any manner we
“Hhoose, and again write the product of the numbers of stones in the two new piles on the blackboard.
e repeat this process until we have 25 piles of 1 stone each. Prove that at the end of this process,

=0 matter what choices we make along the way, the sum of the numbers written on the board will be
300.

‘Froblem 8.6: In a large field, n people are standing so that for each person, the distances to all the
“ther people are different. At a given signal, each person fires a water pistol and hits the person who
= closest to them. When 1 is odd, prove that there is at least one person who is left dry.
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O T T e —r——c ——

S+ 2+t =(14+24+n)

Solution for Problem 8.2: Once again, we have a statement that is claimed for all positive integers = 7
is your cue to think about using induction.

Concept W_henevé}uyoﬁ have a statement that depenc{s on a positive ’mteger—nj
consider mathematical induction as a possible method of proving the
statement.

Let’s prove the problem statement using induction.
Base case: We see immediately that 1° = (1)%.

Inductive step: Assume that 13 + 23 + .-+, = (1 + 2 + --- + k)? (recall that this is called the inducs
hypothesis). We now evaluate 1> +23 +- .- + k> + (k + 1). Since we want to use the inductive hypothess
we should try to rewrite this expression in terms of an expression present in the inductive hypothess

P+ 4+ + P+ k+ 1) =13+ 22+ -+ ) + (k+ 1)%.
Now we can apply the inductive hypothesis to replace (1* + 2° + - -- + k)
P+ + -+ )+ k+1° =1 +2+- + k)% + (k+1)°.

We need to simplify the right side, so we apply the result from Problem 8.1 and a bit of algebra:

k(k +1) KPR+ 12 +4k+1)° K46k + 13k% + 12k + 4
5 = 1

2
_ 3
(1+2+---+k)2+(k+1)3_( ) +(k+1)P° = i i

It would be nice if that numerator factored. Usually, factoring a degree 4 polynomial is a bit of a chore
However, here we have a huge clue. Remember that at the end of the day, we want the right side =
equal (1 +2+ -+ + (k+ 1))%, and that this is equal to ((k—ﬂ-)z(ﬁ&))z
as (k + 1)?(k + 2)%. Indeed, it does:

. So we hope that the numerator factors

K+ 6k +13k% + 12k + 4 (k* + 2k + 1)(k* + 4k + 4) _((k-&l)(k+2))2
4 a 4 B 2 '

Finally, we use Problem 8.1 again to finish:

(k + 1)(k +2)

2
2 ) =1 +24-+k+(k+1)%

13+23+---+k3+(k+1)3=(

We have proven our base case and our inductive step, so the result is true for all positive integers 7.

Induction can be used in geometric problems too! Anything that depends on a positive integer n is
potentially a candidate for mathematical induction.
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Problem 8.3: Prove that the sum of the interior angles of a convex n-sided polygon is 180(r — 2) |
“e=zrees. (You may assume that the sum of the interior angles of a triangle is 180°.) ]
£ S e e S s T —— |

“wiution for Problem 8.3: We already have the base case # = 3, since the problem told us we can assume
==t the sum of a triangle’s angles is 180 = 180(3—2). (Note: we'll omit the degree symbol and the word
~ Zezrees” in our solution; you can assume that all angle quantities are in degrees.) So we can proceed
~“izecily to the inductive step.

‘e assume that for some integer k > 3, the sum of the interior angles of a k-sided polygon is 180(k—2).
~w we want to compute the sum of the interior angles of a (k + 1)-sided polygon. How are we going
= ==t a k-sided polygon from a (k + 1)-sided polygon?

WWe can lop off a vertex!

For example, in the first picture in Figure 8.1 below, we have a 7-sided polygon. We can draw a
~“zonal between vertices that are two sides apart, as shown in the middle diagram. This splits the
wirzon into a triangle and a 6-sided polygon, as in the right diagram below.

= = [
Figure 8.1: Splitting a 7-gon into a triangle and a 6-gon

“wote that the sum of the angles of the 7-sided polygon is equal to the sum of the angles of the triangle
=5 1s 180) plus the sum of the angles of the 6-sided polygon (which is 180(4) = 720). Therefore, the
°f the angles in the 7-sided polygon is 180 + 720 = 900 = 180(5).

= can do this for any (k + 1)-sided polygon. We draw a diagonal between two vertices that are 2
=part on the polygon, splitting the (k + 1)-sided polygon into a triangle and a k-sided polygon.
Zzshed lines in Figure 8.2 below indicate that the polygon has an arbitrary number of sides.)

AN

Figure 8.2: Splitting a (k + 1)-gon into a triangle and a k-gon

= know that the sum of the angles of the triangle is 180, and by the inductive hypothesis, we know
== sum of the angles of the k-sided polygon is 180(k — 2). Therefore, the sum of the angles in the
- —sided polygon is the sum of these, which is

180 + 180(k — 2) = 180(k — 1) = 180((k + 1) — 2),

sroving the assertion. O
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Problem 8.4: Let n be a positive integer. One square of a 2" x 2" chessboard is removed.
Prove that the remaining chessboard can be tiled with 3-square L-shaped tiles like the one
shown at right.

Solution for Problem 8.4: As we've seen before, we have a statement that we must prove to be true fos
positive integers. This makes it a good candidate for induction.

Base case: If we take a 2! x 2! chessboard—that is, a 2 X 2 chessboard—and remove a square, wha
left will be exactly the same shape as an L-shaped tile (although perhaps rotated). So we can simz
place a single tile to cover the board, and we're done.

Inductive step: Assume that we can tile any 2* x 2" chessboard with any square removed, where & = =
is a positive integer. We’ll consider a 25! x 2¥*! chessboard with a square removed, and see if we cas
tile it.

We need to reduce the 21 x 2¥*1 problem down to the 2% x 2¥ problem, which we assume (by @
inductive hypothesis) that we can solve. What's the easiest way to do that? It seems like the easie=s
way is to divide our 21 x 251 board into 4 boards of size 2* x 2% by slicing it horizontally and verticais
through the middle:

But only one of our four 2* x 2* boards is going to have a square missing; the other three will be
complete. We can use the inductive hypothesis to tile whichever quadrant contains the missing squars
but what do we do about the other three? If only each of them had a square missing. ... Is there =
systematic way we can remove a square from each of the three complete 2 x 2 boards?

Yes! “Remove” the squares closest to the center of the original 2! x 2*! board
by covering them with a tile, as shown in the picture to the right. Now we're ;
set! We place that tile in the center, and what’s left is four boards of size 2t x 2F, '

each with a square missing. We can tile them, using the inductive hypothesis, and ‘ 1111t
when we do so the result is a tiling of the original 2! x 2**1 board.

Therefore, by induction, for all positive integers 1, we can tile a 2" x 2" board
with any square removed. O

Sometimes the result for k is not enough to prove the result for k + 1. We say that we are using
strong induction when we must assume the result for all 1 < i < k in order to prove the result for k + 1.
The informal way to think of strong induction is that it takes the combined strength of all of the first
dominos in order to knock over the (k + 1) domino. Strong induction is not that common, but as we
will see in the next problem, it is occasionally necessary.
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Problem 8.5: We start with a pile of 25 stones. We divide the stones into two piles (however we
wish), and write the product of the numbers of stones in the two piles on the blackboard. (For
example, we might choose to divide the stones into piles of 11 and 14, in which case we would write
154 on the board.) We now choose one of the remaining piles, divide it into two smaller piles in any
manner we choose, and again write the product of the numbers of stones in the two new piles on
the blackboard. We repeat this process until we have 25 piles of 1 stone each. Prove that at the end
of this process, no matter what choices we make along the way, the sum of the numbers written on
the board will be 300. _

I e A R O e R I e A T B R S e SR D e

Solution for Problem 8.5: We might first try to figure out where that “300” comes from. To this end, we
<an experiment a bit with the most “extreme” choices that we can make when dividing the stones. One
extreme way of dividing the stones is to always split the stones so that one of the new piles contains
‘ust a single stone. In other words, we divide the 25 stones initially into piles of 1 and 24, then divide
the 24-stone pile into piles of 1 and 23, and so on. If we do this, then the numbers that get written on
the blackboard are 24,23, ...,1, and their sum is

2
24+23+4+---+1= ( 5)2(24) =(225):300.

~ha, there’s the 300.

The difficulty is that there doesn’t seem to be any obvious direct way to approach this problem.
[t turns out that there’s a really clever counting argument that proves that the sum must be 300. But
s fairly difficult to see. We'll present it at the end of the solution.) But perhaps we can prove the
mwore general version of the problem. In particular, what if we began with # stones? Then based on
Jur experimentation above, we would expect the sum at the end to be (}). Indeed, if we did the same
=xtreme pile-splitting with n stones—that is, at every step, created a new pile with a single stone in
“—then the numbers that get written on the blackboard would be 7 — 1,17 = 2,...,1, and their sum is
m-1)+mn-2)+n-3)+---+1= (= Dn =(:)

2

So we’d like to prove that if we start with 7 stones, we will end up with a sum of (3), no matter how
= go about dividing the stones at each step. Since we have a statement for all positive integers 71, we
=ight think to try induction. However, the difficulty is that the initial pile can be divided into two piles
“f any size. In particular, there is no way of getting from the problem of size 1 — 1 to the problem of size
= 50 we'll need to use a somewhat stronger version of the inductive hypothesis.

But let’s begin with the base case. When n = 1, we have only 1 stone, and nothing to divide. So no
mumbers get written on the blackboard, and the sum of no numbers is 0 = (;). (We know that (; ) =10;
Snce (;) counts the number of ways to choose 2 items from a set of 1 item. It is impossible to choose 2
=ms from a set of 1 item, so there are 0 ways to make such a choice.)

For the inductive step, we assume that the result holds for all piles of size less than k, for some
=zeger k > 1. This is stronger than our usual inductive hypothesis of assuming that the result holds for
% pile of size k — 1. We now consider a pile of size k. The initial step splits the pile into a pile of size j
where 1 < j < k) and a pile of size k — j, so that the number j(k — j) is the first number written on the
Board.

167




CHAPTER 8. MATHEMATICAL INDUCTION

Consider all of the numbers that we write on the board as the j-stone pile is repeatedly spli
these j stones are in piles of 1 stone each. By the inductive hypothesis, the sum of the these nu
is 2) Similarly, as we repeatedly split the (k — j)-stone pile into piles of 1 stone each, the sum o=

numbers written is (¢ 2’). These numbers may get written in any order on the blackboard (since
might choose to split the piles in any order), but the order that the numbers are written on the =
does not alter the sum.

Therefore, the total of the numbers on the blackboard will be

ar AT =]
jk ]%*&)+(2 )
We can simplify this expression:

N (k= iG-1) k-k—j-1
},-(k_j”(é)Jr(zf)zj(k_]H](jz ) k=pk-j-1)

2
2k =2+ - j+R—jk—k—jk+ 7+
- 2
K-k
2
_kk-1)  (k
-0

In particular, note that all of the j terms canceled, meaning that the sum doesn’t depend on the iniza
choice of a split into two piles.

Thus, by induction, if we start with n stones, then we will end up with a sum of (}). In particulzs
when n = 25, the sum is (%) = 300. O

The previous problem is an example of recursion, which we will see more of in Chapter 10.

As we mentioned, there is a very clever counting solution to the problem that does not requis=
induction. Again, suppose we start with a pile of 1 stones. We connect every pair of stones by a string.
Since there are (3) pairs of stones, we will need (}) strings.

Suppose we divide the n stones into a pile of j stones and a pile of n — j stones, for some integes .
0 < j < n. We then cut all of the strings between stones in different piles. Notice that j(n — j) strings get
cut, which is exactly the number that gets written on the blackboard.

We continue splitting piles and cutting strings between stones in different piles. Again, note that 2
each split, the number of strings being cut always equals the number written on the blackboard.

At the end of the process, each stone is in its own pile, so all of the (}) strings have been cut. Bus
the total number of strings that have been cut equals the sum of the numbers on the blackboard! So the
sum of the numbers on the blackboard must be (}).

Problem 8.6: In a large field, 1 people are standing so that for each person, the distances to all the
other people are different. Ata given signal, each person fires a water pistol and hits the person who
is closest to them. When nis odd prove that there is at least one person who is left dry




REVIEW PROBLEMS

Solution for Problem 8.6:  We are trying to prove a statement for all odd positive integers, so we'll
consider using induction.

The result is clearly true for the base case n = 1: if there is only one person, then there is nobody else
:0 shoot at him, so he must remain dry.

Since we want to prove this result only for odd positive integers, we'll slightly modify our inductive
step. We will assume that the result is true for some odd positive integer 1 = k, and try to prove the
result for n = k+2. This basically skips over all the cases where 1 is an even positive integer, and instead
shows that the result for one odd integer implies the result for the next odd integer.

Consider a group of k + 2 people with water pistols. There are two people that we know will
Zefinitely not stay dry: let A and B be the pair of people who are closest to each other, so A and B end
up firing at each other.

We now have two possibilities: either one of the remaining k people also fires at A or B, or none of
“em do. If one of the remaining k people also fires at A or B, then this leaves at most k — 1 shooting at
Tose k people, therefore one of the k people will be left dry.

On the other hand, if none of the k people fire at A or B, then we have a group of k people, all of
whom fire at each other. But now we can use our inductive hypothesis! By the induction hypothesis,
“me of these k people must be left dry.

In either case, we have a person who is left dry. Therefore, the result is true for n = k + 2, and by
=duction, it is true for all odd positive integers n. O

Summary

»  We can use mathematical induction when we wish to prove a statement S(17) that depends on a
positive integer n. The proof consists of two steps:

1. Prove S(1).
2. Prove that S(k) implies S(k + 1) for any positive integer k.

» Whenever you have a statement that depends on a positive integer #, consider mathematical
induction as a possible method of proving the statement.

Frove that the sum of the first n positive odd integers is n°.

“rove, by induction, the formula for a geometric series:

r* =1
at+ar+arr+---+a" =g T
P
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8.9 Prove that
A S v n(n+1)(2n+1)
6

for all positive integers .

810 Prove that7" — 1 is a multiple of 6 for all positive integers 1.

8.11 Prove that
2040 ... 2n)! = ((n+ HH"

for all positive integers 1.

8.12 2n points (where n > 1 is a positive integer) are given in space, such that no 3 of them are o=
a line. We draw n? + 1 line segments connecting pairs of these points. Prove that there must exist 2
triangle whose vertices are 3 of the points and whose sides are 3 of the drawn segments.

8.13 A plane is divided into regions by a finite number of lines. Show that it is possible to color e

resulting regions with two colors, white and black, so that any two bordering regions are of opposi=
colors. (Two regions border if and only if their common boundary is a line segment; in particulzs

regions that only meet at a single point do not border.)

8.14 Prove the generalized triangle inequality: if x1,x2,..., X, are real numbers, then

lx1 + X2 + - + Xl < x| + |2l + -0+l

Hints: 40, 2
8.15 Prove that 22" + 3 + 52" is divisible by 19 for all positive integers n. Hints: 174

8.16 For any set T whose elements are positive integers, define f(T) to be the square of the product of
the elements of T. For example, if T = {1,3, 6}, then f(r)y=@1-3- 6)% = 182 = 324.

For any positive integer 7, consider all nonempty subsets S of {1,2,...,n} that do not contain two
consecutive integers. Prove that the sum of all the f(S)’s of these subsets is (1 + 1)! — 1. Hints: 268

8.17x% An international conference consists of 7 representatives from each of n different countries.

Prove that the #? people can be seated around a large round table such that, if A and B are two distinct
representatives from the same country, then the people sitting to the immediate left of A and to the
immediate left of B are from different countries. Hints: 335, 38

8.18% Suppose there are n identical cars at different points on a circular track, and that each car needs
exactly 1 gallon of gas to make it around the track. Initially, the total amount of gas in all of the cars’
fuel tanks is exactly 1 gallon. Show that there is one car that can make it counterclockwise around the
track by collecting all of the gasoline from each car that it passes as it moves. Hints: 71, 41
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CHALLENGE PROBLEMS

5.19% Pick’s Theorem states that given a polygon in the coordinate plane, .« « § « . . .
whose vertices are all lattice points (that is, points with integer coordinates), . ‘
the area of the polygon is given by the formula
B L
I4=~1, .

2

where [ is the number of lattice points on the interior of the polygon, and B .
= the number of lattice points on the boundary of the polygon. For example, ,
= the picture to the right, the triangle has 13 lattice points in its interior, and

= lattice points on the boundary, so the areais 13 + 6/2 -1 = 15.

Assume that Pick’s Theorem is true for triangles whose vertices are lattice points. (For an extra
“hallenge, you can try to prove this, but the proof is messy and involves a lot of cases.) Prove that
“ick’s Theorem is true for all polygons whose vertices are lattice points, by induction on the number of
vertices of the polygon. Hints: 122, 228

520% Let Sy be a set with 2002 elements, and let N be an integer with 0 < N < 222, Prove that it is
sossible to color every subset of S either black or white so that the following conditions hold:

e

. the union of any two white subsets is white;
L

2. the union of any two black subsets is black;

3. there are exactly N white subsets.

Source: USAMO) Hints: 336, 315

£21x Ann X n matrix whose entries come from theset S = {1,2,...,2n — 1} is called 1 2 56
= silver matrix if, for each i = 1,2,...,n, the " row and the /" column together 3175
“oniain all elements of S. For example, the matrix to the right is a silver matrix for 4 6 1 2
+ = 4. Show that silver matrices exist for infinitely many values of n. (Source: IMO) 7 4 31

Bnts: 237, 9, 291
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CHAPTER 9. FIBONACCI NUMBERS

CHAPTER

I Fibonacci Numbers

9.1 Introduction

1,1,2,3,5;8,13,21,34, 55,89, 144,233, 877,610,987,.....

What is special about the above sequence of numbers? This sequence is one of the most famous
sequences of positive integers in all of mathematics. If you've seen it before, you probably know how
these numbers are generated, but if not, I don’t want to spoil the surprise!

In this chapter, we’ll explore some of the fascinating properties of this sequence.

9.2 A Motivating Problem

Problem 9.1: Mike is climbing a flight of 10 stairs. With each step, he will climb either 1 or 2 stairs. In
how many different ways can he climb the flight of stairs?

(@) Tryitfor1,2,3, or4 stairs. You results should appear in the list of numbers above.

(b) Solve the problem by casework, where the cases depend on the number of 2-stair steps that Mike
takes.

(c) Let f(n) be the number of ways to climb 7 steps. How is f(1) related '=to fn—1)and f(n- 2)?

(d) Solve the problem by writing an expression for f(n) in terms of f(n — 1) and f(n - 2), and using
this expression, together with your values for f(1) and f(2) from part (a), to compute f(10).
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9.2. A MOTIVATING PROBLEM

We'll start our investigation of the special sequence listed on the previous page by looking at a
sroblem whose answer is related to the sequence.
Problem 9.1: Mike is climbing a flight of 10 stairs. With each step, he will climb either 1 or 2 stairs. §
0 how many different ways can he climb the flight of !

“cution for Problem 9.1: 'We could count this directly with some casework. Let’s do that first for practice.

In order to climb 10 stairs, Mike can take 0,1,2, 3,4, or 5 2-stair steps (with the rest being 1-stair

S=ps).
[f he takes 0 2-stair steps and 10 1-stair steps, there is (100) = 1 way to reach the top.

[t he takes 1 2-stair step and 8 1-stair steps, then we have 9 total steps to arrange, and must choose 1
¢ them to be the 2-stair step. Therefore, there are (}) = 9 ways to reach the top.

It he takes 2 2-stair steps and 6 1-stair steps, then we have 8 steps to arrange, and must choose 2 of
em to be the 2-stair steps. Therefore, there are (g) = 28 ways to reach the top.

I he takes 3 2-stair steps and 4 1-stair steps, then there are ( :) = 35 ways to reach the top.
[t he takes 4 2-stair steps and 2 1-stair steps, then there are (i) = 15 ways to reach the top.
I he takes 5 2-stair steps and 0 1-stair steps, then there is () = 1 way to reach the top.
Therefore, thereare 1 +9+28 + 35 +15+ 1 = 89 ways in which Mike can climb the stairs.
That was simple enough. But there’s another way that we can think about the problem.

Consider Mike's final step. Either Mike took a 1-stair step from the 9" stair, or he took a 2-stair step
=om the 8" stair. This means that we have a 1-1 correspondence:

{Ways to climb 10 stairs} < {Ways to climb 9 stairs} U {Ways to climb 8 stairs}.

“erefore, when we count, we get

Number of ways to climb 10 stairs) = (Number of ways to climb 9 stairs)

+ (Number of ways to climb 8 stairs).

= we let f(n) denote the number of ways to climb # stairs, then this means that f(10) = £(9) + £(8).

This works for any number of stairs (as long as there are more than 2). In general, for any positive
“e=zern > 2, we have the equation f(n) = f(n=1)+ f(n—2). In this way, we can build up to the number
% ways to climb 10 stairs by counting the number of ways to climb a smaller number of stairs.

WWe start by noting that f(1) = 1 and f(2) = 2. If there is only 1 stair, then the only way to climb it is
%= 2 I-stair step. If there are 2 stairs, then we have 2 choices: Mike can take two 1-stair steps, or he can
“=4= a single 2-stair step.

Extral  You don’t have to see the whole staircase, just take the first step. — Martin Luther King, Jr.
- :
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Now we can count the number of ways to climb larger staircases:

f@ = f@Q+f1) = 2+1 3,
f@) = fB3)+f(2) = 3+2 = 5,
f6) = f@+f3 = 5+3 = 3§
fte) = f5)+f4) = 8+5 = 13,
f(7)y = fe)+f05 = 13+8 = 21,
f8 = f(7)+f(6) = 21+13 = 34,
f9 = f@)+f(7) = 34+21 = 55

f(10) = f(9+f(B) = 55+34 = 8&9.
Once again, we see that there are 89 ways to climb a 10-stair staircase. O

If we list f(1), f(2), f(3), ..., then we (almost) get the sequence that opened this chapter:
1,2,3:5,;8:13,;21:34,55,8Y; .-

Each number in the sequence (after the first two) is the sum of the two numbers immediately before ==
2=1+1,3=2+1,5=3+2,and so on.

The only thing that’s different from the sequence on page 172 is that the sequence on page 172 has
an extra 1 at the start. We can add this 1 to our example, though, without any difficulty. If there are ©
stairs, then there’s only 1 way to climb this staircase: do nothing! So f(0) = 1 makes sense. Also not=
that f(2) = f(1) + f(0) = 1 + 1 = 2, so that our equation f(n) = f(n — 1) + f(n — 2) holds for all positive
integers n > 2.

When we add this first 1 to our sequence, we get the sequence that we first saw at the start of the
chapter:
1,1,2,38:5:8, 13,21,34,55,89,... ..

These numbers are called the Fibonacci numbers, in honor of the Italian mathematician Leonardo of
Pisa, whose nickname was “Fibonacci,” and who first published the sequence of numbers in his Liber
abaci in 1202.

We've seen that each Fibonacci number is the sum of the previous two Fibonacci numbers. We can
write this using a more formal definition.

We typically denote sequences using a variable with a subscript, such as
a1,d2,0a3, ...

Thus, a; is the first number in the sequence, a, is the second number in the sequence, and so on.
Sometimes we’ll start our lists with g instead of a1, so that our sequence would be

BO; A1;025+ < n

The Fibonacci numbers are defined by F; =1, F, =1, and F,, = F,_; + F,» for all positive integers
n > 2. So, for example,




9.3. SOME FIBONACCI PROBLEMS

Fs=F,+F =1+1=2,
Fi=F+F=2+1=3,
Fs=F,+F;3=3+2=5,
Fe=Fs+Fy;=5+3=38,
Fr=F¢+F5=8+5=13,

etc.

Sometimes, it is convenient to have a value of Fy, so we also define Fy = 0. Note that 1 = F, = F; + Fy =
1 + 0, so this definition is consistent.

Relating this notation to our solution to Problem 9.1, we see that the number of ways that Mike can
climb n steps is Fy41 (not Fy).

9.3 Some Fibonacci Problems

Problem 9.2: An adult pair of rabbits is in an enclosed yard. Every month, every adult pair of rabbits
produces a pair of offspring, which grows to adulthood in 2 months and then begins itself to produce

offspring. (Assume that rabbits never die.)

2] Make a table of the number of adult pairs of rabbits, the number of child pairs of rabbits, and the
~ total number of pairs of rabbits, for each month of the year.

) Do you see any patterns in your table from part (a)?

I&) How does your table relate to Fibonacci numbers?

E) Prove your results.

lem 9.3: How many subsets of {1,2,...,n} have no two consecutive integers as elements? (For |
ple, the subset {1, 3, 4, 8} has the consecutive integers 3 and 4 as elements, but the subset {2, 4,7, 9}

no two consecutive integers as elements.)
List and count all of the valid subsets forn = 1,2, 3, 4.

Do you notice the pattern (again)?
Establish a 1-1 correspondence:

{Subsets of{l,.2,... nl with no}
two consecutive elements

i .
({Subsets ofit.2. a1} with} e {Subsets of[1.2.. . n2} with})
no two consecutive elements no two consecutive elements |/

LUse this correspondence to answer the original problem.
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Problem 9.4: In how many ways can we tile a 2 x 1 checkerboard with 7 tiles of size 1 x 2, such
each tile covers exactly two squares? An example with n = 6 is shown below.

Problem 9.5: Prove that forany k > 1,

Fy +Fs + F5+ ==+ + Fopwa = Fogan,

Problem 9.6: Prove that for all positive integers n > 1,

Et+E+ -5 =FF,.,

As we will see in this section, the Fibonacci numbers pop up in a lot of different contexts in counting
problems. We’ll start with a classic example.

'Problem 9.2: An adult pair of rabbits is in an enclosed yard. Every month, every adult pair of rabbits

produces a pair of offspring, which grows to adulthood in 2 months and then begins itself to produce

offspring. How many pairs of rabbits will there be after a year? (Assume that rabbits never die.)

Solution for Problem 9.2: We can experiment and make a table. We use the facts that every month:

¢ Every adult pair has a pair of newborn offspring;
e Every pair of newborns from last month becomes a pair of child rabbits this month;

e Every pair of child rabbits from last month becomes a pair of adult rabbits this month.

Using these facts, we can generate a table:

Extra! Leonardo of Pisa a.k.a. Fibonacci _

- - Tt 5 not universally agreed upon how Leonardo of Pisa got the nickname “Fibonacci.” It
is generally thought to be a shortening of “filius Bonacci,” which means “son of Bonacci,”
although itis unclear whether Bonacci was a family name or simply a nickname (meaning
perhaps “lucky” or “good natured”). The Fibonacci numbers were not named after
Fibonacci until long after his death, by the 19"'-century French mathematician Edouard
Lucas (who also has a series of numbers named after him, as you will see in an Exercise
later in the chapter). See the book’s links page on page vi for links to sources for the
above and more complete biographical information on Fibonacci.
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Month | # of adult pairs | # of child pairs | # of newborn pairs | Total
0 1 0 0 1
1 1 0 1 2
2 1 1 1 3
3 2 1 2 5
4 3 2 3 8
5 5 3 5 13
6 8 5 8 21
7 13 8 13 34
8 21 13 21 55
9 34 21 34 89

10 b5 34 55 144
11 89 55 89 233
12 144 89 144 377

So we see that there will be 377 pairs of rabbits after a year. (I hope it’s a big yard!)
Note that our table has Fibonacci numbers all over the place! There ought to be a reason why.

Since the rabbits never die, all of the rabbits alive in month # — 1 will live on to month 1. But new
=z0Dbits are also born in month n. Therefore,

= of pairs of rabbits in month 1) = (# of pairs rabbits in month 1 — 1)
+ (# of newborn pairs of rabbits in month n).

““ow many pairs of rabbits are born? All adult pairs produce offspring. The adults are precisely those
=2o0its that were alive two months ago. So we can write

= of pairs of rabbits in month #) = (# of pairs of rabbits in month n — 1)

+ (# of pairs of rabbits in month n - 2).
= £ we let 7, denote the number of pairs of rabbits in month 7, we have the equation

n = tp-1+ Ty-2.

=t looks like Fibonacci numbers!

‘e could very easily stumble into a common mistake here.

Boguiéi Solution: Our above work shows that tﬂeiﬁumbgf_cﬁ-i;aifs of rabbits in month
i‘r! n is the n'" Fibonacci number. Therefore, after a year, we get the
| 12&1,51,15’9113“1 number Fip.

~his doesn’t work because the Fibonacci numbers are defined starting with F; = F; = 1. Here, we're
esmng withrg = 1and r; = 2. So our number of pairs of rabbits are the Fibonacci numbers, but they’re
. shuifted. To be exact, v, = F,4». This means that the answer to our rabbit problem is the 14™ Fibonacci
~mu—ber, Fiy, which is 377. O
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Sidenote: Problem 9.2 is exactly the problem that Fibonacci himself first studied in
J\ his work Liber abaci in 1202. One translation of the original problem from
Liber abaci reads:

A certain man put a pair of rabbits in a place surrounded on all
sides by a wall. How many pairs of rabbits can be produced
from that pair in a year if it is supposed that every month
each pair begets a new pair which from the second month on
becomes productive?

(Source: MacTutor History of Mathematics)

Problem 9 3 How many subsets of {1 2,...,1n} have no two consecutlve mtegers as elements?

2 e B TR
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Solution for Problem 9.3: One idea might be to do a nasty PIE calculation to compute the number o
subsets that do have at least two consecutive elements. But try it for about 5 minutes and you'll see tha+

it’s pretty ugly.

Another idea to try some small values of 1, and look for a pattern.

Concept: When trying to find or prove something for all positive i.ﬁtegers n, try
( ==  some small values of n, and look for a pattern.

If n = 1, then there are 2 valid subsets: 0 and {1}. (Don't forget about (!)

If n = 2, then there are 3 valid subsets: 0, {1}, and {2}.

If n = 3, then there are 5 valid subsets: 0, {1}, {2}, {3}, and {1, 3}.

If n = 4, then there are 8 valid subsets: 0, {1}, {2}, {3}, {4}, {1,3}, {1,4}, and {2, 4)}.
So far, forn =1,2,3,4,..., we have 2,3, 5, 8...—those are Fibonacci numbers!

Let s, denote what we're trying to count: the number of subsets of {1, 2, ..., n} with no two consecu-
tive elements. It sure looks like the s, are the Fibonacci numbers, meaning that we want to try to show
that

Sy = 8p-1+ Sp—2

foralln > 2.

So let’s think about it a little bit more carefully. Is there any way that we can build the valid subsets
of {1,2,...,n} from the valid subsets of {1,2,...,n —1}and {1,2,...,1n —2)?

Let’s go back to our example and list the subsets for n = 2,3, 4:

n | Valid subsets of {1,2,...,n}
210,{1},{2}

319,{1},{2},{3}, (1,3}
410,{1},{2},{3}, {4}, {1,3},{1,4},{2,4}
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Notice that all of the subsets in the 1 = 3 list are also in the 1 = 4 list. The leftovers in the n = 4 list (that

zren’tin the n = 3 list) are {4}, {1,4}, and {2, 4). Compare these with the subsets in the n = 2 list. They're
the same subsets, but with a 4 added.

This observation can be generalized to any n > 3, as follows. Every subset of {1,2,...,n} either
contains # or doesn’t contain n. A subset that doesn’t contain # is a subset of {1,2,...,n— 1} A subset

that does contain 7 is not allowed to contain 1 — 1 (since it can’t contain two consecutlve elements), so
the remaining elements form a subset of {1,2,...,7n — 2}.

Therefore, we've established a 1-1 correspondence:

Subsets of {1,2,...,n} with no} ({Subsets of {1,2,...,n-1} With} U {Subsets of{1,2,...,n-2} with}) .
WO consecutive elements no two consecutive elements no two consecutive elements
The above correspondence means that

Sy = Spy—1 + Sy

for all n > 2. Look familiar?

Beware! Asin Problem 9.2, don’t jump to the conclusion that the answer is the 1% Fibonacci number.
We still need to check the initial conditions. We already listed the subsets for # = 1 and n = 2 and found
fhat sy = 2 and s, = 3. Therefore, we see that Sy = Fni2, so the answer is the (1 + 2)™ Fibonacci number.

Sidenote: Since the answers to Problems 9.2 and 9.3 were the same, can you find a
.h natural 1-1 correspondence between

{Pairs of rabbits after n months} < {SUbSEtS of {12,... n} with no}?

two consecutive elements

The answer is on page 191.

Problem 9.4: In how many ways can we tile a 2 x n checkerboard with 1 tiles of size 1 x 2, such that
=ach tile covers exactly two squares? An example with # = 6 is shown below.

i sprrema oA

S AR A o m e

|

“ution for Problem 9.4: As we often do, let’s start with a few small examples to get an idea of what
"1L1‘L'10I1 might be.

“here’s only 1 way to tile a 2 x 1 board:

There are 2 ways to tile a 2 X 2 board: E B
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There are 3 ways to tile a 2 x 3 board:

There are 5 ways to tile a 2 x 4 board:

Hmmm. .. the first four values of n give us 1,2,3,5 possible tilings. So the answer might be the
Fibonacci numbers. With this goal in mind, we try to think about how tilings of the 2 x n board can be
built from tilings of the 2 x (1 — 1) and 2 X (1 — 2) boards.

Suppose n > 2, and think about how we might place the tile which covers the lower-left square.
There are two cases.

Case 1: Place the tile vertically. Then we must tile the remaining 2 X (1 — 1) board.

X ( ) remaini

B > x(n-1 rainin |

Case 1 Case 2

Case 2: Place the tile horizontally. Then we must also place a horizontal tile covering the upper-left square
(since that’s the only way to cover that square). What's left is a 2 X (n — 2) board that we must tile.

So we see that
(# of ways to tile a 2 X n board) = (# of ways to tile a 2 X (n — 1) board)
+ (# of ways to tile a 2 x (# — 2) board).
If we let t, denote the number of ways to tile a 2 X # board, then we see the familiar equation
th= bt g+t
Once again, Fibonacci numbers! But as usual, we need to check the initial conditions.

There’s only one way to tile a 2 x 1 board, so t; = 1. There are two ways to tile a 2 X 2 board (either
place both tiles horizontally or both tiles vertically), so t; = 2.

Since t; = Fp, t» = F3, and t, = t,_1 + t,—, we see that in general, t, = F,,1, which is the (n + 1)%
Fibonacci number. O

The Fibonacci numbers satisfy lots and lots of identities. Here’s a fairly simple one:

Problem 9.5: Prove that for any k > 1,

Fi+F3+Fs+4 -+ Foe1 = Fopan.
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Slution for Problem 9.5: Just to convince ourselves that the result is actually true, let’s check it for k = &
P1+F3+P5+P7+P9 = 1+2+5+13+34=55:P]0.

“=t's play with our example and see if we can determine why it works.

Conéépt: Before taéiéﬁng the general case of an identit)} or equation, it often helps to

; play with a simple example or two, in order to get a feel for what's going
' on.

[f we start collapsing the sum from left-to-right, something interesting happens:

1424+5+13+34=3+5+13+234
=8+13+34
=21+34
=55,

“iotice that the first terms of each intermediate sum are the “missing” Fibonacci numbers. For example,
B — F4, &= Fs, and 21 = Fg.

Now let’s look at the general case. To get the ball rolling, we need to use the fact that F; = F, = 1.
“7en the sum collapses, just like in our example.

Fi+Fs+Fs+Fp+--+ Fyy Fr+F3+Fs5+F7+ -+ Fyuq
F4+F5+P7+-'-+F2k+1

F6 +F7+"'+F2k+1

- For + Fogsn
Forso.

e can also prove the result more formally using mathematical induction.

Sase case: If k = 1, then
F1+P3:1+2=32F4.
= the result holds for k = 1.

“wiuctive step: Assume that the result holds for some positive integer k. We will attempt to prove the
gesult for k + 1:

Fi+F3+-+ Fygenyer = (F1 + Fa+ -+ + Fyp1) + Fopas
= Fogen + Fopya
= F2k+4l

wiere the last step Fogyn + Fapy3 = Fappy comes from the definition of the Fibonacci numbers.
Therefore, the result is true by induction. O

Let’s see a more complicated Fibonacci identity.
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Problem 9.6: Prove that for all positive integers n > 1,

Fi+Fy++F2 = F,Fyy1.

Solution for Problem 9.6:  There are two basic ways we can approach this: we can try to prowe
algebraically with an induction proof, or we can try to look for a clever counting argument. Le: s
the induction proof here.

Base case: If we letn = 1, we get Pf =12 =1 = (1)(1) = F;F5, so the base case holds.

Inductive step: Assume that the identity is true for some positive integer k. We will write the left side
the identity for k + 1:

2 2 2 2
Era b4 v bl 2B 4

All but the final term of this expression can be replaced by FiFy,; using the inductive hypothesis, so we
have:
.F% + -4 P}% + F',%+l = PkPk+1 + F;Ll.

The right side of the above can be factored as (Fx + Fri1)Frs1. And what is that expression inside e
parentheses? It’s Fy + Fi,1, which by the definition of the Fibonacci numbers is equal to Fy,s. Therefors
the whole expression is simply Fi,,F;.1, and thus we have proved that

2 2
Fl R o Pk+] = Fri1Fpeo.

Hence, by induction, the result is proved.

Although the algebraic induction proof was relatively straightforward, it didn’t really provide anv
insight into why the identity is true. For a deeper understanding, we can try to find a counting argument
that proves the identity. We’ll leave this for you as an Exercise. O

You'll get a chance to see more Fibonacci identities in the Exercises and Challenge Problems. We'll
also revisit identities in general in Chapter 12.

9.3.1 Norman wishes to buy a can of soda costing 75 cents from a vending machine. He has an
unlimited supply of identical nickels (worth 5 cents each) and dimes (worth 10 cents each). In how
many different orders can he insert coins into the machine to pay for his soda?

9.3.2 Three sheets of glass are arranged in parallel. A light ray passes through the top sheet, reflects
a number of times between the sheets, and exits the glass. For example, the diagram below shows the

possible paths that the ray can take, if it reflects exactly 3 times:

How many different paths can the ray take if it reflects exactly 9 times?
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9.3.3 Suppose you toss a fair coin 10 times. What is the probability that you do not get two heads in
row? Hints: 45, 147

9.3.4 Prove that F, is a multiple of 3 if and only if n is a multiple of 4. Hints: 304
9.3.5 Prove that forany k> 1,
1+F2+F4+F6+"'+F2k=1:2k+1.
9.3.6 AsubsetSof{l,2,...,n}is called selfish if #(5) € S. A selfish subset is called minimal if none of its

proper subsets are selfish. Find the number of minimal selfish subsets of {1,2,...,n}. (Source: Putnam)
Hints: 310

9.3.7% Find a counting argument to prove the identity from Problem 9.6. Hints: 142, 199

9.4 A Formula for the Fibonacci Numbers

“ote: the problems are this section are somewhat algebraically intense and can be a bit abstract. If you
zre having difficulty with these problems, you may wish to skip ahead to Chapter 10 and then come
Sack to this section after you've learned more about the general theory of recursions.

Problem 9.7: In this problem, we work out a formula for the Fibonacci numbers.

'2) List the first several Fibonacci numbers, and compute the ratios between successive Fibonacci
numbers. Do you notice these ratios approaching a common value?

'2) Suppose thata, = c" satisfies the recursion a, = a,_1 + a,_, for some constant c. Find the possible
values of c.

<) Show thata, = Asc] +A,c] satisfies the recursion from part (b), where ¢; and c; are the values you
found in part (b), and A; and A; are arbitrary constants.

) Find a formula for the n Fibonacci number, by using the known values of a; and 4, to solve for
A1 and A; in part (c).

Froblem 9.8: Is there a simpler formula for the Fibonacci numbers? (Here, you are allowed to use the
mearest integer function: [x] is the integer closest to ¥, so that for example [1.2] = 1 and [1.7] = 2. By }
Elnvention, we always round towards even numbers, so that [1.5] = [2.5] = 2.) ‘

lem 9.9: Prove that : ‘
Eoafui—E = (1),

F, is the n'" Fibonacci number.

“s we have seen, the Fibonacci numbers are given by the recursion

Fy =Fy1+Fpo,
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forall m > 2, where F; = 1 and F, = 1. Although we can now go ahead and list arbitrarily m
Fibonacci numbers using this recursion, it’s a bit of a pain to calculate, say, the 100" Fibonacci nums
because we’d have to list out the first 99 Fibonacci numbers in order to find the 100, It'd be awfullis
nice if there were just a formula for F, that we could plug #n = 100 into and get the 100" Fibonass
number right away.

The good news is that there is such a formula! The bad news is that, on first glance, it's really messs
Let’s work it out.

| Proi‘;vlém 9.7: Find ar formula 1°01;l-jﬂ , the ﬁth Fibonéézi number, where F1 = F, :1 an-d I—:n = F,,;_1-;}-_P,!_;
forall n > 2.

e S o e R Lo A 2 N G e B G T e

Solution for Problem 9.7: Let’s list the first twelve Fibonacci numbers:
1,1,2,3,5,8,13,21,34,55,89,144, . ..
Where can we even begin our search for a general formula?

We can start by drawing a graph of the Fibonacci num-

bers F, as a function of n; the graph is shown at the right. 14 ’.*
Note that the y-axis is scaled differently than the x-axis, |
since otherwise the graph wouldn't fit. We see that F, .1
grows fast. Really fast. And the fastest-growing “nice” ;1
functions that we know of are exponential functions (hence |
the phrase “exponential growth”). So our strategy is to |
suppose that the Fibonacci numbers satisfy an exponential |
expression, and hope that we get lucky. Looking at the |
ratio of successive Fibonacci numbers (rounded to three il
decimal places), we suspect that we will get lucky: ol

n | Fy/F,.-1 | Decimal ot

2 1/1 1.000 T

3 2/1 2.000 =T

4 3/2 1.500 T

Z g;g }-ggg S T T R I s

7 | 13/8 1.625

8 | 21/13 1.615

9 | 34/21 1.619

10 | 55/34 1.618

11| 89/55 1.618

12 | 144/89 | 1.618

We see that the ratio between consecutive terms of the Fibonacci sequence appears to converge to about
1.618. This means that the Fibonacci sequence appears to converge toward a geometric sequence with
ratio about 1.618. Let’s see if we can make this statement more precise.
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Specifically, we let a, = ¢ for some unknown constant c. If we plug this into our recurrence relation
for the Fibonacci numbers, we get

Gp =y +p2 = =142

Since ¢ # 0 (otherwise it would be a pretty stupid formula), we can divide by ¢"~? to get ¢ = ¢ + 1.

Good, we know how to solve this! If we rewrite it as ¢ —c—1 = 0, we can use the quadratic formula:

1+5

c= .

2

This gives us two possible candidates for c:

S
S

1+
2 r

N ‘

Note that ¢; ~ 1.618 and ¢, ~ —0.618; in particular, ¢; seems to match the ratio of consecutive Fibonacci
numbers that we found in our earlier experimentation.

How do we know which value, ¢; or ¢y, to use, or if either one works? Based on our calculations
zbove, we know that a, = ¢} and a, = ¢} each satisfy the relation a, = a,_1 +a,_5. Unfortunately, neither
satisfies the initial conditions a; = 4> = 1. So how do we fix it?

We observe that any a, of the form
an = Arc] + Aocj,

where Ay and A, are constants, satisfies the recurrence relation. (A is the greek letter lambda, which is
o7ten used to represent unknown constants.) To see this, we simply plug it in for a,, a,-1, and a,_, in
our recurrence relation, and verify that it holds:

an = Ac] + Aadh = (] + ) + Aa(eh T + 72)
= T+ Aachy T+ A2+ gl
= p-1 +ap-2.

“wow we have a plan: use the above expression for a,, plug in the initial conditions, and solve for the
“mxnown constants A and A».

1= A1c1 + Azcy,
1= /\.]C% + AQCE.

W= re going to have to get our hands dirty a bit, and plug in ¢; and ¢,. Let’s clear the denominators
while we're at it.

2= M1+ V5) + Ap(1 - V5),
4=21(1+V5)?2+ A1 - V5)2

s is probably not the prettiest system of linear equations that you've ever seen.
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Fortunately, we can use a little trick to make the system a lot simpler. Extend the sequence back cme
term to ag = 0. Then our system (using ap = 0 and 4; = 1) becomes:

0= Aqcd + Aac),
1= )L1C1 o+ /12(,'2.
This simplifies quite nicely:
0=A7A1+ Ay,
2= 11(1 + V5) + Ay(1 - V5).

Now solving is fairly simple (if a bit messy). The first equation gives us A, = —A;, and substituting thas
into the second equation gives:

2 = Ay(—(1 - V5) + (1 + V5)).

This simplifies to
o2 1
C2vE VB
Then plugging A; back into 0 = A; + A,, we see that
1
A = —=—,
V5

Thus we conclude that

Ap = =
NA W s\ 2

We can make it a little bit nicer by factoring, and we leave it in the final (relatively) nice form:

i(lm/ﬁ)”_ 1 (1—\/5)"_

o= A+ VB) — (1 - \By
n vag .

Impt;rtant 13; cioééd fofl:'nula for the nth”il;ﬂ)ﬂé\cci nun'_lger F nlS
U (1+V5)" = (1 = V5)"
I :
25

This formula is known as Binet’s formula for the Fibonacci numbers, as it was derived by the French
mathematician Jacques Binet in the mid-1800s (although it was certainly known earlier).

For example, let's compute F4 and verify that indeed we get F4 = 3. If nothing else, this is good
practice in using the Binomial Theorem.

_ 1+ V5 -1 -V5)* _ (1+4V5+30+20V5+25)— (1-4v5+30-20V5+25) 485
2445 165 16v5

Fy

=3
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This may seem like a very weird formula for a sequence of integers! But look carefully—when
we compute (1 + V5)" — (1 - V5)", all of the terms without a V5 in them will cancel out. All of the
remaining terms will have odd powers of V5, and thus the V5 will get cancelled out by the V5 term in
the denominator, so the final result will be a rational number. (In fact it will be an integer: the powers
of 2 will cancel as well, though this is a lot harder to see right away.)

Although this formula works, it’s still messy to use in practice. For example, this is not a practical
way to calculate Fyg, since we’d have to expand (1 + V5)'%.

Problem 9.8: Is there asm;pEf_or_mulafor the Fibonacci numbers?

Solution for Problem 9.8: To be fair, the answer to this question depends on how we define “simpler.”
Let’s take another look at our formula:
(1+V5)" = (1= V5)"
) V5 '
Let’s break it up into its two terms, and put the 2" inside the numerator’s exponentials:
L(l +x/§)” B i(l - \/5)"
V5l 2 2 ’

v5
Take a look at that second term. Not very big, is it?

Fy

Pu:

In fact, when 7 is large, it’s really tiny. Note that 1 — V5 ~ —1.24, s0 (1-+5)/2 =~ -0.62. So we have

1 (1+\/§)”_(—0.62)”
V5\ 2 G

That term at the right end always has absolute value less than 3. It becomes much, much smaller as

zets larger, but even where n = 0, it's 1/ V5 =~ 0.447, which is less than 0.5. Therefore, since we know
that F, is an integer, we conclude that F, is whatever integer is closest to the left term, since the right
zerm only alters the value of F, by at most 3.

F, =

Let [x] denote the closest integer to x. For example, [1.2] = 1 and [1.8] = 2. Basically, we're rounding
* to the nearest integer. By convention, if we're exactly halfway between two integers, we always round
cowards the even integer, so for example, [1.5] = [2.5] = 2. Then our discussion above establishes that

n-]

"Th‘égolden ratio

1
e +2‘/5 ~ 1.618033989. .

'Sidenote: :
j The number

g is a very special irrational number. It is called the golden ratio.

continued on next page. . .
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Sidenote: ... continued from previous page

ﬁ The golden ratio many nice properties. We have already seen that the
golden ratio is the value to which the ratio of successive Fibonacci numbers
converges, and also that the golden ratio is the positive root of x> —x—1 = 0.
The golden ratio can also be written as a continued square root as

¢ = \/1+\/1+ 1% V1 +=-

The ratio is also considered an aesthetically-pleasing ratio of
side lengths of a rectangle. For example, the large rectangle
at right has the golden ratio as the ratio of its side lengths.
Note how we can remove a square from the figure and get
a smaller rectangle with the same ratio of side lengths—can
you figure out why this is so?

Now at least we can use our calculator or computer to determine large Fibonacci numbers. But the
real power of Binet's formula is in proving some nontrivial Fibonacci identities. Here’s an example:

Problem 9.9: Prove that
F?l—-an+1 o Fi = (—1)”;

e

where F, is the n'" Fibonacci number.
Solution for Problem 9.9: In order to simplify the algebra, letv =1+ V5and u = 1 - V5.

Concept: If the same “ugly” term pops up alot in an algebraic computation, consider
(=== assigningitavariable name so that your algebra is easier to read and write.

Now we can calculate:
P £ _ (v”'l _ ‘u”_l)(v”” _ PnJrl) - (Vn _ Hn )2
" 21-14/5 i+l \/g on \/g
B (vn—l _ Pn—l)(vnﬂ _ lu”“) _ (V” _ yn)z
221(5)

(v?_n _ v;hllunﬂ _ Vn-r-lyn—l 4 PZH) . (VZn - Zvnlun + MZH)
- 221(5)

VL (=2 — 2 4 2vp)
= 22n(5)

Vn—llun—l(v - P)Z
221(5)
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Now we note that vy = (1 + V5)(1 - \/&'_)) =—dandv-pu=(1+ V5) — (1 - V5) = 2+/5. Therefore we have

COT@VE? | (D))
2(5) e o0

2 _
FH—I-FH+1_F;1 - =

Certainly we could prove this identity via other means, but the formula makes it fairly straightforward
to prove by just plugging-and-chugging with algebra. O

9.4.1 Prove, using Binet’s formula, that for all n > 0,

_r2 2
Fyy1 =F,+F,_,.

942 Use Binet's formula to find a simple approximation for the number of digits in F,,.
54.3% The Lucas numbers are defined by Ly =2,y =1,and L, = L,_; + L, forall n > 2.

2) Use a procedure similar to Problem 9.7 to find a formula for L,,.
o) Prove that F», = F,L,. Hints: 269
c) Prove that L2 — 5F2 = 4(~1)". Hints: 20

d)* Prove that, except for 1, 2, and 3, no positive integer is both a Fibonacci number and a Lucas
number. Hints: 51, 267

2.5 Summary

» The Fibonacci numbers are the sequence of numbers
0,1,1,2,3,5,8,13,21,34,55,89,144, 233,377, 610,987, ...
where each number (after the first two) is the sum of the two preceding numbers.
» A more formal definition is that Fy = 0, F; =1,and F,, = F,_1 + F,.» for all n > 2.

»  Many counting problems have the Fibonacci numbers as their solution, especially those in which
we can relate a problem of size 1 to the same problem of size n — 1 and n - 2.

» A closed formula for the n'" Fibonacci number F,, is

_ 0+VE - - By
214/5 '

Ey

Here are some general problem-solving concepts:

Concept: When trying to find or prove something for all_pc_)gitive integers 7, try
some small values of 1, and look for a pattern.
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Concéiprt:‘ Before _tackling the general case of an idénﬁty or equat1o£1, 1toften_h_elias to
(=== play with a simple example or two, in order to get a feel for what’s going
on.

ConceptIfthe same ”uél-);; ’term pops up alotinan algebralccomputa_ltlon, consider
i assigning it a variable name so that your algebra is easier to read and write.

9.10 The parking lot outside our building has 12 parking spaces. Compact cars can easily fit within =
single space, but SUVs take up 2 spaces. In how many different ways can the lot be filled?

9.11 For any positive integer 1, determine the number of ordered sums of positive integers greates

than 1 summing to n. (For example, if n = 6, then the sums are 6,4 +2,2+4,3+3,and2+2 +2.)

9.12

(a) Fourteen people sit in a row of 14 chairs, one person per chair. At the sound of a bell, they all are
allowed to change seats, but each person is permitted to move no farther than one seat from her

original chair. Each person is not required to move, and there must be one person per chair in the
rearrangement. The bell sounds; how many rearrangements can the people form?

(b) What is the answer if the 14 people are sitting in chairs around a round table?

9.13 On the planet Venus, female Venusians have a mother and a father, but male Venusians have only
a mother. For any positive integer 1, how many n-generation ancestors does a male Venusian have?
(1-generation ancestors are parents, 2-generation ancestors are grandparents, 3-generation ancestors are
great grandparents, and so on.)

9.14 Prove thatforanyk>1,

Fi+Fo+F3+Fy+ -+ Fp = Fryo — 1.

9.15 How many n-digit base-4 numbers are there that start with the digit 3 and in which each digit is
exactly one more or one less than the previous digit? (For example, 321010121 is such a 9-digit number.)

9.16 How many paths are there from hex A to hex B in the diagram below;, if each step of a path must
be to a hex immediately adjacent on the right? (A sample such path is shown.)
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917 A large elementary school class goes on a field trip to see a play. The front row of the theater has
11 seats. No boy wants to sit between 2 girls (or sit at the end of the row next to a girl) and no girl wants
20 sit between 2 boys (or sit at the end of the row next to a boy). In how many ways can the row of seats

De assigned to boys and girls? Hints: 251
218 In Problem 9.1, we saw using casework that the answer to the 10-stair problem was

10+9+8+7+6+5—89
0/ \1) \2) 3] "\4) "\5) "~
=nd that this was also equal to the Fibonacci number F11. Can you generalize and prove this result?

Hints: 156
%19 Simplify the product

& -5
w7 ‘1 Fraa
Source: Mandelbrot) Hints: 23
#20 Find the value of the infinite sum
11,2 R
3 9 27 3

Source: Mandelbrot) Hints: 188

%21 For any nonnegative real number x, let (x) denote the fractional part of x; that is, {x) = x — |
Were | x| denotes the greatest integer less than or equal to x. Suppose that a is a positive real number
W0 2 < a? < 3 such that (a7!) = (22). Find 412 — 14441, (Source: AIME) Hints: 213, 35

Sidenote: Recall the problem on page 179. The answer is that a subset of 1,2,....1n}
J\ represents a particular pair’s “family tree.” For example, if # = 12 and
the subset is {2,4,7,11)}, then the pair corresponding to this subset was

born in month 11, its parents were born in month 7, its grandparents were

born in month 4, and its great grandparents were born in month 2 (to the

original pair). Note that, in particular, the subset ( corresponds to the

original pair of rabbits. We leave it to you to fill in the missing details

of this correspondence, and also to determine why the condition “no two

consecutive elements” on the subset is necessary.
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To understand recursion, you must first understand recursion. — Anonymous

CHAPTER 1 0

1

Recursion

10.1 Introduction

The Fibonacci numbers from the last chapter are an example of recursion. Whenever we have a sequence
of numbers in which the next number in the sequence is derived from previous numbers, we have =
recursion. For example, with the Fibonacci numbers, we have the recurrence relation

Fu=Fp1+Fp Fp=0 F =1L

Each Fibonacci number (after the first two) depends on the two previous Fibonacci numbers.

In this chapter, we'll look at several problems in which we can use recursion as a solution method
and discuss more generally the types of problems for which recursion may be useful. Inbrief, whenever
we have a problem in which we have to compute some quantity that can be expressed in terms of =
positive integer 7, and we can replace that computation with a computation of the same quantity but
for smaller values (such as n — 1, n — 2, etc.), we may be able to use recursion to solve the problem.
This can be a little confusing as an abstract concept, but should become more clear as we work through
several examples.

Later in the chapter, we will explore a special sequence of numbers called the Catalan numbers.
As we will see, these numbers pop up in a surprising number of different counting situations. The
eminent combinatorist Richard Stanley, in his book Enumerative Combinatorics: Volume 2 and on its
accompanying website, lists (as of this writing) 149 different mathematical objects that are counted by
the Catalan numbers. The items on Stanley’s list come from many different branches of mathematics,
and several of these items have deep mathematical significance.

We will examine several problems whose answers involve the Catalan numbers. We will use our
results from these problems to determine both the recursive definition of the Catalan numbers and also
a fairly simple closed-form formula for the numbers.
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10.2 Examples of Recursions

Problem 10.1: The diagram below shows 3 pegs and 8 rings of different sizes. All of the rings start
on the left peg. The goal is to move all of the rings to the right peg. On each move, we can remove
the top ring on any peg and place it on any other peg, provided that we do not place a ring on top of
a smaller ring.

2) Try the problem for 1, 2, or 3 rings. What is the minimum number of moves necessary to move
all of the rings to the right peg?

'5) What is the minimum number of moves necessary in the full 8-ring version of the game?

2} Suppose there were n rings, where n is an arbitrary positive integer. What is the minimum
number of moves necessary?

Froblem 10.2: I work for a valet parking company. Each of our customers drives either a Cadillac, a
‘“ontinental, or a Porsche. My boss told me I have to reserve spaces in our parking lot and mark them
s being for a Cadillac, a Continental, or a Porsche. Cadillacs and Continentals each take 2 spaces
while Porsches only require 1.

"2 Suppose that our parking lot has 3 spaces. In how many ways can I allocate the spaces?
5! What if the lot has 12 spaces?
“o'x What if the lot has 500 spaces?

Froblem 10.3: Find the number of 10-digit ternary sequences (that is, sequences with digits 0, 1, or 2)
~such that the sequence does not contain two consecutive zeros.

rmblem 10.4: 6 sprinters are in the 100-meter dash. Ties are allowed in the final standings, so that,

for example, one possible order of finish is: |
Runner #6 wins; #2 and #5 tie for 2nd; and #1, #3 and #4 all tie for last.

EM many different finishing orders are possible?

“he Fibonacci numbers are just one example of recursion. We'll look at some more recursion
Swocems in this section. The common theme is that we break down each problem into smaller versions
¢ e same problem.

193



CHAPTER 10. RECURSION

Concept: Whenever you can take a problem and express its solution in terms of
(O===  smaller versions of the same problem, that problem is a good candidate
for recursion.

Problem 10.1: The diagram below shows 3 pegs and 8 rings of different sizes. All of the rings sta=
on the left peg. The goal is to move all of the rings to the right peg. On each move, we can remove
the top ring on any peg and place it on any other peg, provided that we do not place a ring on tog
of a smaller ring.

= -

(a) What is the minimum number of moves necessary to win the game?

(b) Suppose there were n rings, where 7 is an arbitrary positive integer. What is the minimum
number of moves necessary?

—=d
Solution for Problem 10.1:

(a) Since we don’t really know what the best strategy is, let’s look at some smaller examples.

Concept: Experiment with smaller examples in order to get a feel for a hard problem.
If there’s only 1 ring, then we only need 1 move: we just move it to the right peg and we win!

If there are 2 rings, it's still pretty easy to win. We move the smaller ring to the middle peg, then
move the larger ring to the right peg, and finally move the smaller ring to the right peg. We need =
moves to win, and it’s pretty clear that there’s no way to win in fewer moves.

Experiment with 3 rings before reading further. How many moves are necessary?

It turns out that the best way to win is via the following sequence of moves:

e Start position

)

e Move smallest ring to right peg.

e Move middle ring to center peg.

I
L

e Move smallest ring to center peg.

I b

| ]
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* Move largest ring to right peg.

I_ﬂi;u__,
P | |

Move smallest ring to left peg.

L
* Move middle ring to right peg.
alle [

Move smallest ring to right peg.
1 I i

So we can win in 7 moves. But how can we be sure that this is the least possible number of moves,
and that we're not overlooking a better strategy that might allow us to win in 6 or fewer moves?

We can break up the necessary steps for solving the 3-ring version as follows:

* Move the smaller two rings to the middle peg.
* Move the largest ring to the right peg.
* Move the smaller two rings to the right peg.

Note that this must be the optimal strategy. We cannot move the largest ring until the smaller 2
rings have been moved off of it. We can’t put the largest ring on the right peg unless it's empty. So
there’s no other possible course of action except for that which is listed above.

We know that moving the two smaller rings to the middle peg takes 3 moves, since that’s just
the 2-ring problem. Then our 4th move is moving the largest ring. Finally, we know that it takes 3
more moves to move the two smaller rings onto the right peg. So 7 moves is the best we can do.

We have also gained the necessary insight to solve the 8-ring case. The general strategy is

* Move the smaller 7 rings to the middle peg.
* Move the largest ring to the right peg.
* Move the smaller 7 rings to the right peg.

Therefore, we can say that
(# of moves to win with 8 rings) = 2(# of moves to win with 7 rings) + 1.

f welet /1, denote the number of moves necessary to solve the problem with 7 rings, then we have
h, = 2h,_1 + 1. This type of formula, in which the elements of a sequence are defined in terms of
previous element(s) of the sequence, is called a recurrence relation or simply a recurrence.

Extral This problem is known as the Towers of Hanoi and was invented by the French mathe-

== matician Edouard Lucas in 1883. An animated version of the Towers of Hanoi problem

(and its solution) was prominently featured on the website for the 2007 International
Mathematical Olympiad, which was held in Hanoi, Vietnam.
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We can now work our way up to hig by starting at 1; = 1 and using the above recurrence relation

hy=2h +1=2(1)+1=3,
hs=2h+1=203)+1=7,
hy=2hs+1=2(7)+1=15,
hs = 2hy +1=2(15) +1 = 31,
he = 2hs +1=2(31) + 1 = 63,
hy = 2he +1=2(63) +1 = 127,
hs = 2hy + 1 = 2(127) + 1 = 255,

50 we need 255 moves to win the game.

(b) Hopefully, the pattern of the above numbers is pretty clear. Each number is 1 less than a power o
2, so it looks like i, = 2" — 1. Observing a pattern is not a proof, though. We need to prove thz:
this works. We do so by induction, checking that it works for the initial condition # = 1 and that =
satisfies the recurrence relation.

First, we see that i = 2! =1 =2 -1 = 1. Now we show that our formula for h, satisfies the
recurrence relation, by induction. Assume that the formula works for h,_;; that is, assume tha®
hy1 =2""1—1. Then by our recurrence relation:

By =2y 1 +1=2Q" 1) +1=2"-2+1=2"—
So, by induction, h, = 2" — 1 for all positive integers 7.
|

A little later, we’ll see how you might have come up with the formula if you didn’t see a pattern. In
fact, we see a bit of this approach in the next problem.

Problem 10.2: I work for a valet parkﬁig company ‘Each of our customers drives either a a Cadillac,
a Continental, or a Porsche. My boss told me I have to reserve spaces in our parking lot and mark
them as being for a Cadillac, a Continental, or a Porsche. Cadillacs and Continentals each take 2
spaces while Porsches only require 1.

(@) The lot has 12 spaces. In how many ways can I allocate the spaces?

(b) What if the lot has 500 spaces?

R e T R B R R R B e s T

g R S A

Solution for Problem 10.2: We see that this problem easily scales, meaning that there’s nothing particularly
special about the number “12” in the problem: it would be essentially the same problem regardless
of the number. We also see that, after we allocate the first space(s) for the first car, we have the same
problem (with a smaller number of spots) as we started with. This makes the problem a good candidate
for a recursive solution.

(a) Letp, denote the number of ways to allocate a parking lot with # spots. If we allocate the first spot
to a Porsche, then we can allocate the remaining 1 — 1 spots in p,_; ways. If we allocate the first
two spots to a Cadillac, then we can allocate the remaining n — 2 spots in p,_, ways. Similarly, if
we allocate the first two spots to a Continental, then we can allocate the remaining 1 — 2 spots in
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pn-2 ways. Therefore, our recurrence relation is

P = Pu-1 + 2Pu-2.

We start with p; = 1 (since if there’s only one spot, we have only one choice, which is to allocate it
to a Porsche) and p» = 3 (since our choices are a Cadillac, a Continental, or two Porsches). Then we
can use the recurrence relation to work our way up to pia:

P3=p2+2p1=3+2(1)=5
Ps=p3+2p=5+2(3)=11

ps =ps+2p3 =11 +2(5) =21

Pe =ps +2ps =21 +2(11) = 43

p7 =pe+2ps =43 +2(21) = 85

ps = p7 +2ps = 85 + 2(43) = 171

po = pg + 2p7 = 171 + 2(85) = 341

P10 = po + 2pg = 341 + 2(171) = 683

P11 = p1o +2pe = 683 + 2(341) = 1365
P12 = P11 + 2p10 = 1365 + 2(683) = 2731

So there are 2731 ways in which we can allocate the 12 spaces.

We don’t want to keep listing out terms all the way to psy. Instead, we’d like a nice formula that
we can simply plug n = 500 into and get the answer. But the pattern, if there even is a pattern, is
not so obvious here.

One pattern that you might notice is that each number in the above list is almost twice the
number immediately before it:

11=2(5)+1,21=2(11)-1,43=2(21) + 1, 85 =2(43) - 1, ...

But it’s not at all clear how to turn this into a formula.

However, the “almost-doubling” of the numbers makes us think about exponential growth, so
we can try the same tactic that we used to find the Binet formula for the Fibonacci numbers. We
look for solutions to the recurrence of the form ¢” for some constant c. If we substitute this into the
recurrence, we get

o= Cn—l 4 2Cn~2.
We can divide through by ¢"~? and we're left with ¢ = ¢ + 2, which gives ¢? — ¢ — 2 = 0. This factors
as(c—2)(c+1)=0,soweseethatc=2orc=-1.

Then, just as we did when finding the Binet formula, we have that Pr = A12" + A(-1)", where
11 and A, are unknown constants, and we use the initial conditions p1 = 1and p, = 3 to solve for
the constants. This gives us a system of linear equations:

p1=1=24; = Ay,
p2=3:4/]l.1+.)t2.
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Adding them together gives 4 = 611, so A = §, which then gives us A, = 1. Therefore we have
2 1
= Som 4 _(—1)"

We can now quickly compute p, for any value of #; in particular

_ 4

_2 500 1
Pso = 3277+ 3 3

At this point, you may have a pretty good idea how to approach finding a closed-form formula s
many recursions. We “guess” that the formula will somehow involve ¢", and then solve for c. WeT
come back to this idea in the next section.

2) such that the sequence does not contain two consecutive zeros.

e

Problem 10.3: Find the number of 10-digit ternary sequences (that is, sequences with digits 0, 1, o:l

Solution for Problem 10.3: We can do casework based on the first digit of the sequence. If the first digit =
a 0, then the next digit must be a 1 or a 2, and the remaining n — 2 digits must not have two consecutive
zeros. If the first digitis a 1 or a 2, then the remaining »n — 1 digits must not have two consecutive zeros

So if a, is the number of n-digit ternary sequences with no two consecutive zeros, then a,, satisfies
the recurrence relation
ay = 212”_1 + 23:&2-

This looks a lot like the Fibonacci sequence, except that each term is double the sum of the previous tw=
terms.

Noting that a; = 3 and a, = 8 (any two-digit sequence except 00 is allowed), we can generate the
sequence:
3,8,22,60,164,448,1224, 3344,9136, 24960, .. .

So the answer is 24960. O
Problem 10.4: 6 sprinters are in the 100-meter dash. Ties are allowed in the final standings, so that,
for example, one possible order of finish is:

Runner #6 wins; #2 and #5 tie for 2nd; and #1, #3 and #4 all tie for last.
How many different finishing orders are possible?

e R S e PR
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Solution for Problem 10.4: What makes this problem difficult is that any number of people could tie for
any position, including all 6 of them tying for first place. So trying to attack this problem using a direct
method like casework seems very difficult, as there are a large number of cases to consider: we could
have all 6 tied, or 5 could be tied with the other alone (ahead or behind), or it might go 4-1-1 (or 1-4-1
or 1-1-4), or 3-2-1 or 4-2 or 3-3 or 3-1-1-1 or.... We could try to list all of the possible cases and count
the number of possibilities for each, but it would be long and messy, and it'd be easy to overlook a case
and get the wrong answer.

So instead, let’s try to look at some smaller version of the same problem to try to get a handle for
what's going on. The easiest way to simplify the problem is to reduce the number of runners.
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If there’s only 1 runner, then obviously there’s only 1 possible order of finish.

If there are two runners A and B, then either A could beat B, or B could beat A, or they could tie. So
there are 3 possible orders.

Let’s go to 3 runners. Already it's starting to get complicated. If none of them tie, then there are 3!
orders of finish. Or they could all finish in a 3-way tie. If 2 of them tie, then there are (3) = 3 choices
for which two tie, and then 2 choices for the order between the two tied runners and the 3rd non-tied
runner, for a total of 6 possible orders when 2 of them tie. So there’s a total of 6 + 1 + 6 = 13 possible
fnishing orders for the 3-runner race.

Going to 4 runners leads to even nastier casework, and no clear pattern emerged from the numbers
that we've gotten so far: 1, 3, 13.

So let’s look at the problem another way.

a)ncepgtf ~ If a solution method doesn’t seem to begethng 'yo_u—ari'}-rv:rhere,? don’t be
. afraid to start over and try a completely different approach.

We can look at the runner(s) that come in first. If k runners tie for first, then there are (2) ways to
choose those runners. Then, we have 6 — k runners left to arrange. This suggests a recursive approach,
since the “6 — k runners left to arrange” part is a smaller version of the same problem.

So let a,, be the number of possible orders of finish for an n-runner race. As above, we can break up
Sie problem into cases based on how many runners tie for first. If k runners tie for first, then we have
:l ways to choose them, and a,,_; ways that the remaining # — k runners can finish.

ay = kzzll (:)ﬂ”_k.

“ote that a, depends on all of the previous terms of the sequence of a’s.

This gives us our recursion:

Now we just crunch the numbers, noting that ap = 1: if there are no runners to arrange, then there
z7= no choices to make.

ay=ap=1

=20 +ay=1+2=3

a3 =3a,+3a +ap=9+3+1=13

ag =4a3+6a, +4a; +ap=52+18+4+1=75

as = bay + 10a3 + 1042 + 541 +ap = 375+ 130 + 30 + 5+ 1 = 541

Finally, we get our answer:

ag = 6as + 15a4 + 20a; + 15a; + 6a; + Aag
=3246 +1125+260+45+6+1
= 4683.
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The numbers that we found:
1,3;13,75,541,4683, ...,

don’t seem to fit any nice pattern, so there doesn’t seem to be any obvious closed-form formula. —

10.2.1 Thave a 10-foot flagpole. I have 3 different types of 2-foot flags and 2 different types of 1-=
flags. I have billions of each of the types of flags. Find the number of ways I can arrange flazs
exactly fill the 10-foot flagpole (where the orders of the flags matter, and while flags of the same =3
are indistinguishable, flags of different types are distinguishable).

10.2.2 Letay, az, ... be a sequence with the following properties:
(i)a; =1, and

(ii) a2, = n(a,) for any positive integer n.

What is the value of a;100?

10.2.3 How many 6-digit base-4 numbers have the property that they contain at least one 1 and =
the first 1 is to the left of the first O (or there is no 0)?

10.2.4 Leta; = panda, = g, where p and g are positive integers, and leta,, = a,,_1a,_, for all n > 3. Fmg
a formula for a, in terms of #, p, and g. Hints: 197

10.2.5 Call a set of integers spacy if it contains no more than one out of any three consecutive integess
How many subsets of {1,2,3,...,12} are spacy? (Source: AMC) Hints: 231

10.2.6x Find the number of 10-digit binary sequences that have exactly one pair of consecutive =
Hints: 59

10.3 Linear Recurrences

Problem 10.5: We wish to find a closed-form formula for the recurrence where a; = 1, 4, = 2, and
fn =81 + 6, foralln>2.

(a) Ignore the initial conditions for a; and a,. Let a, = ¢" for some unknown constant c. Plug this
into the recurrence relation and solve for c.

(b) You should have found in part (a) that there is more than one value of ¢ that works. How can we
combine the different values of ¢ into a common solution?

(c) In(a)and (b), you did not use the condltlons a1 = 1and a; = 2. Use these conditions to finish the
problem.

Problem 10.6: Find a closed-form formula for the recurrence a, = 44, — 4a,_» for all n > 2, with
initial conditions 4; = 1 and a; = 3.
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In Problem 10.2, we saw a small piece of the general theory for finding formulas for recurrences. In
this section, we'll explore this theory in a bit more detail, and introduce some terminology.

TImportant: It is not necessary to memorize this terminology. It is more important o
' W understand the underlying concepts.

We're not going to try to cover completely the general theory of recurrence relations—doing so
would require more algebra than we wish to get into in this book. Instead, we’ll focus on a couple of
sev examples.

Problem 10.5: Find a closed formula for the recurrence where a; = 1, 2, = 2, and a, = a,.
foralln > 2.

T R S R S

R R B R R e R T B e R B Y S

T

Solution for Problem 10.5: As we did when we found the closed-form formula for the recurrence in

“roblem 10.2, we start this problem by trying a solution of the form ¢" for some unknown constant c.
e plug this into the recurrence to get

" ="+ 602

“ividing by ¢~ and bringing all the terms to one side gives
>—c-6=0.
Sactoring gives us (c — 3)(c +2) = 0, so the roots are ¢ = 3and ¢ = —2.

Therefore, we know that for any constants A; and A,,
ay = A3" + A (=2)"

satisfies the recurrence. To find a solution to the recurrence that also satisfies the initial conditions gi= 1
and a2, = 2, we substitute # = 1 and # = 2 into the above equation to get the system of linear equations:

1 = 3/11 - 2;12,
2 =911 +4A,.

Wultplying the top equation by 2 and adding gives 4 = 151, so A; = i, and plugging this back in
‘_T‘ES o= _Tlﬁ'

Therefore our solution is " i
— sy M = = i

= quick check, we can compute a3 = a; + 6a; = 8, and check that

4 4 01, ., 4 1 3 4 40
— —_ - = —_— 2 —_— —{— = — —_— e— = s
B Y = g@) - B = g+ =7 =8

We
1 r
-

can use this same method as a general procedure to solve recurrences of the forma,, = Pap_1+qa,—,
» and g are constants. Such recurrences are called linear recurrences, since each term of the
ce is an element of the sequence (such as a,, or a,_;) multiplied by a constant.
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We first look for solutions that are exponentials of the form ¢”, which we can plug into the recurrencs
to get

" = pCJPI + an_z.

We divide by ¢"~? and move all terms to one side to get

—-pc—q=0.
This is called the characteristic equation of the recurrence. We solve this to get roots c; and ¢p. Then, =
€1 # ¢z, we have that

ay, = A]CT + )lzCJZI

for some constants A, and A». This is called the general solution of the recurrence. Finally, we use the
initial conditions on 2; and a5 to solve for the A’s.

The next problem explores what we do if the roots of the characteristic equation are equal; that is,
€1 = ¢ in the above discussion.

Problem 10.6: Find a éioséd—fofrh formula for the recurswiornr;:z‘,-,mz 4a, 4 = 4a, » for all n > 2; with

initial conditions z; = 1 and a, = 3.
B R R R e N e o

Solution for Problem 10.6: 1It's a linear recurrence relation, so we start by forming the characteristic
polynomial:
A —4c+4=0.

This factors as (c — 2)* = 0, so we have a double root at ¢ = 2. What do we do now?

Bogus Solution: If we try to simply set e E el
i‘r! ity = A",

we plug m a; = 1 and see fhat A= %, 501t looks hkei ay = %(2") 5 _2"‘1. |

But this doesn’t work, since @, = 3 # 2L

Let’s compute a few terms of the sequence, to see if there’s an easily-observed pattern:

a =1,

ar = 3,
a3=43-1)=8,

as = 4(8 — 3) = 20,

as = 4(20 — 8) = 48,
as = 4(48 — 20) = 112,

We suspect that 2" might somehow be involved, so let’s divide each term by 2":

o Wy A8 g B owy
: =

7
) 8 - 1, E'—L]:; 32 2/ 6 11
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= appears that every time n increases by 1, a,,/2" increases by 1. In particular, we can conjecture that

a, n+1 wtl .
E: 1 = ay; = 4 (2)

‘e see that there is an #2" term in our solution. In fact, this is what happens in general. If we have

= double root of our characteristic equation, then we will get a term with a factor of # in the general
solution. In this problem, our general solution is

ay = }len + }122?12".
“ow we can plug in our initial values and get a system of linear equations:

1=2A+ 2A,,
3=4A; + 8A,.

Solving this system gives A; = § and A, = 1, so our solution is

1 1 1
Gy = ZZ” + ann = Z(l +n)2".

Here is the general statement of what we observed in the previous problem:

Important: If ¢ is a double root of the characteristic ‘equation, then the general
’ W solution will have terms of the form

Arc" + Apnc.

¥ course, we have not proved that this always works. It is not terribly difficult to algebraically show

St this is always the general solution of a recurrence with a double root, but we will leave the details
W he proof as an Exercise.

Find a formula for a, where a, = —2a,_; + 15a,_,, with initial conditions ap=0and ag; = 1.
Find a formula for a,, where a, = 4a,,_; — 3a,_», with initial conditions agp=1landa =1.
Find a formula for a, where a, = 64,1 — 9a,_,, with initial conditions ap=1land a; = 4.

Prove that, ifa,, = pa,_; + qan—7 is a recurrence such that the characteristic equation has z double
- ., then

a, = A" + Agnc”

= solution to the recurrence. Hints: 4

Find a formula for a,, where a,, = 2a,,_; —5a,,_,, with initial conditions a1 =2ands = 1 EEmie =0

5= Find a closed-form formula for the recurrence a, = 20,1 + 4,5 — 2a, 3 with il comsaoms
=, a; =1, and a, = 3. Hints: 165
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10.4 A Hard Recursion Problem

Problem 10.7- T have 2048 letters numbered 1 to 2048. I have to address every single one. Origi
they're stacked in order with #1 on top. To make the task a bit less mind-numbing, I address e
other one, starting with #1. When I address a letter, I put it in my outbox. The ones I skip I stack 2=
skip them (so #2 is on the bottom of the stack after my first pass). After I finish my first pass, I
1024 letters which are not addressed; #2048 is on top, #2 is on the bottom. I then repeat my proced
over and over until there’s only one letter left. What number is that letter? (Source: AIME)

In the real world, we're not usually just given a simple recurrence relation and told to solve &
Recursion is usually hidden within a problem, and the recursion may not be so easy to see or wris
down. Let’s do an example of a problem in which a recursion is clearly present, but precisely descritine
that recursion is somewhat difficult.

Problem 10.7: Ihave 2048 letters numbered 1 to 2048. [ have to address every single one. Originally
they're stacked in order with #1 on top. To make the task a bit less mind-numbing, I address evers
other one, starting with #1. When I address a letter, [ put it in my outbox. The ones I skip I'stack as !
skip them (so #2 is on the bottom of the stack after my first pass). After I finish my first pass, [ have
1024 letters which are not addressed; #2048 is on top, #2 is on the bottom. I then repeat my procedure
over and over until there’s only one letter left. What number is that letter? (Source: AIME)

Solution for Problem 10.7: We could try to brute-force it, writing out the stack at each step. Howeves
that sounds like a very long process, and the potential for error is huge. So instead, as we often do, w=
can try to get a feel for the problem by playing with smaller cases. Since the number of letters get halves
on every iteration of the procedure, it makes sense to just look at stacks with sizes that are powers of =

If we start with 1 letter, then obviously #1 is the last letter remaining. Let’s denote by 4y the numbes
of the last letter remaining if we start with a stack of 2" letters numbered from #1 to #2". So weve

established that ay = 1, and we're trying to find a11.
If we start with 2 letters, then I address #1, and #2 is left over. Som = 2.
If we start with 4 letters, on the first pass I address #1 and #3 and am left with a stack with #4 on top

and #2 on the bottom. On the second pass, | address #4, and #2 is the last letter remaining. So a; = 2.

For a stack with 8 letters, I had better start using a chart, ~#1
shown at right. In each stack, I cross off the letters that | sign, #2

and then the next stack is the uncrossed letters, in reverse #3 #8

order. We see from the chart at the right that letter #6 is the =~ #4 #6 #7

last letter remaining, so az = 6. #5 = #4 = # =
#6 #2
#7
#8
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[ can try to keep going to 16 letters, but now’s a good time to start looking for a shortcut. Let’s just
“st the stack after doing the first pass for 16 letters. It will be a stack with just the even-numbered letters
s=maining, with #16 at the top and #2 at the bottom, as shown on the left below.

=16 I don’t need to keep going, because I can take advantage of recursion! I know that in the
=14 8-letter problem, the 6" letter from the top is the last one remaining. So I know that in my stack

=12 at left, the 6™ letter from the top is the one last remaining! This just happens to be letter #6, so
=10  we know that ay = 6.

E As n increases, we could keep listing the stacks, but as the stacks get larger it quickly gets

tedious to do so. However, because we have an iterative process (in which every step of the
_,  processis essentially a smaller version of the previous step), we think of using recursion. Can
"~ we determine a formula for a, in terms of a,_,?

In our exploratory work above, we saw that a; was the number of the letter that was in the 6
sosition after the first pass. But as = 6, so we can also say that 2, was the number of the letter that was
= the (a3)™ position after the first pass. Extending this logic to the general case, we know that a, will
2= the number of the letter in the (a,_;)™ position after we do our first pass.

Concept: Try to use your experimentation as a guide for creating a description or
formula for the general problem. This is what scientists and mathemati-

cians do: they perform specific experiments to try to understand a general
theory.

We still need to convert the phrase “(a,-1)™ position” into a formula for the number of that letter.

One observation that should be apparent from working out the smaller cases is that the letters
“=maining after the first pass through the stack are exactly the even-numbered letters, and they are
~=cked in reverse order, with letter #2" at the top and letter #2 at the bottom. We want the (a,_1) letter
= this stack. This is also the letter that is 2"~! — 4,_; + 1 from the bottom (make sure you see why we
#e=d to add 1 here). Therefore, it is letter number 22" — g, _; + 1)

We have just established our recurrence relation—it’s
n = 2(2”_1 — Ayt 1);

“= initial condition ap = 1. We can now plug-and-chug with this recurrence to get our value of ay;.
practice—and to check our work—we’ll start at ay, even though we’ve already computed the first
" values of a.

ap =1

m=22"-a+1)=21-1+1)=2

A =22'—a; +1)=2Q2-2+1)=2
a3=22%-a+1)=24-2+1)=6

a3 =22 -a3+1)=28-6+1)=6

a5 =22 —a;+1) =2(16 -6+ 1) = 22
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a6 =2(2° —a5+1) =232 =22+ 1) = 22

a7 =2(2° —ag+1) = 2(64 —22 + 1) = 86

a3 =2(2" —a;+1) =2(128 - 86 + 1) = 86

ag = 2(2% —ag + 1) = 2(256 — 86 + 1) = 342
ap=2(2° —ag +1) = 2(512 — 342 + 1) = 342

a =22 — a0 + 1) = 2(1024 — 342 + 1) = 1366

Therefore, envelope #1366 will be the last one remaining. 0

10.4.1%  Surely you noticed the pattern that a; = a;,; whenever k is odd. Can you come up with a=
explanation for that pattern? Hints: 57

10.4.2% Can you find a closed-form formula for a,? Hints: 255, 99

10.5 Problems Involving Catalan Numbers

Problem 10.8: In how many ways can 10 people sitting around a circular table simultaneously shake
hands (so that there are 5 handshakes going on), such that no two people cross arms? For example,
the handshake arrangement on the left side below is valid, but the arrangement on the right side is

invalid.
Valid Invalid
(a) Compute by hand the number of handshake arrangements for 2, 4, or 6 people sitting around a
table.

(b) It'sabit hard to do it by hand for 8 people (you can try if you like), so we'll look for a more clever
approach. Pick one person (out of the 8); how many people can he shake hands with?

(c) For each possible handshake for the first person in (b), in how many ways can the rest of the table
shake hands? :

(d) Use your answers from (b) and (c) to count the number of 8-person handshake arrangements.

; (¢) Can you extend your reasoning from (b)-(d) above to solve the 10-person problem?
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e e e = = = ex = e

Problem 10.9: How many ways are there to arrange 5 open parentheses “(” and 5 closed parentheses
)" such that the parentheses “balance,” meaning that, as we read left-to-right, there are never more
''s than (s? For example, the arrangement ((()())()) is valid, but the arrangement (()()))(() is invalid.

'2) Compute by hand the number of arrangements for 1, 2, and 3 pairs of parentheses. Do your
answers look familiar?

5) Try to find a 1-1 correspondence between arrangements of # pairs of parentheses and handshake
arrangements of 2n people (from Problem 10.8).

Problem 10.10: How many 10-step paths are there from (0, 0) to (5,5) on the grid below?

(5.5)

(0,0)
'2) It may be tempting to answer %(150) = 126. Explain why this is incorrect.
) fompute by hand the number of paths on the half-grid to (1, 1), (2,2), and (3, 3). Notice anything
amiliar?

‘<) Try to find a 1-1 correspondence between solutions to this problem and solutions to one of the
two previous problems.

Problem 10.11: In how many ways can a convex heptagon (a 7-sided polygon)
e triangulated? (To triangulate a polygon means to draw enough diagonals to
“ivide it into a bunch of triangles, as in the example shown at right.)

We'll explore several problems that look very different on the surface, but that actually all have the
s2me underlying structure. As we work through these problems, try to keep them all in the back of
+our mind, with an eye towards the features in the various problems that are similar.

Extra! Eugene Catalan 1814-1894
=mum The Catalan numbers (which we will be exploring in this section) are named after the
19™-century mathematician Eugene Catalan. He is also known for his conjecture (made
in 1844) that 8 and 9 are the only consecutive positive integers that are perfect powers
(8 = 2° and 9 = 3%). This conjecture remained unproven until 2002, when it was proved
by Preda Mihiilescu.
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Problem 10.8: In how manj?_w.éiys can 10 ?eople _sitting around a circular table Simultahé-aﬁslyish,_a;é
hands (so that there are 5 handshakes going on), such that no two people cross arms? For example.
the handshake arrangement on the left side below is valid, but the arrangement on the right side =

A,
[ \

#

/Y .\ ]\ E—

Solution for Problem 10.8: As we often do, we can experiment on smaller versions of the same problemy
in order to get some idea for what's going on in general.

If there are 2 people, then there is obviously only one way for them to shake hands.

If there are 3 people, then there’s no way that they can all shake hands, because there will always e
an odd person left out. In general, we must always have an even number of people.

If there are 4 people, then there are 3 ways for them to shake hands (pick one of the people, anz
choose one of the other 3 people to shake hands with him; the other two people are then forced to shake
with each other). But one of these ways is illegal: the pairs of people sitting across from each othes
cannot shake hands, since their arms would cross. So there are only 2 legal handshake configurations
In the figure below, we see the two legal handshake configurations on the left, and the 3™ (illegat

configuration on the right.

If there are 6 people, then things get a bit more complicated. The firs:
thing to note is that no one can shake hands with the person sitting 2
positions away from them on the left or on the right, because if they did
they’d “cut off” a person who would not be able to shake hands with
anyone, as in the figure on the left.

This person This leaves us with two cases.

can’t shake
with anybody

Case 1: Some pair of people who are directly across from each other shake hands.
There can only be one such pair, since two or more such pairs would
cross each other at the center of the table. There are 3 choices for a pair
of opposite people, and once we have chosen such a pair, the rest of the
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fandshakes are fixed (the two people on each side of the central handshake must shake with each other ).
These three cases are shown in the figure below:

—ase 2: Everybody shakes hands with one of his/her neighbors. There are two possibilities, depending on
whether a specific person shakes hands to the left or to the right, as shown in the figure below:

So there are a total of 3 + 2 = 5 ways for 6 people to legally shake hands.

When we get up to 8 people, it’s starting to get too complicated to list all the
~nfigurations. So let’s look at it from a particular person’s point-of-view. As in
‘5= 5-person case above, we cannot leave an odd number of people on either side of
s person’s handshake. So our initial person cannot shake hands with anybody
‘9=t is an even number of people away. In the figure to the right, we show a circled
=2l person, and his allowed handshakes are shown by dashed lines. Note that
=ach of these handshakes ends at a person who is an odd number of people away
“=om our initial (circled) person.

i1 the initial person shakes hands with a neighbor, we can think of the remaining 6 people as being
= z smaller circle, as in the figure below:

S

)

s 6 remaining people have 5 ways to shake, just as in the 6-person problem. Since the Tl person
- neighbors with whom to shake, this means that there are 2(5) = 10 handshzke zar e -
* with our initial person shaking hands with a neighbor.

[A¥]
w
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Otherwise, our initial person has to shake with a person who is 3 positions to his left or right. Oncs
this is done, the two people who are “cut off” from the rest must shake with each other, and the other =
people form a 4-person mini-table that can shake in 2 ways:

This gives another 2(2) = 4 handshake arrangements, since there are 2 choices of the person that is =
away from the original person, and then 2 choices to finish the handshaking at the 4-person mini-table

Therefore, there are 10 + 4 = 14 ways for 8 people to shake hands.

Finally, we can use this same strategy for 10 people. Choose an initial person.
This person has 5 choices for whom to shake hands with, as shown in the picture
to the right. If he shakes with one of his neighbors (2 choices), then the remaining
8 people form a mini-table that can shake in 14 ways. If he shakes with a person
3 positions away (2 choices), then 2 people are cut off (and must shake), and the
other 6 people form a mini-table that can shake in 5 ways. If he shakes with the
person directly opposite (1 choice), then each side of the table has a group of 4
people, each of which can shake in 2 ways.

Therefore, the number of handshake arrangements for 10 people is
2(14) +2(5) + 1(2)(2) = 28 + 10 + 4 = 42.
O

Before we go on, let’s list the numbers that we found while working through the previous problem:

(6] 8 |10
5 | 14 | 42

Number of people || 2 | 4
Number of handshake configurations || 1 | 2

Keep these numbers in mind as we continue through this section.

Problem 10.9: How many ways are there to arrange 5 open parenthéses “(" and 5 closed parentheség ;
“) such that the parentheses “balance,” meaning that, as we read left-to-right, there are never more
)’s than ('s? For example, the arrangement ((00)() is valid, but the arrangement (OON(Q) is invalid.

Solution for Problem 10.9: As we often do, let’s experiment with small values.
If we have 1 set of parentheses, then we only have one possibility: ().

If we have 2 sets of parentheses, we can either nest them as (()), or we can list both pairs one after
the other as ()(). So there are 2 possibilities.
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[f we have 3 sets of parentheses, then a little experimentation will show that there are 5 possibilities:

000, (0. OO), (O0), (O

Hmmm...,1,2,5,.... Do you recognize these numbers? They are the same numbers that we got

"¢ the number of non-crossing handshakes of people sitting at a round table in Problem 10.8. Perhaps
“ere is a connection between the two problems.

Coﬂéept: When you see the same answer for two different problems, look for a
(O===  connection, or better yet, for a 1-1 correspondence between them.

Since the parentheses come in pairs, it's natural to think that in any 1-1 correspondence between
sarenthesis-arrangements and valid handshakes around a table, each set of parentheses will represent

“w0 people shaking hands. The fact that the parentheses must be properly nested will somehow
“orrespond to the condition that handshakes cannot cross.

For instance, we can list all of the arrangements of 3 pairs of parentheses, and their corresponding
sandshake arrangements. We'll label both the parentheses and the people with the letters A through F,
#d note how each pair of parentheses corresponds to a pair of people that are shaking hands.

C B C B C B
D A D A D A
E F E F E F
CCC) ) ) C ) C CH) ) )
A B CDEF A B CD EF A B CDEF
C B C B
D A D A
E F E F

C C) ) C ) C) )
A B CDEF A B CDEF

Let’s see this further in an example with 5 sets of parentheses and 10 people around a table. We'll
“=bel the people around the table A through J, and the parentheses will also be labeled with A through |

=s we read from left to right. Each matching pair of parentheses corresponds to a handshake. A sample
correspondence is shown on the next page.
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C () CCyy ) )
A B CDETFGHTI]J
This leads to a 1-1 correspondence
parenthesis arrangements of handshake arrangements of}
{n pairs of parentheses } {Zn people around a table

Thus the answer to our problem is the same as the number of handshake arrangements of 10 peopie
which is 42. O

That’s two problems so far involving the sequence 1,2,5,14,42,.... You should therefore no: ==
surprised by what you will find in the next problem.

'Problem 10.10: How many 10-step paths are there from (0,0) to (5,5) on the grid below?

(5,5)

Solution for Problem 10.10: The first thing that we notice is that the grid shown is exactly the part of the
full 5 x 5 grid that is below the main diagonal, as shown below:

(5,5)
] 1 i I ]
I ] ! ] 1
] ] 1 ]
e T e S
1 ] | |
1 ] ] I
| ISNETS NSRS |-
I 1 1
1 1 1
1 1 1
Fo—d———
| I
] ]
]
R
]
]
(0,0)
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This might suggest the following quick “solution”:

‘Bo-gnl-ls-Solution: We imow that there are

(150) = 252 pathé on the full grid. Since we
only have the lower-half of the grid to work with, that means that
we have 22 = 126 paths on the lower-half of the grid.
This is of course absurd, as there are man
shown below:

y paths that pass through both halves of the grid, like the one

(5,5)

14

(4]

(0,0

0 how can we count the paths that only go below the main diagonal?
Once again, let’s count the paths in some smaller cases.

If the half-grid is 1 x 1, then there’s only one path:

L1
(0,0)
(2,2) (2,2)
If the half-grid is 2 x 2, then there are 2 paths:
(0,0) (0,0)
[f the half-grid is 3 x 3, then there are 5 paths:
3,3) 3,3) 3,3)
(©,0)

A% ]
.
[¥%)
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(3,3) (3,3)

(0,0) 0,0

There are those numbers again: 1,2,5,.... So we’'ll once again look fora 1-1 correspondence betivees
this problem and one of the previous problems. Since each path from (0, 0) to (1, ) consists of 71 e
up and n moves to the right, we think to try to find a correspondence between these paths and lists &
n II(IIS and n II)I’S.

Indeed, we can make a 1-1 correspondence
{balanced expressions with # pairs of parentheses} «  {paths on ann x 1 grid below the diagonz

by letting each “(” represent a move to the right and each “)” represent a move up. As long as there 2=
more “(”s than “)”s, there will be more rights than ups, and the path will never cross above the mz~
diagonal of the 1 x n grid.

i

Therefore, there are 42 paths on the 5 x 5 half-grid, since there are 42 possible nested expressions
with 5 pairs of parentheses. O

You can probably guess ahead of time what the answer to the next problem will be!

Problem 10.11: In how Iﬁany ways can a convex heptagbn (a 7-sided polygon)
be triangulated? (To triangulate a polygon means to draw enough diagonals to
divide it into a bunch of triangles, as in the example shown at right.)

R e e T — A R

Solution for Problem 10.11: As we often do, we can build up to a solution by looking at smaller cases.
There’s only 1 way to triangulate a triangle: do nothing, because it's already triangulated! There are 2
ways to triangulate a convex quadrilateral: draw in either diagonal.

Triangulating a pentagon is the first tricky case. The easiest way to think about it is to pick an
edge, and think about the possibilities for that edge. For example, we look at the bottom edge in the
regular pentagon shown below, and we see that it can be a part of one of three possible triangles in
some triangulation:

NURTAR
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= the middle pentagon shown above, we see that the triangulation is already finished. In the left and
night pentagons, we still need to draw in a diagonal of the remaining quadrilateral region, so there are 2
“hoices for how to finish each of those triangulations. Therefore, there are a total of 2+1+2 = 5 possible
Tiangulations of the pentagon.

Hmmm...1, 2, and 5 ways to triangulate triangles, quadrilaterals, and pentagons. We should not
o= surprised if we find 14 ways to triangulate a hexagon! Given a hexagon, we fix an edge and draw
e possible triangulations:

w DS

Figure 10.1: Four possibilities to triangulate a hexagon

In the left and right hexagons in Figure 10.1, we have 5 ways to finish the triangulation by triangu-
g the pentagon region that remains. In the middle two hexagons in Figure 10.1, we have 2 ways
= finish the triangulation by triangulating the quadrilateral region that remains. Therefore there are
= -2+2+5 =14 ways to triangulate a hexagon. (No surprise!)

Finally, there are five ways to start the triangulation of a heptagon from a fixed edge:

OV QYO

We see that there are 14 + 5 + 4 + 5 + 14 = 42 ways to finish the triangulation (note that the center

“eptagon above has 4 ways since each of the two remaining quadrilaterals must be triangulated in one
o 2 ways). O

We saw the sequence
1,2,5,14,42,...

= =ach of the four problems in this section. These are the Catalan numbers.

i

W51 In how many ways can an octagon be triangulated?

52 Compute the number of ways to place 5 indistinguishable balls into 5 distinguishable boxes
= 3-,...,Bs such that boxes B, through B; have a total of no more than i balls (forall1 <i < 5).

53 How many 5-digit numbers are such that the digits, as read left-to-right, are nondecreasing,
@ that the ith digit from the left is at most i? (For example, 12235 is such a number.) Hints: 263
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10.5.4% In how many ways can the shape at the far left be
with 4 rectangular tiles, such that each tile has integer side les
(where a side length of 1 corresponds to a side of one of the

squares)? A sample such tiling is shown at left. Hints: 284 2%

10.5.5% Determine the number of paths from (0,0) to (6,6) in the grid at
right, in which every step is either up or to the right, that pass through none

of the points (1, 1), (3,3), or (5,5) (these points are marked with large X’s in
the grid). Hints: 90, 55

10.6 Formulas for the Catalan Numbers

(0,0

Problem 10.12: Can you write a recurrence relation for the Catalan numbers?

Problem 10.13: Compare the n't Catalan number with the binomial coefficient (2:) Do you notice
any pattern?

Problem 10.14: Find a 1-1 correspondence between:

{Elaat'}ljlscfir;gn;n(gll e the} < {paths from (0,0) to (n — 1,1 + 1)}.

lgroblem 10.15: Find a formula for the n'" Catalan number.

As we've seen in the problems in the previous section, the 7™ Catalan number can be defined as:

e the number of ways that 21 people sitting around a table can shake hands, so that no tw-
handshakes cross arms;

* the number of ways to write 7 (‘s and n )’s such that the parentheses are balanced;

e the number of 2n-step paths on a rectangular grid from (0, 0) to (1, 1) that do not cross above the
main diagonal;

* the number of ways to triangulate a convex (1 + 2)-gon.

It would be nice if we could easily compute the Catalan numbers. For now, let’s focus

on the
recursive definition.

Problem 10.12: What is the recurrence relation fo_r thc_e_CataIan numl_)re_'r_s’(_‘” - N
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solution for Problem 10.12: We've actually already seen it in the problems in the previous section. For
=ach of the problems in the previous section, we can break down the problem of size 1 into cases, where
=ach case is composed of two smaller problems whose sizes add to 1 — 1.

For instance, in Problem 10.8, we start with a table with 2n people. Once we place the initial
“andshake, we are left with two smaller tables with 2(n — 1) people combined.

In Problem 10.9, we can look at the first parenthesis on the left and its corresponding closing
sarenthesis. This splits the rest of the parentheses into two groups: those that are inside this first pair,
#nd those that are to the right of this pair. For example, in the following 10-pair nesting, the first set of
=arentheses (in bold) splits the rest of the parentheses into a 6-pair group (inside the bold parentheses)
#nd a 3-pair group (to the right of the bold parentheses):

(0000

e first set of parentheses will always split the remaining #n — 1 pairs into two groups of balanced

sarentheses, although one of the groups may be empty.

We can use the 1-1 correspondence between Problem 10.9 and Problem 10.10 to see how to set up the
s=cursion for the paths on the half-grid from (0,0) to (11, 11). The idea is that the end of the first complete
st of parentheses corresponds to the place where the path first touches the diagonal after leaving (0, 0).
“or example, we show a 5-parentheses nesting and its corresponding path in the figure below. The first

st of parentheses is shown in bold, and it corresponds to the path’s first touching of the main diagonal
& (2,2).

(5,5)

0)o o

(0,0)

= path is now broken into 2 paths on 2 smaller half-grids.

In all of these problems, the solution is the n" Catalan number C,, and we arrive at the solution by
“r=zking up the problem into a sum of two smaller problems. Specifically, we see that C, is the sum o
& possible products of the form C,C; where k + 1 = n — 1. That is,

n—1
Cn = CoCt + CiCaz ++++Cp1Co = Y CuCrorie
k=0

e sequence starts at Cp = 1. O
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We can once again verify this recursion for the numbers that we've already computed:
Co=1,
C1 = CUC(} = 1,
C=CC1+CiCo=1+1=2,
C=CC+CiCi+CGCr=2+1+2=5,
Ci=CoC3+C1C+ CoCi+C3Cy=5+2+2+5= 14,
Cs =CoCs+C1C3+ CaCr + C3C1 + CuCp = 14 + 5+ 4 + 5+ 14 = 42,

Let’s continue and compute the next couple of Catalan numbers:

C5 = C0C5 + C1Cy + C2C3 o C3C2 + CyCy + CsCp=42+14+10+10+14 + 42 = 132,
Cr = CoCs + C1Cs+ CoCy + C53Cs + CiCo + CsCi +CCo=132 +42 + 28 + 25 + 28+42 +132 =422

Sonow we have a recursive formula for the Catalan numbers. However, itis somewhat unsatisfying.
Not only it is recursive, but each Catalan number depends on all of the preceding Catalan numbe=s.
not just the one or two immediately prior. It would be much nicer to have a closed-form formula inse
which we could plug some value of # and have C, just pop out. But where can we begin to find suc =
formula?

Problem 10.10 looks most promising, as it's most related to a problem that we feel like we understane
well and know how to find a formula for, namely paths on a grid from (0,0) to (11, 1). We know et

i i 2n
without any restrictions, there are ( ; ) such paths. So that’s a good place to start.

. 2
' Problem 10.13: Compare the n Catalan number with the binomial coefficient ( nn). Do you notice

2

5

a

n

i

pattern?

S SRR o e

Solution for Problem 10.13: Let’s list the first 7 Catalan numbers and the first 7 values of (211;1) and see =
we notice anything.

n ||1]2]3]4]5]6] 7

Ca |1]2]5[14] 42 [132] 429

(i?) 2016|2070 252 ‘924 3432

It’s not too clear how to find a pattern between these two rows of numbers, but the one column tha+
might jump out at you is the n = 4 column with the numbers 14 and 70, since 70 = 5(14). This mighs
cause you to notice that (*") always appears to be a multiple of C,,. Let’s expand our chart:

n [1]2]3]4]5 6] 7

Co ||1]2]5|14] 42 [132] 429

(if) 2062070252 | 924 | 3432

)
Cn
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. . 1 (2n
“wow we have strong experimental evidence that C,, = m( ; ) O

Of course, observing a pattern is not a proof. Let’s further examine the “paths on a grid” problem
ind see what else we might determine. We know that (Zn“) counts the number of paths from (0,0) to
=.1) on a rectangular grid. We also know that C,, counts the number of these paths that don’t go above
“e diagonal. So (*") - C, counts the number of paths that do go above the diagonal. Since we suspect
that C, = L(i”), we suspect that the number of paths that go above the diagonal should be:

n+l
2n B 1 (2ny  n (2n
n| n+l\n) n+1ln/

e do a bit of algebraic manipulation with this quantity:

n (Zn) n(2n)! (2n)! _( 2n )

n+1\n)” (n+Daml ~ D=1 \n—-1

This last quantity gives us an idea for a 1-1 correspondence:
Problem 10.14: Find a 1-1 correspondence between:
{paths from (0,0) to (n,n) that go above the

main diagonal
_— AR

} < {paths from (0,0)to (n —1,n + 1)}.

Sciution for Problem 10.14: This can be a bit tricky to see, so let’s play with the # = 2 case.

There are (g) = 6 paths from (0,0) to (2,2), and we know that C, = 2 of them stay on or below the
==in diagonal, so the other 4 go above the diagonal. We also know that there are (’i‘) = 4 paths from
~ ) to (1,3). (Good—there are the same number of paths in each category, which is a necessity for
“ere to be a 1-1 correspondence.)

Let’s draw the 4 paths in each category, and see if we can match them up. (I'm going to help you
“ut and list them in the order that we will match them—see if you can find the correspondence.)

Paths from (0,0) to (2,2) that
go above the main diagonal

Paths from (0, 0) to (1, 3)

In each column, let’s start at (0,0), and let’s mark (with a circle) the point on each path where the
0 paths differ. In other words, the path from (0, 0) to the circled point is the same in both paths, but
“=er the circled point, one path goes up whereas the other goes right.

219



CHAPTER 10. RECURSION

~
AN 74
Paths from (0,0) to (2,2) that | (B E @
go above the main diagonal
P
Paths from (0, 0) to (1,3) €%, ® &

We see that in each column, the path from (0,0) to the circled point in both pictures is the sz=e
However, what’s more interesting is what happens after the circled point. Compare the paths after
circled point in both pictures of a column. They're mirror images of each other!

To be more precise, let’s list the paths using “r” for a step to the right and “u” for a step up. W=1
place in bold all of the steps after the circled point.

Paths from (0,0} to (2,2) that

L urur urru  ruur
go above the main diagonal

Paths from (0, 0) to (1, 3) uruu  uurud uuur ruuu

Note that the unbolded parts of the paths—the parts between (0,0) and the circled point—z=
identical, and the bolded parts of the paths—the parts between the circled point and the end—az=
exactly reversed.

This suggests a general strategy for finding a 1-1 correspondence. Given a path from (0,0) to (= =
that goes above the diagonal, circle the first point at which the path crosses above the diagonal. The=
reverse all steps past the circled point: change ups to rights and rights to ups.

Here’s an example where n = 5. The original path is shown as solid, and the new path (after e
transformation described above) is shown as dashed.

e nY

Note that the solid path, before the circled point, has one more up step than right step. After the
circled point, the solid path has one more right step than up step (since the circled point lies one “up"
step above the diagonal). After the reversal transformation, the dashed path has, after the circled point
one more up step than right step. Hence, starting at (0, 0), the combined new path has 2 more up steps
than right steps. Since it still has 27 steps in total, it must have n + 1 up steps and n — 1 right steps, and
thus the path ends at (n — 1,17 + 1).
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This process is clearly reversible, and hence we have a 1-1 correspondence:

{E?;].}: dff;;;rfgl’ U i sk thiat B dbuwe the} < {paths from (0,0) to (n —1,n + 1)} .

Problem 10.15: Finda for the n™ Catalan number.

ol

ution for Problem 10.15: We know that the n™ Catalan number is the number of paths from (0,0) to
~=.n) that don’t go above the diagonal. However, we know from Problem 10.14 that the paths that do

2
20 above the diagonal are in 1-1 correspondence with paths to (1 — 1,7 + 1). Since there are ( ;) paths

~om (0,0) to (n,n) and (n2_n 1) paths from (0,0) to (n — 1,n + 1), we have that

2n 2n
=)L)
“his does not exactly look like what we conjectured in Problem 10.13, so let’s try to simplify it a bit. We
start by writing out the expressions for the binomial coefficients:

_@n  en)

nln! (n=1Dn+1)!

‘%z can factor out like terms and simplify:

O 1\ (2n) 1 ()
”‘"(n—1)!n1(£‘n+1)‘(n—1)!n!'n(n+1)‘(n+1)1ng‘

Semoving an (n + 1) term from the denominator gives us our result:

C = 1 (Cm)!) 1 (2n
"Tu+1\n! ) n+1\n/

.;mpdrfant: The formula for the n'* Catalan numberis

e

T n+lln

n

#2861 Compute Cg both recursively and by the closed-form formula, and verify that they masch.

£26.2 In how many ways can identical coins be placed in one or more rows on 2 flat surface su
==zt there are 7 coins in the bottom row, and each coin (above the bottom row) is tangent to fwo coi
“irectly underneath it? The possible configurations for # = 3 are shown on the nex: page. Hints: 60

juk

7
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5 & 0% o 0o

10.6.3 Brazil defeats Germany in a wild World Cup final by the score of 8 to 6. Assuming the 14 goa=
were equally likely to be scored in any order, find the probability that the score was never tied (excess
at 0-0). Hints: 110

10.6.4 We form a rooted binary tree by as follows. Starting with a root node, we can draw 2 branches
(but not 1) from the root to new nodes. From each of these new nodes we can draw 2 branches (but noe
1) to new nodes, and so on. Each node either has exactly 2 branches (in which case we call it an inferna
node) or 0 branches (in which case we call it a leaf). The possibilities with 3 internal nodes are show=
below. Prove that the number of rooted binary trees with 1 internal nodes is the n'" Catalan numbes

R

10.6.5% Determine all values of n such that C,, is odd. Hints: 343, 124, 329

10.7 Summary

» Recursion is the name for the general concept of constructing later terms in a sequence from earlier
terms.

» In a way, recursion is the opposite of constructive counting. In constructive counting, we think
about how we would build the items that we're trying to count. In recursion, we think about how
we would break up the items that we’re trying to count into smaller pieces.

»  Some simple recurrences can be solved by hand, by determining the recursive formula and then
simply number-crunching to get the answer that you want.

»  Linear recursions are solved in three steps:

1. Assume that the solution is an exponential, to get the characteristic equation.

2. Find the roots of the characteristic equation, to get the general solution as a sum of exponential
terms with unknown constants.

3. Use the initial conditions to solve for the constants in the general solution.
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» The Catalan numbers C, are given by the following recurrence, where C; = 1:

n—1
Cp=CoCp1 +C1Cya + -+ GGy = Z CrCo-1-t-
k=0

1 (2
They are also given by the closed-form formula C, = ;1—_’-_—-1—( :)

Also keep in mind the following problem-solving concepts:

Cdncept: - Experiment with smaller examples in order to get a feel fora hard problem.

Try to use your experimentation as a guide for creating a description or
formula for the general problem. This is what scientists and mathemati-
cians do: they perform specific experiments to try to understand a general
theory.

Concept: If a solution method doesn’t seem to be getting you anyWhere, don’t be
== afraid to start over and try a completely different approach.

Concept:  After solvmg a recurrence (or any"problem for that matter), it is often a
(=== good idea to plug in some small values to check your work.

Concept: When you see the same answer for two different problems, look for a
=== connection, or better yet, for a 1-1 correspondence between them.

10.16 A teacher wishes to split his 2n students into 1 pairs. Use recursion to find a,, the number of
wayvs he can form the pairs.

0.17

2 If we draw n lines in the plane, what is the largest number of different regions we can create (in
terms of 1)?

“

If we draw 7 circles in the plane, what is the largest number of different regions we can create (in
terms of n)?

8]

If we draw n pairs of parallel lines in the plane, what is the largest number of different regions we
can create (in terms of 1)?

i
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10.18 Find a closed-form formula for the recurrence a, = 2a,-1 + a,— for all n > 2, with the iniz==
conditions ag =2 and a1 = 3.

10.19 A solitaire game is played as follows. Six distinct pairs of matched tiles are placed in a bag. The
player randomly draws tiles one at a time from the bag and retains them, except that matching tiles 2=
put aside as soon as they appear in the player’s hand. The game ends if the player ever holds three tiles.
no two of which match; otherwise the drawing continues until the bag is empty. Find the probabitiz
that the player wins the game (by emptying the bag). (Source: AIME)

10.20 In how many ways can a 3 x 10 rectangle be tiled with tiles of size 1 x 2?

1021 A collection of 8 cubes consists of one cube with edge-length k for each integer 1 < k < 8. =
tower is to be built using all 8 cubes according to the following rules:

e Any cube may be the bottom cube in the tower.

e The cube immediately on top of a cube with edge-length k must have edge-length at most k + 2.

How many different towers can be constructed? (Source: AIME)

10.22 Define a half-rectangular array of positive integers (shown below) by placing a 1 in the tog
row, and then letting every subsequent number be the sum of the number immediately above and the
number immediately to the left. (If a number is missing, treat it as 0.) If the top row is Row 0, then Row
n has 1 + 1 entries. Prove that the last entry in Row 7 is the nth Catalan number C,, for all n > 0.

1

L1

122

158 D
1491414
1514284242

10.23 We form a word using only A’s, B's and C’s. Suppose we can never have an A next toa C. Find
the number of 8-letter words that can be formed. Hints: 81

10.24 A mail carrier delivers mail to the 19 houses on the east side of Elm Street. The carrier notices
that no two adjacent houses ever get mail on the same day, but that there are never more than two
houses in a row that get no mail on the same day. How many different subsets of houses that get mail
on any particular day are possible? (Source: AIME) Hints: 196

10.25 We have the coins Cy,Cs, ..., Cy. For each k, Cy is biased so that, when tossed, it has probabilitv
1/(2k + 1) of showing heads. If n coins are tossed, what is the probability that the number of heads is
odd? (Source: Putnam) Hints: 70
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10.26 For any positive integer 1, prove that the number of positive integers whose digit-sums are 27
znd whose digits are all 1, 3, or 4, is a perfect square. Hints: 248, 264

10.27 We are given a 2 X n array of nodes, where 1 is a positive integer. A wvalid connection of the
array is the addition of 1-unit-long horizontal and vertical edges between nodes, such that each node is
connected to every other node via the edges, and there are no loops of any size. We give some examples
for n = 3:

J *>—

Valid Valid Invalid: loop Invalid: not connected

_et T,, denote the number of valid connections of the 2 xn array. Find Tyg. (Source: USAMTS) Hints: 330

10.28 Consider a regular decagon (10-sided polygon) with center O. We color, with one of 3 colors,
=ach of the ten triangles formed by connecting O to adjacent vertices of the decagon. How many ways
=2n we perform the coloring such that no two adjacent triangles are the same color? Hints: 166, 168

10.29x We construct sequences of numbers as follows: start with
51 = 1, 1

=nd form each subsequent sequence by placing a new term between each term in the previous sequence
=gual to the sum of the two terms it’s being put between:

S53=1,2,1

53 = 1;3121311
54 = 11413151215r31411

znd so on.

2 What is the largest element of S,,? Hints: 104, 172

=) Find arelationship between the number of odd terms and the number of even terms in the sequence
S, for even n. Hints: 285, 333

Source: ARML)

10.30% A double-good nesting of order n is an arrangement of 2n “)”s and n “(”s such that as we read
=ft-to-right, the number of “)”s that have appeared at any point is no more than 2 times the number
=% “("s that have appeared to that point. For example, the complete list of the double-good nestings of
exder 2 is:

00)
00))
(O

“nd the number of double-good nestings of order n. Hints: 148, 8, 246
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10.31% Suppose that Germany and Brazil play a soccer rematch in which there are 2n goals «
and that the final score is Brazil n + m, Germany n — m. How many possible sequences of goals z= &
such that Germany is never more than 2m goals behind? Hints: 348, 128

10.32x Count the number of sequences of integers a;, a2, a3, a4, a5 witha; < 1 forallisuch thata =
sums (a1, a1 + Az, 4y + Ap + ds, Ay + @y + a3 + ag, ay + a + a3 + A4 + ds) are nonnegative. (Source: =1

Hints: 241, 72
Extral =  General theory of linear recurrences J
bbb WWe can use methods similar to those of Section 10.3 to solve arbitrary linear recurrences
of the form

Oy = P11 + Pody—2 + -+ + Prln—k,

where p1,p2, . .., pr are constants. We substitute a, = ¢” to get the characteristic equation
of the form '
- Ck—Plck_l—PZCk—z—""‘Pk=0-

Suppose that this characteristic equation has roots ry,7,...,7; with multiplicities
My, ma,..., mj; in other words, the characteristic equation factors as

(c—rn)ile1)% e (=111 =0
Each root r; contributes a term to the general solution of the form
()Lﬂ + Apn + /1;3?12 + e Aimiﬂ(m"_l))('?’i)”,

so that the general solution is of the form

co§[ge e

Note that there are k constants A in this expression, since the multiplicities of the roots

~ must sum to k. Given k initial values of a,, we can always solve the resulting system
of linear equations for the A;’s. This works regardless of whether the roots are real or
complex.

Proving that this works for any linear recurrence requires advanced algebraic techmques
and some knowledge of linear algebra. :
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Therefore, we see that if the contestant switches, he has a probability } + } = § of winning, and
probability § + { = § of losing. O

Sidenote: The controversy surrounding the publication of the Monty Hall problem
) in the popular Sunday newspaper supplement Parade was detailed in a
July 21, 1991 front-page story in The New York Times.

-

'Problem 11.10: You and two other prisoners are in jail. Tomorrow, two of you will be sentenced to
life in prison, but the third will be set free; any one of the three of you is equally likely to be the one
set free. The jailer is sitting just outside the bars. You ask the jailer if you are the one to be set free.
(a) The jailer says he knows who will be let free, but he won't tell you if you are the one to be
| freed. He does, however, point at one of the other two and tells you that that person will not be
~ released. What is the probability that you will be set free?

(b) The jailer says that he can’t give out that information, but he does have the names of the two to
~ be sentenced to life written on two scraps of paper in his pocket. When the jailer turns away
] from you, you're able to sneak a hand through the bars and snatch one piece of paper out of his
i

pocket. It doesn’t have your name on it. What is the probability that you will be set free?
(¢) Your probability of being freed is different in these two cases. Why?

Solution for Problem 11.10: We first note that before the jailer responds, the probability that you will be
set free is }, since you are told that the three prisoners are all equally likely to be freed.

(a) The jailer, unfortunately, is not giving you any additional information. You already knew that one
of your two cellmates was going to be sentenced to life. So your probability of being freed is still §.
(b) You will be set free if and only if your name is not in the jailer’s pocket. If your name was in
his pocket, which occurs with probability 3, then you would draw somebody else’s name with
probability 1. If your name was not in his pocket, which occurs with probability }, then you would
draw somebody else’s name with probability 1. Therefore, the probability of drawing someone
else’s name is
3.14.1.]-3
32 3 3
Hence, the probability that you will be freed (which is the same as the probability that your name
is not in the jailer’s pocket), given that you drew someone else’s name, is

P(you're freed and you draw another name) i
P(you draw another name) b §:

N =

(c) Why the difference? It's subtle. In part (a), you got no information: whether you were going to be
freed or not, the jailer can still give you someone else’s name. But in part (b), when you reached
into the jailer’s pocket, there was always a chance that you might have drawn your own name. But
you didn’t, and that's information that you can use.

g
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1112 Bag A has three white and two black marbles. Bag B has four white and three black marbles. A
marble is taken at random from Bag A and placed in Bag B. A marble is then taken at random from Bag
B. Given that the marble taken from Bag B is white, what is the probability that the marble taken from
Bag A was white?

1113 A jar has 499 fair pennies and one penny with heads on both sides. A penny is chosen from the
jar at random and flipped 9 times. It comes up heads every time. What is the probability that the coin
is the two-headed coin?

1114 On average, one in five Martians is a compulsive liar, and the rest always tell the truth. It rains
30% of the time on Mars. If three randomly-chosen Martians tell Astronaut Sue that it is raining, then
what is the probability that it is actually raining? (Source: Mandelbrot)

1115 A point on a circular table of radius 5 cm is chosen, and a quarter (of radius 1 cm) is placed on
the table with its center at the chosen point. If no part of the quarter hangs over the edge of the table,
then what is the probability that part of the quarter overlaps the center of the table?

1116 Louise has a 75% probability of attending the annual Mathematical Association of America
(MAA) convention. Thelma has an 80% chance of attending if Louise also attends; otherwise she has a
50% chance of attending. If I go to the convention and see Themla there, then what is the probability
that Louise is also there? (Source: Mandelbrot)

lil_Chanlenge Problems [l

11.17 The Royals and the Cubs play in the World Series while you fly to the moon and back. You find
out when you return that the series lasted 6 games. You know that the Royals had a § probability of
winning each game. What is the probability that the Royals won the World Series? (Note that the World
Series is a series of games played between two teams until one team has won 4 games.) Hints: 205

11.18 Roger and Stacy each go to the county fair on the same day. They each separately show up ata
random time between 12:00 and 6:00. Roger stays for an hour, whereas Stacy stays for 2 hours. If we
know that at some time they were both at the fair simultaneously, what is the probability that they were
both there at exactly 3:00? Hints: 254

1119 A coin is flipped 20 times in a row. Given that exactly 14 heads appeared, find the probability
that no two consecutive coin flips were both tails. Hints: 64, 85

11.20% At the Lucky Losers’ Casino, the craps game is played with a set of 5 dice. The pit boss
one of the customers cheating by replacing one of the dice with a loaded die that rolls £ Jwith p
1 (each of the other numbers on the loaded die show up with equal probability). Unfortunately,
boss can't tell which die is the loaded die (they all look identical), so he chooses one at random and
it 10 times. Howmanstwouldl\ehavebmﬂh\adambeatleaﬂm:mﬂutﬂ\edmdh
the loaded die? Hints: 257

11.21% 3 points A,B,C are randomly chosen on the circumference of a circle. If A,B,C all lie
a semicircle, then what is the probability that all of the angles of triangle ABC are less than
Hints: 192
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To be idle requires a strong sense of personal identity. - Robert Louis Stevenson

corn | 2
L

12.1 Introduction

Combinatorial Identities

In this chapter, we'll discuss some combinatorial identities. Some of these you should hopefully already
lmow,mdsomewilllikelybemwtoyou.

While more advanced combinatorial identities aren’t often used to solve problems (though some-

12.2 Basic Identities

L Probicms S

[Problem 12.1: Prove that

()62
lllpodﬂvelmtgasnandallh\m(JSrSn,m

a committee-forming argument: mmmmdhwmmmm
ﬂunmubudmytbfamamhmummu.

a block-walking argument: mmmmmmmmu\emﬂmam
typuo(paﬂumapidorml‘.uhw.
algebra: d\owalgabnhnyhtﬂ\emudumequﬂ.

\__‘-ﬂ
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“smaller” in some sense. We notice that § is a factor of every term on the LHS, so let’s factor it out of

the LHS:
‘(l (@a-1) (@a=1)

p\'Ye-nt Tt e-y) - w-ar )

Aha—if we can use an inductive hypothesis on everything in the parenthesis except for the initial 1, we
see that this would be equal to:

T E W B T
b b-1)~-@-1)+1) b b-a+1
_a b
-s(b-tu-l)
__a
T bh-a+1’

Now we see how to proceed. We can prove the identity by induction on b. The base case is when b = 1,
in which case we must have @ = 1 and the identity is simply { = ;=77 = 1, which is true. And we have
proven the inductive step above: if the identity is true for b - 1, then it is true for b as well. Thus the
identity holds for all b.

7W—"Algm"ﬁh“b'oﬁ'iub§héd'mn'fm“ t to answer the original question!

BTN |

Finally, we can answer the question as originally posed: we have a = 19 and b = 99, so by the
identity that we have just proven, the answer is 357 = §. O

(Concept: The type of exploration that we did in Problem 12.10 is very much how
'(O==a an actual mathematician goes about problem solving. We started with

| an ugly expression, we tried some simple examples, and this led to a

exploration led us to a more accurate conjecture that fit all of the cases that
we had examined. Then, with a goal in sight, we were able to fashion a

proof.
TS

12.3.1 Prove the

S @47

(b)* With a counting argument. Hints: 334, 134
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1232 F‘mdaoountinguguma\tbopmvethatlxl!+2x2!+3x3!+---+nxn! = (n+1)!~1. Hints: 63
1233 Evaluate

AR el ool

£+2+£+£=Z+2+1+1-2
6 30 120 30 3 551373
2+B+£+£—2+3+1+13132
7 42 210 840 7°77H T3 4

lfwehndwﬂtmﬂueﬁuﬁmwaamnmdmﬂmm.wwmudhavemﬂ\efoﬂowhg:
$,R2.M % 2.2 1 1 10464341
630 120 360 37575157 15
2_'_12 24 24 4 2 4 20+10+4+1

st=t+—==

AR RS TR Tk A A A 35

Qummedmm(upedanyalgebn)myahoinvolwmﬂmﬁalhdm

> Whmbyhgtoproveidmﬁtiubyoonmﬁm&btmhgugumb:
- Usunllyuytoﬁndaco‘mﬁngexplamtimfotﬂ\esimpladdeﬂm

- Asinglecoeﬁdmtofd\efwm(:)umduugoodphcebmnhdwodngrim&om
a set of n items.

-Asumofcoeiﬁda\t.smaymntryingacuewakugumt.

> Thelda\utiufmm&ctimlZ.2hProblems12.l-12.6mthenmtcomuu\,andyoushouldbe
familiar with all of them.
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> Use identities that you already know to prove new identities.

Ahombuﬂueimyauntpmblem-oolvingtedmlquw

E!painuuwidnmllvaluubtrybmapam Look to write num-
bers in terms of binomial coefficients.

REVIEW PROBLEMN

1S

1211 Find a closed-form expression for

1212 Show that

12.13 Prove that

¥ ()
).;(:Xk: 1) ) (nz_..l)
a=nf()=o{"7")

(a) using a counting argument.

(b) using algebra.
12.14 Prove that

(a) using algebra.

() o)+ o)<




CHALLENGE PROBLEMS

(b) using a counting argument.
12.15 Prove that for any positive integers p and ¢,

(X)) 1)

(Source: Mandelbrot)
12.16 Find a closed-form expression for
3 ()
= \i
where | x] is the greatest integer less than or equal to x.
[ Chatienge probiems e

1217 The geometric mean of a set of n positive numbers is the positive n™ root of the product of the
n numbers. Consider each non-empty subset of the set |a;,a,...,4,}, where all the g; are positive.
Suppose we take the geometric mean of each of these subsets. Then we take the geometric mean of
these geometric means. Show that this geometric mean equals the geometric mean of the numbers
lay,ay,...,a,). (Source: Canada) Hints: 132, 69

£l af3)]

L)

Hints: 160
1219 Find

(Source: AMC) Hints: 212,93
12.20* Prove that

tz,.(nx n-i '(2“1}
S\ i -021) 7\
where | x| is the greatest integer less than or equal to x. Hints: 114, 280
12.21x For any positive integer n, compute the sum

o)+(a)+ (0

o) 3) " \6 '

Hints: 286, 97
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12.22% Pamypodﬁveintegmo<ksn,deﬁneﬂ\enumbu{:}tobed\enumberofmysb

partition the set {1,2,...,n} into k non-empty disjoint subsets. These numbers are called the
numbers of the second kind (there are also Stirling numbers of the first kind, but we’re not going to

discuss them here). For example, {;} = 6, because we have the following 6 partitions of {1, 2,3, 4] into
3 disjoint non-empty subsets:

(1),12),13,4)  (1),13L,12,4) (1), (4).12.3)

2),13,11,4)  (2), 14}, (1,3} (3}, (4),11,2)
(a) Find simple formulas for {'1'} and {:} |

.
b ofi}- {47}

{:} = %gt-l)'(;)(k- g

via the use of a suitable counting argument. Hints: 259, 42, 296

foralll <k <n.
(d)> Prove that




L'état, c'est moi (I am the state) - Louis XIV

CHAPTER 1 3

l Events With States

13.1 Introduction

Many “events” are actually sequences of smaller events. For example, baseball’s World Series produces
a winner only after a series of up to 7 games, each of which has its own winner. The games themselves
consist of individual innings, and an individual game might last an arbitrarily long time (if the game is
tied after 9 innings and extra innings need to be played).

A state is a description of an intermediate stage of an event. For example, in the World Series, a state
might be “the teams are tied at 2 games apiece.” States allow us to break up complex events into more
manageable simple events. It's a bit hard to precisely describe exactly what is a state, but the problems
in this chapter should give you a pretty good idea of what states are and how we use them.

We will also look at some different types of problems that involve states. One such type of problem
deals with random walks, which are processes in which a person or thing is moving around some
universe (which might be a line, a plane, the surface of some polyhedron, etc.) and in which the
direction of movement of any particular step of the walk is randomly chosen.

Another type of problem that we often use states to solve is problems about 2-player strategy games.
We can think of intermediate positions of such a game as states, some of which are winning positions
(from which the player that makes the next move can win) and the rest are losing positions. (We're only
goinghoca\sidergamesthatdonothaveties,althoughgamwithtiescanbesmdied using similar
techniques.) Thinking of a game in terms of its intermediate states is often a useful way to analyze the
game's strategies.

Extral We are by nature observers, and thereby learners. That is our permanent state.
- - - Ralph Waldo Emerson
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1342 Sean and Larry are playing a game on a blackboard. Sean starts by writing the number 1,
and then in alternating turns (starting with hny),ud\phyermulﬁpliesﬂ\eamtnumberbymy
number from 2 through 9 (inclusive) and writes the new number on the board. The first player to write
a number larger than 1000 wins. Aumplemnﬁghtbe(eadmumberispmededby'S’or“L’to
indicate who wrote it):

§1, L3, 512, L60, 5420, L1260; Larry wins.

Which player should win and why? Hints: 249

1343 'l'hegnmeofSplitisphyedwi&\Mopﬂesofd\ips. Oneadttumaphyermmovesmepﬂe
mdsplitsﬂ\emhhgpﬂeintotwomwpﬂeinmymmhedm (For example, the game
uﬂghtshrtwi&pﬂesoﬁmdl2d\ip|;ﬂ\eﬁntphyeromndmmed\e9d\ippﬂemdsplitﬂ\eoﬁur
pile into piles of 8 and 4 chips.) A player loses if he or she is unable to move. What are the winning
starting positions? Hints: 344

1344 1fa game of Nim starts with 3 piles of 2, 4, and 6 chips, which player should win?

aphyermaydd\ammoveanynumberofdﬂp;ﬁommepﬂe,ormeqmlnumberofd\ipufmmbod\
piles. The player who takes the last chip is the winner.

(a) Suppoaeduttheglmebegimwiﬂ\pﬂesomed6dﬁpc. Which player should win and why?
(b)* Detanﬁmﬂ\ewinningandloaingpodm Hints: 303, 16, 120

13.5 Summary

> Amteiudeaaipﬁonofmintem\edhtemgeofmevmt. States allow us to break up complex
events into more manageable simple events.

> Foupwblanwiﬂ\mulﬁpleshm,itoﬁu\hdpswdnwadhm Draw a box for each state and
arrows for the transitions between states. Label pmbabllmesocexpeceedvalueauappmpﬁate.

> Trytomnkeyourshwsasaimpleupodble.Oftu\.hapmbleminvolvingshm,idmdfying
d\esimpleatpoaaibleaetofmwaisamajounptowudswlvhgﬂ\epmblem

» It often helps to introduce variable(s) that store information about the intermediate state(s). This
kapedauymhwmuhtanhﬂfotmarbihuilyla\gnqua\oeofﬁm

> Aparﬂcuhrtypeofmﬁepmblemhaz-phyagm\e. We try to identify winning positions and
losing positions.

> Wha\amlyzingaglmc,itoftmhelpstolookatmllerveniauofﬂ\egm\e,mdh'ytomﬁcea
pattern. Then we try to prove that our pattern works.

V\leahosawﬂ\efollwinggmemlpmblem-oolvingcmwepw
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REVIEW PROBLEMS

If it's easy to do, a quick check of your work in the middle of a problem
can prevent errors from propagating through a long solution. 1

———— —

Concept:

'Coaeept: Many'pmbleuuhave”"m \con ive” solutions, in which we can show
O==e theexistence of some object (for example, a winning strategy for a 2-player
game), but we can't exhibit precisely what that objectis. |

“VIEW PROBLEMS

fil_~

13.13 Andmﬂipsafaircoinmpeatedly,cmﬁnuingunﬁld\eeid\erﬁipst\mheadsinarow(d\e
seqw\ceHH)orﬂipshilsfollowedbyhends(thesequmceT'l-{).Whatistheprobabilitythatshewill
stop after flipping HH? (Source: HMMT)

13.14 A 3x3x3 cubeis composed of 27 small 1 x1x1 cubes, and little passageways
allow for movement between adjacent cubes. (Cubes are adjacent if they share a
face; cubes sharing only an edge are not adjacent.) A mouse is placed in a corner
cube (the shaded cube in the picture at right), and a piece of cheese is placed in the
center 1 % 1 x 1 cube. Each minute, the mouse moves randomly to an adjacent cube.
Find the expected number of minutes before the mouse reaches the cheese.

13.15 A bag contains two red beads and two green beads. You reach into the bag and pull out a bead,
nphdngitwithandbeadreprdleuolﬁ\ecoloryoupuﬂedout. What is the expected number of
replacements needed so that all beads in the bag are red? (Source: AMC)

13.16 Recall that in a tennis game, if the players are tied at “deuce,” then the game continues until
one player has won two more points than the other player. Homer and Marge are again playing tennis
and have reached deuce. Unfortunately for them, Bart is now the umpire of the game, and during any
point, he will call “Let” with probability }, meaning that Homer and Marge will have to play that point
again. If Homer has a § probability of winning any given point in which Bart does not call “Let,” then
whatisﬂ\cexpectednumberofpoﬁ\bmcemry(hwludh\gpointsinwhid\&naﬂs”mwonﬂn
game is completed?

1317 Aspacealia\isdoinganndomwdkstarﬁngawmthemnmgaﬁvenumbetlim. From 0 the
alienmustukeonesteptothedght(tol),butfmmanypositivepositiona\u\eline,u\ealia\will
move one step left or right with equal probability. What is the expected number of times that the alien
will revisit 0 before the first time that he visits 57

13.18 The figure at right is a map of part of a city: the small rectangles are city .
blocks and the lines are streets. Each morning a student walks from intersection A to
intersection B, always walking along streets shown, always going east or south. For
varkty,ateachintasecﬁonwhaelwhasac}nioe,lndmesmmcqudpmbabﬂity
whether to go east or south. Find the probability that, on any given morning, he .
walks through intersection C. (Source: AMC)
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13.19 We play a game. The pot starts at $0. On every turn, you flip a fair coin. If you flip heads, I add
$100 to the pot. If you flip tails, I take all of the money out of the pot, and you are assessed a “strike.”
You can stop the game before any flip and collect the contents of the pot, but if you get 3 strikes, the
game is over and you win nothing. Find, with proof, the expected value of your winnings if you follow
an optimal strategy. (Source: USAMTYS)

13.20 A particle moves in the Cartesian plane from one lattice point to another according to the
following rules:

1. From any lattice point (a, b), the particle may move only to (@ + 1,b), (a,b + 1), or (a + 1,b + 1),

2. There are no right angle turns in the particle’s path. That is, the sequence of points visited contains
neither a subsequence of the form (a,b), (@ + 1,b), (@ + 1,b + 1) nor a subsequence of the form (a, b),
(a,b+1),(@a+1,b+1).

How many different paths can the particle take from (0,0) to (5,5)? (Source: AIME)

[ Cratiense Probiems . ik

13.21 In a game similar to three card monte, the dealer places three cards on the table: the queen
of spades and two red cards. The cards are placed in a row, with the queen in the center; the card
configuration is thus RQR. The dealer proceeds with a series of moves. On each move, the dealer
randomly switches the center card with one of the two edge cards (so the configuration after the first
move is either RRQ or QRR). What is the probability that, after 2004 moves, the center card is the queen?
(Source: HMMT)

13.22 A calculator has a display, which shows a nonnegative integer N, and a button, which replaces
N by a random integer chosen from the set (0,1,...,N — 1}, provided that N > 0. Initially, the display
holds the number N = 2003. If the button is pressed repeatedly until N = 0, what is the probability
that the numbers 1, 10, 100, and 1000 will all show up on the display at some point? (Source: HMMT)
Hints: 116, 46

13.23 There are 6 peas in a glass, 4 floating on the top and 2 sitting on the bottom. At each five second
interval, a random number of peas from 0 to 2 sink from the top to the bottom and a random number
from 0 to 2 rise from the bottom to the top. (If there is only 1 pea left, it moves or stays put with equal
probability.) What is the probability that all six peas are on the top before all six are on the bottom?
(Source: Mandelbrot) Hints: 206

13.24 You and I each have $14. I flip a fair coin repeatedly. If it comes up heads, | give you a dollar,
but if it comes up tails, you give me a dollar. What is the expected number of flips until one of us runs
out of money? (Source: Mandelbrot) Hints: 91, 317

1325« Here is the general analysis for Heaps with an arbitrary number of piles.

Let A be the number of 2-chip piles, and let B be the number of piles with either an even




CHALLENGE PROBLEMS

number (greater than 2) of chips or a single chip. The winning positions are those in which
either A or B is odd.

Prove that it is correct, and describe the winning strategy. Hints: 1, 56

13.26x Here is the general analysis for Nim with an arbitrary number of piles.
Represent the number of chips in each pile by a binary number (for example, 6 chips is the
binary number 110). The losing positions are those in which there are an even number of
1’s in each digit-position, counted across all the piles. (For example, piles of 7, 5, 3, and 1

chips is a losing position, because the binary representations 111, 101, 11, and 1 have an even
number of 1's in the ones, twos, and fours places.)

Prove that it is correct, and describe the winning strategy. Hints: 245, 287




CHAPTER 14. GENERATING FUNCTIONS

You must try to generate happiness within yourself. - Ernie Banks

s 14
L

14.1 Introduction

Generating Functions

In this chapter, we will explore a mllyclevenlgebnjcdevieecalledaseumdngfuncuon. Generating
hnwﬁmaﬂowusbuxpwerﬁdalgebratedmiquumappmd\diﬂicMQmmﬁngpmbkm

Supposed\atao,ag,az,...isasequamofnumbeu. nteooﬂespa\dinggeneraﬁngfuncﬁmforﬂ\is
sequence is

@) =a+ax+a +-...

mtis,thecoeﬂicimtoh‘is&\ek"tennofﬂ\esequm. If the original sequence is finite, then the
gu\eratingfnnctimisiustapolynomhLbutifdwsequaweisinﬁrﬁbe,ﬂmd\egmaﬁngﬁxmﬁmis
an “infinite polynomial,”mompmpulycalledapowerndu.

Here are some examples:
. l!oursequenoeis1,5,10,10,5,1-Row50ﬂ’ascal's'l‘riangle-u\en the generating function is

1452+ 1027 4+ 1027 + 5x* + 15

Noﬁceﬂutﬂ\isisequalto(1+x)’byd\98inomial'rheomm. Wewillexplomeﬂtismhtiomlﬁp
further in Section 14.3.

- lfoursequemeis1,3,6,lO,lS,Zl,...—d\etriangularnumbers,orallthenumbersolﬂ\efom\(:)
forpositiveintegmkzz—dmd\egmeratingﬁmcﬁmis

1430+ 627 +100° + 152* + 215 4 ... .
!nSecﬁmu.{,wewiuseesomespedalpmperﬁaofﬂﬁsgmeraﬂngﬁlmﬁm.
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14.2. BASIC EXAMPLES OF GENERATING FUNCTIONS

. IfoursequenceisO,l,1,2,3,5,8,13,...—theFtbonaccinumbers—thenthegenmﬁngfunctionis
X+ +20 43 455 485 + 1307 4o+,

Although this seems rather unwieldy, it does have some nice properties, as we will see in Section
14.6%.

14.2 Basic examples of Generating Functions

l___ Proviems S

All of these problems are easy. But try to answer them using generating functions.

Problem 14.1: Mnhummahbk.&nluﬂndhlhmhsz;mbdb.ndmh‘
3 blue balls. Balls of the same color are indistinguishable. In how many ways can I choose 4 balls
from the urns?

Problem 14.2: Ash?mblemltl.dmmﬂmmonahble:mehnzndbdb.mhnzm
balls, and one has 3 blue balls. But now, all balls of the same color are distinguishable. In how many
ways can | choose 4 balls from the urns?

Problem 14.3: In how many ways can we roll three dice to get the sum 97

Problem 14.4: Suppose that I have two weird dice. mammmmﬂmmm
and = on the sixth face. ﬂnoﬂwdbhsammhu.ﬂmmmmﬂmﬂ\em&a.ﬁ
lmﬂbodndia,whthlhpmbd:ﬂityhtd\emhmﬂmébmh.ﬂmlm

lnsimplepmblemsinwhichwemcomﬁngtl\enumbcrofpoosibiliﬁesmmtﬂﬁpleewnb,
gmﬁnghuwﬁmpmvideausefulmfakeeph\gmkofuwnumbaofpoadbﬂim This is a bit
confusingwdesaibeinwocds,buthopehnllysomesimpleenmpleswmillustratewhatwemem.

Aﬂof&mpmbminthkmﬁmmvuym)cmdcmddeasilybesdwdbymunﬁngmdwds
that you already know. %pmsmtﬂmnhemfo:ﬂlmtnﬁvepurposes,asﬂwirhmpamwylwpcfuﬂy
uukesiteasyhoseewhat’sgoingonwhmweinboduoegmentingfnncﬁm

Problem 14.1: There are three urns on a table. One has 2 red balls, one has 2 green balls, and one|
'has 3 blue balls. Balls of the same color are indistinguishable. In how many ways can I choose 4
balls from the urns? :

Solution for Problem 14.1: Ofcmne.ﬂ\isismmyproblun,udwemuldi\mhﬂﬂ\eposibiﬁﬁaina
table, as shown on the next page:

Extra! Namammwmmmmmwquaﬁg
- ~ Friedrich Schiller
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But, by definition, F; = Fy_; + Fy-3, so the above coefficient is zero! Hence, we have shown that
gX)=(-x-)x+22+20 +3* +5° + 88 + - ) =1,

and thus the generating function for the Fibonacci numbers is x/(1 - x - ¥%). 0

This generating function may seem like just an amusing curiosity, but it does have some uses; in
particular, it gives us another way to find the closed-form formula for the Fibonacci numbers.

'Problem 14.18: Use the generating function from the previous problem to find a closed-form |
' formula for the n* Fibonacci number. I

Solution for Problem 14.18: We really don’t know how to deal with a quadratic term in the denominator.
But we do have some confidence with our ability to deal with linear terms. So let’s start by factoring
the denominator into linear factors. By the quadratic formula, the roots of x* + x — 1 are

-125
5—

Let’s call these roots ¢, =(—I+V§)/2and¢zs(-l-\/§)/2. Then we can rewrite our generating
function as

X __=x -X
l-x=x2 xX4+x-1 (Pr=x)NP2~2)
(Note that the numerator is now —x, so that the sign of the expression is correct.)

We're still not terribly happy with the way this looks. What we’d really like is to break up this
function into the form
P
¢-x ¢r-x/

where A and B are some constants. This is called a partial fraction decomposition. To determine what
A and B should be, we place the sum of the fractions over a common denominator:

A . B =A(4u-x)+8(¢|-x)
h-x ¢2-x (= 2)P2-2)
Since we want this to match our original generating function, we must have
A(¢2 —x) + B(¢) —x) = ~-1.
This gives us a system of linear equations in A and B:

MA+@¢B=~1,
-A-B=0.

By the second equation, we see that B = ~A, and plugging this into the first equation gives us
(P2-P)A = -1,
So A = 1/(¢ - ¢). Remembering the definitions of ¢ and ¢,, we see that ¢, — ¢, = V5,50 A = 1/5.

e




14.7. SUMMARY

T?mfom.ourgmﬁnghmcﬁmford\eﬁbauodnumbenmbewﬁmnu

%(wl-x'ml-x)'

For any constant a, note that

1 1la
a-x 1-x/a

:-1- 1+£+£+...
a a a?

1 1 1
=;+—x+;x’+---.

a?

In particular, the coefficient of " in 1/(a - x) is 1/a"*!. Therefore, the coefficient of x* in our generating

hmction,whichisﬂren‘%aucdnumba,b

wl) -6)

Md\alinledgebnkmuﬂpuhﬁon.wecansimplifyt!ﬁno

w2 (=)

which is exactly Binet’s Formula (as we first saw in Section 9.4). O

14.7 Summary

> Gawnﬁnghntﬁauaﬂwmwuaedgebnkbchniqmwsolwavaﬁetyofcounungpmbm

> A generating function is an polynomial of the form
fO)=ap+ax+a+--,

Weﬂﬁnkofﬂwcoefﬁdmtcgdx'aswunungmd\htghtdepa\dsmamh

» Fmdmpkpmblems,gumﬁngﬁnwﬁmsiwmamnmﬂa\twayofbepmh‘ckohlotof
information at once. Anod\erwaytoﬁ\inkofﬂtisisﬂntmdnghmcﬁanallowuﬂodo

casework by doing all of the cases at once.

» Ofmﬂukqawphuﬁgmﬁr\gﬁuwdmhﬂrdmgunmeﬂidmtdgebnkwayw

computed\eooeﬁdmt(s)matyouneed.

> Oneoﬂheuwctcommaﬂy-undga\enﬁnghmcﬁaubfotdhhibuﬁauof i

items. Mhnwﬁmbﬁ,u\dﬂncoeﬁda\tdx‘hﬁh "-:+k)whﬁmmuh
numberofwaystodlstribuﬁekimh\tonboxu(whaeambox(es)mymh\anpty).
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> Many distribution problems with ugly-looking casework can be solved much more simply by
using generating functions.

»  Generating functions are very valuable for problems involving partitions. The generating function
for the number of partitions of a positive integer n is

(Q+x+2 4+ )1 +2+ 2+ Y1+ P+ 4.) e = (l-x)(l-:’)(l-x")'-- = nﬁ
1=1

» The generating function for the Fibonacci numbers is

X
o=

and we can use this as another method for proving Binet’s Formula.

| EEEICTEETe -

14.19 Find the coefficient of x'” in the expansion of each of the following:

1
@ 1=

1
® =%
(c) ;

(1-x¢
(d) (1+2°°
€ (M+x+2+27+2x+ 25+ 25
1

U =2
1420 Find the number of ways to place 25 people into three rooms with at least 1 person in each room.
(Solve using generating functions.)
1421 How many ways are there to distribute eight identical toys among four children if the first child
gets at least two toys? (Solve using generating functions.)
1422 Find the generating function for the number of ways to give n cents change using U.S. pennies,
Cuudhnpmnia.Bdﬁshpmnb,US.nkkds,Mdehnnkkd&(Anumudt'pamrhwaﬂ\
1 cent and each “nickel” is worth 5 cents, regardless of the country of origin.)

14.23 Three of my friends and I are going to split the bill for dinner. Sara and | will each contribute an
odd number of dollars, while Krishna contributes a number of dollars that is a multiple of 3. Shyster
will either contribute nothing, or steal one or two dollars. In how many ways can we pay a $30 bill?

328




CHALLENGE PROBLEMS

14.24 1 have a bowl! with 31 candies. Ten of the candies are indistinguishable and the other 21 are all
different (and different from the first 10). In how many ways can I choose 10 of the candies?

14.25 Superman has super-strength and can carry any number of boulders, but insists on carrying an
odd number. Batman can carry up to 40 boulders. Mighty Mouse can only carry up to 2 boulders.

Batman or Mighty Mouse might go empty-handed.
(a) How many ways can the three distribute exactly 37 boulders to carry?
(b) How many ways can the three distribute exactly 87 boulders to carry?

1426 How many solutions in positive integers are there to the equation y; + y2 + ¥3 + y4 = 30 such
that no y; is greater than 12?7

14.27 The expression
(x+y+2)" + (x — y - 2)™™*

is simplified by expanding it and combining like terms. How many terms are in the simplified expres-
sion? (Source: AMC)

u { Challenge Problems >

1428 Compute

kl=

F4()

using generating functions. Hints: 48, 234

14.29 Define Q(n, k) to be the coefficient of x* in the expansion of (1 + x + ¥* + x*)". Prove that

5 () n
aly ),_:.;(i)(k-zi'}
where (7) = 0if r < 0. (Source: Putnam) Hints: 21

14.30% We can generalize the Binomial Theorem to negative powers. Specifically, for any positive
integer n, we can write
(x+y) " =apx™ +ax "y s ax ™2 4 ..

for some coefficients a;, provided that |¥| < 1.

n+k-1

(a) vaethnta.:(-l)ﬁ( "

).Hlnls:TI,SO

(b) Explain why it makes sense to write a; =( k

).Hlnb: 18
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1431x Let k be a positive integer. Prove that there are exactly k ordered pairs (x, y) of nonnegative
integers that satisfy any one of the following equations:

x+3y=2-1,

(k-1)x+@2k+1)y=1.

(For example, if k = 2, then there are two equations x + 3y = 3 and 3x + 5y = 1. The 2 solutions are (3,0)
and (0, 1); notice that both satisfy the first equation.) (Source: Mandelbrot) Hints: 184, 86, 111

1432

(a) Let
Cx)=1+x+22 +5C + 14x* +---

be the generating function for the Catalan numbers, so that the coefficient of x" is the n* Catalan
number. Prove that
C(x) = x(C(x))* + 1.

Hints: 230
(b)* Prove that
C(x) = l-_-‘x
le ’
Hints: 100

(c)* Use the generating function to find a closed-form formula for the n® Catalan number. Hints: 324




Al what point on the graph do “must” and “cannot” meet? Yet | must, but I cannot! — Re ~Man, Robot Monster

CHAPTER 1 5

l Graph Theory

15.1 Introduction
A graph is a visual tool that is very useful for solving a large number of problems. More specifically, a
graph depicts connections or relationships between objects.

For example, we can use a graph to show the six New England states, and which of them border

o @
%
o20

Whenever we have a set and we also have relationships between some pairs of items in the set, we
can represent the set and its relationships as a graph. Drawing a graph is usually a better way for us

to imagine and work with the relationships than simply listing them. For instance, which is easier to
work with, the graph of the New England states above, or the list of bordering states shown below?

((VT, NH), (NH, ME), (MA, VT), (NH, MA), (MA, CT), (MA, RI), (CT, RI))
The graph lets us see complex relationships a lot more easily than a simple list of pairs does. To continue
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CHAPTER 15. GRAPH THEORY

15.64% Ann-dimensional cube (forn > 2)isagraph with 2" vertices that 0,1,1 (1,1,1)
are in 1-1 correspondence with n-tuples of 0's and 1’s. Two vertices are

connected by an edge if and only if they differ in exactly one coordinate. (%0:1) 4D
(The graph of the 3-dimensional cube is show at right.) Show that an (0, (1,1,0)
n-dimensional cube has a Hamiltonian cycle. Hints: 84 0,0,0) 10,0
15.7 Summary

> For our purposes, “graph” means a simple graph with no loops, no directed edges, and at most

>

Y

A\

one edge between any pair of vertices.

Whenever we have a set and we also have relationships between some pairs of items in the set,
we can represent the set and its relationships as a graph. The elements of the set are the vertices
of the graph, and the relationships between pairs of elements are the edges.

It is often easier to visualize complex relationships using a graph.

If a graph has n vertices and each vertex has degree d, then the graph has nd/2 edges. More
generally, if the degrees of the vertices of a graph sum to s, then the graph has s/2 edges.

In any graph, the number of vertices with odd degree must be even.

Apathbetwea\twoveﬂices/\mdBisa(ﬁlﬁn)sequenceofedgese;,cz,...,qsud\ﬂutedgec,
connects A with some vertex V,, edge e; connects V; with some vertex V3, and so on, until edge
ex connects vertex Vi, with B. The positive integer k is called the length of the path. A path with
no repeated edges is called a simple path. A simple path that starts and ends at the same vertex
is called a cycle.

Agraphisalledconnectedlf,foreverypaitofdisﬁnctverﬁosAandB,dmexistsapaﬂ\ﬁom
AtoB.

A connected graph with no cycles is called a tree.

A connected graph with n vertices has at least n - 1 edges. A tree with n vertices has exactly n - 1
edges, and contains at least 2 vertices of degree 1 (called leaves). A graph with at least as many
edges as vertices must contain a cycle.

A graph G is called bipartite if the vertices of G can be partitioned into two sets S and T, such that
every edge of G connects a vertex in S with a vertex in T. A graph is bipartite if and only if it has
no cycle of odd length.

A connected graph that can be drawn on the plane so that none of its edges intersect at a non-vertex
point is called planar.

Euler’s formula for connected planar graphs: V + F = E + 2, where V is the number of vertices, E
is the number of edges, and F is the number of faces.

Ifa graph is planar, connected, and has more than 1 edge, then E < 3V -6, Therefore, if a connected
graph with more than 1 edge satisfies E > 3V - 6, then the graph is not planar.




REVIEW PROBLEMS

» AnBnleﬁanpaulofagmphisapa&\ﬂntcomainseveryedgeofﬁmgnphexactlym. If an
Eulerhnpathisalsoacyde,d\a\itiscalledmﬁnledmcyde. A Hamiltonian path of a graph is
apatht!mcmuinsevuyvenexofthemphcxxdym. A Hamiltonian cycle is a cycle that
contahueveryvutex(exceptthestarﬁngandmdhgpoht)exxdym.

> Acom\ectedgnphhasmEulerimpaﬁ\ifandonlyifithnatmostzverticeswiﬁ\odddegme. A
connectedgraphhasanEulerhncycleifandaﬂyifithasnoverﬁcuwm\odddegme.

We also saw the following general problem-solving concepts:

Concept: h&dﬂbp@chtnhhmwmapadbkmeganumam
O=m thh\ghupmblem.wemedbahowtwowmtnhposible.md‘
that n — 1 (or less) is impossible. SR

Concept: | Oﬁenwimsolvh\gapmbleuu)_t_paysioféanmﬂ\eobhdwiﬂm\em‘

O==n of something (or the least of something). This is sometimes referred to as.

TR . becarcms < o ol I 4 ST A OO W S
‘“ REVIEW PROBLEMS (5

(a) Canacounu'yinwhichhoadsleodoutofeverycityhaveexnctlySOdties?Whyotwhynot?
(b) CanacountryinwhichSroadsleadouto(everyd!yhveaactlywdﬁa?Whyorwhynot?
15.21 17peoplemaupu!y.Formypairdpeoplep:umtﬂ\cymfria\ds,miu,orda\'thw
each other. Provethanhuemustbeagmupompeoplenﬂofw!wmmmuuulfﬂm&.mia.or
strangers.

15.22 lnﬂ\ead\oolping-pmgtounumtmly6studmlsa\nued. The organizers decide to have
exacdy7gameu,andalsomandateﬁ\atwtofmy3phym,atleuuwomustplayead\oﬂ\er. Prove
that:

(a) There exists a student who plays against at least 3 other students.

(b) There exist three people who each play against the other two.

(Source: Romania)

1523 Ayaphchunvaﬁm.wimdeymdhdz,...,d..Howmanypaﬁuoﬂa\gﬂdmﬁ\en?

1524 Show that distance on a graph satisfies the Triangle Inequality: if A, B, and C are vertices and
are all connected to each other, then

d(A,C) < d(A,B) +d(B,C).
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15.25 A connected planar graph G has 10 faces, and every vertex of G has degree 4. Find the number
of vertices of G.

1526 In a connected planar graph, every vertex has degree 3, and every face is bordered by 5 or 6
edges. How many faces are bordered by 5 edges?

15.27 At a conference, everybody has at least 1 friend among the people attending. It is known that
among any group of at least 3 people, there are never exactly two pairs of friends. Prove that there is a
person that is friends with everyone at the conference.

15.28 Isit possible for a knight to travel around a standard 8 x 8 checkerboard such that it makes every
possible move exactly once? (We consider a move to be completed if it is made in either direction.)

lil_Chattenge Problems e

1529 In the ham radio club, there are 78 members, and each member is friends with at least 52 other
members. Prove that there are 4 members with the same number of friends. Hints: 318, 247

1530 Suppose there is a group of people in which each person has at most 3 enemies, and enemies
mmuhul(i.e.ifpasmAhatespasmB,ﬁ\enpemwaalsohawspemonA).vaeﬂ\atitispossible
tosplitﬂ\epeopleintotwogmupasodmud\pmonhasatmostmeenemyinhisorhergmup.
Hints: 28

1531 A city has the following property: if any set of citizens were to meet, the number of introductions
necessary to acquaint everyone would be less than the number of citizens present. Prove that the city
may be partitioned into two groups of people, such that each person knows everyone else in their group.
Hints: 221

15.32 At a homecoming dance, no boy dances with every girl, but each girl dances with at least one
boy. Prove that there are two couples gb and g'b’ who dance such that g doesn’t dance with ¥’ and g’
doesn’t dance with b. (Source: Putnam) Hints: 152

1533% Prove that if G is a connected graph with n vertices, and each vertex of G has degree at least
n/2, then G has a Hamiltonian cycle. (This is known as Dirac’s Theorem.) Hints: 22

15.34% A domino consists of two squares, each of which is marked
with between 0 and 6 dots (inclusive). The complete set of 28 dominos
is shown at right. Is it possible to arrange all 28 dominos in a circle, such
that adjacent halves of neighboring dominos have the same number of
dots? Hints: 88, 349

1535+ In the country of Eulandia, any two cities are connected either
by rail or by bus (but not both). Prove that for any city, we can choose a
type of transportation (rail or bus) such that every other city in Eulandia
can be reached via the chosen type of transportation with at most 1
transfer. Hints: 135

—_—




Every problem has in it the seeds of its own solution. If you don’t have any problems, you don’t get any seeds.

-~ Norman Vincent Peale
CHAPTER 1 6

L Challenge Problems

V\bﬁnishﬂ\ebookwid\acollecﬁonofchanmgingpmbm Mmamngedmughlyinirmasing
aderofdifﬁculty;ﬂ\estanedm\esatﬂ\ea\dmpuﬁcuhrlydiﬁcult

Enjoy!

[ Craenseproviens iy

16.1 Amanufactumofairphmparbmkuammmatgimduthasapmbabﬂitypoﬂaihngmmy
givenflight.’lheu'mlwophnestlutcanbeuudewiththissonofmgine,onehthas3mgirmand
one that has 5. A plane crashes if more than half its engines fail. For what values of p do the two plane
models have the same probability of crashing? (Source: HMMT)

16.2 lfwemllnstandud&ddeddioe,ﬂwpmbabmtyofmﬂh\gasumofmnmnmoandisexacdy
the same as getting a sum of X. What are the possible values of X? (Source: AMC)

163 Eachoftwoboxescontainsbothblackandwhi&emrbles,andthewhlnumberofmublesinthe
two boxes is 25. One marble is taken out of each box randomly. The probability that both marbles are
black is g Find the probability that both marbles are white. (Source: AIME)

164 Cantwosix-sideddicebenumbemdinmhawayﬂntifdledicemhirlywdghted.themm
12 equally likely possible sums of the two numbers shown on a roll of the dice? Hints: 173

16.5 Adeckcmtnins&caxdsof«idifﬁnuntmits,butnotmﬁlychardsofeu:hsuiL You are
told the number of cards in each suit. Youpkkacardﬁomﬂ\edeck,guessibmﬁt,andsetituide;
you repeat this until there are no more cards. Show that if you always guess a suit having no fewer
mmainingaxdsdunmyoﬂusuit.ﬁmyouwiuguescontcuyatlemwﬁm Hints: 30

363



CHAPTER 16. CHALLENGE PROBLEMS

16.6 There are 1000 rooms in a row along a long corridor. Initially, the first room contains 1000 people
and the remaining rooms are empty. Each minute, the following happens: for each room containing
more than one person, someone in that room decides it is too crowded and moves to the next room.
All these movements are simultaneous (so nobody moves more than once within a minute). After one
hour, how many different rooms will have people in them? (Source: HMMT) Hints: 279

16.7 I've created a game called Cit-Cat-Cut-Eot. It works like this: A 4 x 4 x 4 board is used. Each
player takes turns putting an X or an O in the board until one of the players gets 4 in a row, either along
a column or row or diagonally; such a group of 4 marks is called a “winning set.” Count the number of
possible winning sets. Hints: 44

168 Alice has two bags. Each bag has 4 slips of paper with the numbers 1 through 4 on them. Betty
also has two bags, each with 4 slips of paper with positive integers on them. They decide to play a
game whereby each girl pulls a slip from each of her own bags, records the sum of the numbers, then
returns each slip to the bag it came from. The numbers in Betty’s bags are not 1 through 4 in each bag,
but the expected distribution of her sums is the same as Alice’s. What are the numbers in Betty’s bags?
Hints: 312

16.9 Let f(n) equal the number of ways n can be written as the sum of 1’s and 2's, taking order into
account. Let g(n) equal the number of ways n can be written as the sum of integers greater than 1, again
taking order into account. For example,

fB)=3,since3=1+2=2+1=1+1+1,

and
8(5) =3,since5=5=2+3=3+2

Prove that f(k) = g(k + 2) for all positive integers k. Hints: 322

16.10 An unfair coin has a § probability of turning up heads. If this coin is tossed 50 times, what is the
probability that the total number of heads is even? (Source: AMC) Hints: 298

16.11 How many nonempty subsets S of (1,2,3,...,15) have the following two properties?
(1) No two consecutive integers belong to S.

(2) If S contains k elements, then S contains no number less than k.

(Source: AMC) Hints: 243, 308

16.12 Let n be a positive integer, and let Pushover be a game played by two players, standing squarely
facing each other, pushing each other, where the first person to lose balance loses. At a Pushover

tournament, 2**! competitors, numbered 1 through 2"*! clockwise, stand in a circle. They are equals
in Pushover: whenever two of them face off, each has a 50% probability of victory. The tournament
unfolds in n + 1 rounds. In each round, the referee randomly chooses one of the surviving players, and
the players pair off going clockwise, starting from the chosen one. Each pair faces off in Pushover, and
the losers leave the circle. What is the probability that players 1 and 2" face each other in the last round?
(Express your answer in terms of n.) (Source: HMMT) Hints: 179, 92

16.13 Five pirates find a cache of 500 gold coins. They decide that the shortest pirate will serve as the
bursar and determine a distribution of the coins however he sees fit, and then they all will vote. If at
least half of the pirates (including the bursar) agree on the distribution, it will be accepted; otherwise,
the bursar will walk the plank, the next shortest pirate will become the new bursar, and the process will

364




CHALLENGE PROBLEMS

continue. Assume that each pirate is super-intelligent and always acts so as to maximize his wealth,
and also that each pirate is vindictive: he would like to see someone walk the plank, as long as it does
not hurt him financially. How many coins will the shortest pirate get? (Source: Mandelbrot) Hints: 277

16.14 Atasummer math program a contest is held for n teams. Each team, composed of n individuals,
is given the same n problems to work on. Suppose that on each team, there is one person who knows
how to solve all n problems, another who knows how to solve n — 1 of the problems, and so on down to
one member who only knows how to solve a single problem. One person is chosen from each team at
random. These selected individuals are randomly ordered and asked one at a time to select a problem
that has not already been taken. What is the probability that every team successfully presents a solution?
(Source: Mandelbrot) Hints: 240, 208

16.15 In a tournament each player played exactly one game against each of the other players. In each
game the winner was awarded 1 point, the loser got 0 points, and each of the two players earned 1/2
point if the game was a tie. After the completion of the tournament, it was found that exactly half of
the points earned by each player were earned against the ten players with the least number of points.
(In particular, each of the ten lowest scoring players earned half of her/his points against the other nine
of the ten.) What was the total number of players in the tournament? (Source: AIME) Hints: 11

16.16 A carnival game is set up so that a ball put into play has an equally likely chance of landing in
any of 60 different slots at the base. The operator of the game allows you to choose a certain number
of balls and put them all into play. If every ball lands in a separate slot, you receive $1 for each ball
played; otherwise, you win nothing. How many balls should you choose to play in order to maximize
your expected winnings? (Source: Mandelbrot) Hints: 207

16.17% At a certain college, there are 10 clubs and some number of students. For any two different
students, there is some club such that exactly one of the two belongs to that club. For any three different
students, there is some club such that either exactly one or all three belong to that club. What is the
largest possible number of students? (Source: HMMT) Hints: 292, 332, 157, 146

16.18x Prove that
= k
Z('l : ky%) ="
k=0
Hints: 49, 143

16.19% Eight coins are arranged in a circle heads up. A move consists of flipping over two adjacent
coins. How many different sequences of six moves leave the coins alternating heads up and tails up?
(Source: HMMT) Hints: 272

16.20% A stack of 2000 cards is labeled with the integers from 1 to 2000, with different integers on
different cards. The cards in the stack are not in numerical order. The top card is removed from the
stack and placed on the table, and the next card in the stack is moved to the bottom of the stack. The
new top card is removed from the stack and placed on the table, to the right of the card already there,
and the next card in the stack is moved to the bottom of the stack. This process—placing the top card
to the right of the cards already on the table and moving the next card in the stack to the bottom of the
stack—is repeated until all cards are on the table. It is found that, reading from left to right, the labels
on the cards are now in ascending order: 1,2,3,...,1999,2000. In the original stack of cards, how many
cards were above the card labeled 1999? (Source: AIME) Hints: 118, 74, 66
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HINTS TO SELECTED PROBLEMS

L

r

Hints to Selected Problems

1.

Forthewitmingpositions,exanﬁneﬂ\e3camscpantdy: A, B both odd, A odd and B even, and
A even and B odd.

2. Note that x, X2 F Xy H Xy = 2y X4 (X # Xy).

3.
4
5.

9.
10.
11.

Compute the expected number of fixed points of a random permutation, in two different ways.
Write p and ¢ in terms of ¢,

The number 100 is not important. The same solution would work for any regular polygon with an
even number of sides.

1 Thinkofdepeopleasdividingthe15emptychnininb6gmups.Whichofﬂmegmupsmust

be positive and which are allowed to be 0?

4 Mamdposm’blemtegie& Foreachstrahegy;compuced\epmbabilityﬂutﬂ\econmtm

the car,

| Doasewo:kmﬂwnm—dwblegoodlmmubuedmﬂnpointwhemﬂnygobad(ﬂm

is, the point where wcﬁmtseetoomany “)"s).
'h‘ytousesmallersilvermatriceshoconsmhrgerones.
Foranyn,howmnyofln,n+l,n+2,n+3,n+4icanappurind\esubnet?
Countd\ehotalnumberofpointswmbyallphyem.

12, AddaS"‘variabledar\dsolvew+x+y+z+d=20.

13.

14,

15.

Firstcounthowmanywaystostacksida\ﬁcalooim,ﬂmcounthowmywaysmud@4of
them to be gold and 4 of them to be silver.

Show that the set (1,2,...., n) can be partitioned into sets of size "T”“"T”j,m

It may help to add balls labeled “0” and “45” (which can never be drawn),
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16. The smallest losing position is (1,2). This means that any position of the form (1,n), (2,n), or
(m, m + 1) is winning. What is the next smallest losing position?

17. It's not enough to just say that the Pigeonhole Principle doesn’t work. You have to construct a
counterexample.

18. We write () = 221230 Try a similar thing for (7).

19. The alternating signs and binomial coefficients sure look a lot like PIE!
20. Use Binet's formula and the formula that you found in part (a).

21. It may help to factor (1 + x + 2% + x°).

22. Arrange the n vertices in any order. Show that if an edge is missing, then you can rearrange the
vertices so that there are fewer missing edges.

23. Put each term of the product over a common denominator.
24. Proceed by careful casework.

25. Let x% denote the percentage of households that own both items. Use PIE to determine what
percentage owns at least one item (in terms of x). What can you conclude?

26. Make the nonnegative integers correspond with the even positive integers, and the negative
integers correspond with the odd positive integers.

27. First figure out the probability that the player going first in any individual game wins that game.

28. Divide the people into two groups in the way that minimizes the number of enemies within each
group. Then show that this means there are no enemies in a group.

29. First show that any person does not know at most 2 other people.

30. Every time you guess wrong, the number of cards in the largest remaining suit stays the same.

31. Look for a subgraph that you know is not planar.

32. How can we use f(1) = 30 and f(-1) = 12 to give equations?

33. Count the number of 10-element arithmetic sequences by determining all possible (a, ) such that
la,a+d,...,a+9d) CS.

34. How many questions on the test can be true?
35. Note that 144 = F,.
36. Write f(x) = a6x® + asx® + - + a;x + @p, and pluginx = 1 and x = -1.

37. How much, in terms of expected value, does Henry’s last step (choosing a coin and, if it is a tail,
flipping it) add to the total number of heads?
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38. When we go from n* people from n countries to (n + 1)? people from n + 1 countries, we need to
add n + 1 people from the new country, plus 1 extra person from each of the original n countries.
Pair up new country people with original country people, and add them to the table.

39. How can you convert this to a “standard” distributions problem?

40. Prove the base case |x + y| < |x| + |y| by squaring both sides.

41. Why does the observation in part (a) allow you to use induction?

42. The RHS looks a lot like a PIE expression.

43. You can restrict to looking at lines that are parallel to one side of the square.

44. Use casework based on the number of coordinate planes that the winning line is parallel to.
45. Count the number of sequences of 10 flips with no two consecutive heads.

46. There’s nothing particularly special about the numbers 1000 and 2003. It's actually simpler to
think of the more general question: if a number greater than b is currently displayed, what is the
probability that b will appear?

47. Count separately those with d < 50 and d > 50.

48. Which generating function looks like ¥}~ kx*?

49. The coefficients (3), (*}"), etc. should remind you of the Hockey Stick identity.

50. Prove by induction on n.

51. Compute the first several Lucas numbers and compare them to the Fibonacci numbers.

52. The 4 Aces divide the other 48 cards into 5 groups. How does this help?

53. You'll have to do a bit of algebra to compute the number of “balls” for use in the Pigeonhole
Principle.

54. Try to relate this problem to a problem involving partitions.

55. If you counted the paths directly, you'll notice that your answer is a Catalan number. Can you find
a Catalan recurrence for this problem?

56. For the losing positions, you'll need to do some casework for when one (or both) piles have 3 or
fewer chips.

57. Iterate the recursion, meaning apply the recursion to itself so that you can write a,, in terms of a,,».
What can you conclude?

58. Write a statement that is equivalent top A (g V r).
. It may be helpful to first compute the number of sequences with no consecutive 0's.
60. Look at the first spot in the second row in which there is no coin.

&
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61.

Cmmtd\enumberofwaystohaveeachoubcome(intennsofn),mdsetﬂ\emequal.Muse
algebra to solve for n.

62. If a number is both a perfect square and a perfect cube, then it must be a perfect sixth power.

63.

64.
65.

66.

67.

2

71.

Consider permutations of 1,2,...,n + 1. (This should be suggested by the (n + 1)! term.) The LHS
is casework.

All outcomes are equally likely, so just count them.

You can simplify the calculation a bit by imagining that each die has only 3 equally-likely outcomes:
BorlAforkd and ElorER

How do you use your analysis of the 2048-card problem to get the answer to the 2000-card problem?
What role do those extra 48 cards play?

If we can divide the points into 25 categories, then one of the categories must contain at least 3
points.
Use the Pigeonhole Principle.

. Count how many times each element appears in a geometric mean.
. If the last coin is heads, then an even number of the previous n — 1 coins have to be heads. If the

last coin is tails, then an odd number of the previous n — 1 coins have to be heads. Use this to set
up a recurrence for the probability.

First show that there must be a car with enough gas to reach the next car.

72. Focus on where the partial sum first becomes 0, and set up a Catalan-style recurrence.

73.

Take a look at the picture below, showing a typical triangle:

What can you conclude?

74. Consider the problem for a stack of 2048 cards.

75.

Reformulate the coloring condition as: none of the odd numbers can have a color in common with
any of the even numbers, and vice versa. So some subset of the colors can be assigned to the odd
numbers, and a disjoint subset of the colors can be assigned to the even numbers.

76. Think of partitioning, in two different ways, all of the correctly solved problems on all of the tests.

One partition is where each term corresponds to a student. Another partition is where each term
corresponds to a question.
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77. ey (x+y) ' = ;h first.
78. The colors of the checkerboard are a very powerful clue.
79. Construct a simple example.

80. Note that condition is equivalent to being able to choose members x, y, z (not necessarily distinct)
from the same country such thatx + y = z.

81. Do casework based on the last letter of the word.
82. There are only four 2 x 2 squares that might be white, one for each corner of the 3 x 3 grid.

83. The only states that you should need are the starting state and the states where the final sequences
of flips are T, TT, HHHH, and HHHHH.

84. Prove by induction on n.
85. Counting the number of successful outcomes is a distribution problem.

86. Write a separate generating function for the number of solutions to each equation (in terms of k).
How do you then get the generating function for the solutions to any of the equations?

87. 1f 6 students get handouts, then 9 students don’t get one. But no more than 2 consecutive students
can be without a handout. Determine the possible configurations of the “handout-less” students.

88. Make a graph where the dominos are the edges.

89. In how many ways can we color the first row?

9. You can count the paths directly using complementary counting and PIE.

91. One solution is to write and solve a recursion with the “initial” conditions 4y = axs = 1.

92. How does the original problem relate to the more symmetric version of the problem suggested in
the previous hint?

93. Remember that the Binomial Theorem works for complex numbers too!

94. Note that we have to place 8 1's, such that each row and each column contains two 1’s.
95. First draw the two 7-pointed stars. Why are there only two of them?

96. Use complementary counting.

97. Plug x = V1 = =14¥9 into the Binomial Theorem.

98. Once you find a lower bound for #(X N Y N Z), you still need to show examples of sets X, Y, and Z
that achieve this bound.

99. Show that a, satisfies the recurrence a,, = a,. + 44,2 — 44,3.
100. Solve the equation from part (a) using the quadratic formula.
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101.

It's enough to show that the interval [0, 1] is uncountable.

102. Let x and y denote the quantities given by the first two bullet points. Write equations for the rest

103.

104.
105.
106.

107.
108.

109.
110.
111.

of the bullet points in terms of x and y.

The two situations are very different. There is a relatively straightforward description of P(SN T).
However, if you play with some simple examples, you should convince yourself that there is no
similar description for P(SUT).

Compute a couple more: Ss, Sg, etc. This should make the pattern more clear.
Count the outcomes using casework based on the number showing on the largest die.

There are 2 cases. One case is if there are 5 numbers, each with a different remainder. If this case
does not occur, then what can you conclude?

We can always arbitrarily color the first row. Use casework from there.

Order the 330 members of the first country as a; < a; < - -+ < ayy. The differences ayy —4; cannot be
in the first country without satisfying the condition. This gives a list of 329 members which must
be in the other 5 countries. Use Pigeonhole again. Repeat this several times.

Place the purple balls first, then the green balls.
Find a 1-1 correspondence between this problem and a block-walking problem on the half-grid.

You may have to experiment with small values of k in order to guess at correct generating function,
which you can then prove by induction.

112. To show that a set is even, we often try to break it up into two halves that are in 1-1 correspondence.

113.
114
115.
116.
117.
118.

119.
120.

121.

Try to construct the largest possible subset with the desired property.
Look for a counting argument.

If a number n is in B, then 125 ~ n cannot be in B.

Just focus initially on the probability that 1000 shows up.

Compute p first, then g, then r, then s.

2000 is an ugly number to work with. Since every other card gets laid on the table as you progress
through the deck, what might be a much nicer number to start with?

You can also solve the problem (or check your answer) by using a Venn diagram.

Don't try to find a formula for the losing positions; instead, try to find a recursive procedure for
generating all the losing positions.
There are fewer B’s, so it’s easier to deal with them first.

122. You want to split the polygon into two smaller polygons, in order to use induction.

123.
372

Split the big square into 25 little squares of side length }.
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124.
125.
126.

127.

128.

129.

130.

131.
132.
133.
134
135.
136.

137.

138.
139.
140.
141.
142.
143.
144,
145.
146.
147.

The first five odd Catalan numbers are Cp, C;, C3, C7, and Cis.

Consider rolling an arbitrary number of distinguishable dice.

Show that any student must answer at least 20 pairs of questions in the same way (either both
correctly or both incorrectly). So the number of “balls” is 20n.

For any two vertices V and W, look at the cities connected to V and the cities connected to W. How
many cities are accounted for?

Use a path-reversing argument similar to that which we used to prove the formula for the Catalan
numbers.

Ca\strucﬁvelycountd\enumberofpaino(mboeu(A,B)wiﬂIBCA.Dothesameforpnin(A,B)
with BC (S\ A).

Think of X as white stones with weights x;,x5,...,x, and Y as black stones with weights
yl,yz,...,y,..Wearetryingtoﬁndsubaeuo(mduchoolorwid\&nmweight.

If each player has an odd sum, how many odd tiles must each player select?

Try an example where n = 3.

Try to pair up the subsets in some way that makes the sums easy to count.

Use casework, depending on whether the two pairs have a common element or not.
Prove by induction on the number of cities.

It may help to note that the generating function for a single fair die factors: (x+ X2 +2* +x* + X + %) =
x(1+x)(1 +x+ )1 = x + 29).

The “boxes” for the Pigeonhole Principle are possible pairs of questions answered correctly and
possible pairs of questions answers incorrectly.

You'll need to find the GCD's of all the subsets of (10", 157,18,

Note that p T g is the same as ~((-p) V (~9)). How do we represent -p using the Sheffer stroke?
The first step is figuring out what the question is asking!

Remember that all of your variables must be integers.

Imagine climbing up and then down an n-step staircase.

Look for a block-walking argument on Pascal’s Triangle.

Find a 1-1 correspondence between [0, 1] and P(N).

Note that (@) # 0. What is the only subset of 0?

The answer is 513. It’s not a coincidence that this is 2° + 1.

Break the count into cases: sequences that end with a head and sequences that end with a tail.
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148.

149.

150.

151.
152,
153.

154.
155.

156.

157.

158.
159.
160.
161.

162.
163.
164.
165.
166.

167.

168.
169.
170.

171.

Try to count the non-double-good arrangements.
Show that the process described in the text is reversible.

Look at any one particular point of the path. What is the probability that a random path has a turn
at that point?

If we color the first 2006 rows, in how many ways can we finish by coloring the 2007 row?
Use the extremal principle: start with the boy who dances with the most girls.

The numbers 39 and 22 are not particularly important; all that matters is that 39 is odd and 22 is
even.

Finding a cycle of length 4 is equivalent to finding two vertices that have two neighbors in common.

Note that for any integer 4, no two consecutive terms of the sequence 4,24, 44,84, . .. can be in the
subset. How does that help you construct the largest possible subset?

Prove by induction.

If you're still stuck, the next hint will tell you the answer. Once you know the answer, you might
be better able to see a way to prove it.

There are two cases: x and y are both even, or x and y are both odd.
If every vertex has degree at least 6, then V < E/3. Use this to show a contradiction.
Use a couple of previously-used identities to help simplify this sum.

You can save yourself some algebra by ignoring terms in the generating function that cannot
possibly contribute to the x* coefficient.

The first step is that one country, by Pigeonhole, must have at least 330 members.

Use some of the identities that we've already proven (either in the text or in previous exercises).
You might suspect that it cannot be done. How can you prove it?

The characteristic equation is a cubic. Does it factor?

Pick a triangle to start with, and work your way around the decagon.

Rewrite the inequality with the N term on one side and all the S(:--) terms on the other side.
Interpret the S(---) terms as a PIE expression.

To set up the recursion, you may have to consider a more general version of the problem.
How is the problem related to ¢(1000)?

Use a “greedy” algorithm. Construct subsets of X and Y, where in each step we add an element to
the subset with the smaller total.

First choose which kids will receive which type of candy.
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172.
173.
174.
175.
176.
177.

Use the pattern to make a conjecture, and then prove your conjecture by induction.

Note that 12 equally likely sums means that each sum must be rolled in 3 different ways.
Experiment with some small values of n and look for a pattern.

Use an argument similar to Problem 5.10 to complete the proof.

Show that the condition is equivalent to there being 0, 1, 9, or 10 true questions on the test.

If a circle has diameter d, what is the probability that a randomly chosen line will intersect it?
Using this, what is the expected number of circles that a randomly chosen line intersects?

178. Losing $1 corresponds to the x™! term in the generating function.

179.

180.

181.

First, find the probability that players 1 and 2" + 1 face off in the final round. This should be easier
because of the symmetry involved.

Use PIE to count the number of seatings in which at least one pair of countrymen are seated in the
same row.

Color it first without worrying about the rotational symmetry, and then divide to correct for the
symmetry.

182. Prove by contradiction: assume that every pair of vertices in G has an odd number of neighbors

183.

184.
185.

186.

187.
188.
189.
190.

191.

For any integer n, use the prime factorization of n to compute the number of divisors. How would
you count the number of odd divisors? What can you conclude from this?

First note that no (x, y) can be a solution to more than one of the equations.

What is the expected number of monochromatic 10-element arithmetic sequences in a random
coloring of §?

Try to construct a pair of unfair dice such that the generating function for their sum matches the
corresponding generating function for a pair of fair dice.

Try it with a smaller classroom, say 3 x 5.
Let S equal the desired sum. Compare S, 5/3, and 5/9.
Use the Hockey Stick identity to sum the numerators.

Observe that once we decide which rows and which columns contain empty desks, we've deter-
mined which desks are occupied.

Don’t read random hints!

192. Fix one of the three points, and compute everything in terms of the positions of the other two

193.

relative to the first point.
Use PIE to get bounds on (X U Y) and (X U Y U Z).
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194,
195.

196.
197.
198.

199.
200.
201.

To simplify things, treat the maple trees and the oak trees as being the same.

Let A; be the number of deals in which player i receives a pair (for 1 < i < 4). Use PIE to count
#A,UAUA3UAY).

Do casework based on what combination of the last 2 houses get mail.
Compute the first few a,. A pattern should emerge.

Show that once you place the purple balls and two of the green balls, the positions of the other
two green balls are fixed.

Use casework, depending on which stair is the last stair stepped on in both directions.
Think about symmetry.

Break up the movement of the ants into cycles of the form A; — A; — -+ = Ay — Ay; that is,
A; moves to A;’s spot, A; moves to Ay’s spot, and so on, up to A; moves to A,’s spot. Count the
different ways in which this can happen.

202. Compute the expected number of pairs of judges that agree on a randomly-chosen contestant, first

203.

by looking at a judge’s point-of-view, then by looking at a contestant’s point-of-view.

That term in the denominator has x, 2%, up through x*. What do you know of that has possible
outcomes 1, 2, up through 6?

204. Show that each connected component is bipartite. Why does this mean that the whole graph is

T E SEB

210.
211.

bipartite?

. Note that whichever team wins the last game must win the series.
. Take advantage of the symmetry in the problem.
. Write a formula for the expected win if you choose n balls. How does this expected win change as

you go fromnton +1?

The Hockey Stick identity will be useful, as will the identity (})(}) = ()} 7).
What does 9" count?

Compute the probability that a drawing has no two balls consecutive.
Count the number of internal nodes on either side of the root node.

212. This calls for clever substitution into the Binomial Theorem.

213.
214.
215.
216.

Write a cubic polynomial with @ as one of its roots.

Set up a state diagram, noting that only the last consecutive sequence of heads or tails is important.
We can’t have any partition: we must have a partition that satisfies the Triangle inequality.

Start with the prime factorization of 20!,
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217.
218.
219.
220.
221.

224,
225.

Use a procedure similar to Problem 14.14.
Consider the cases separately when n is even and when n is odd.
What does equation (3.7.6) imply if B = 10?

There are 5 graphs altogether.

Consider the graph where two vertices are connected if the corresponding people don’t know each
other.

222. Use complementary counting: count the number of ways in which at least one class is left empty.
223.

Remember that every nonzero rational number is of the form p/g, where p, q are relatively prime
integers. How does this help?

Look at your examples from parts (a) and (b). Notice anything?
Break up into cases depending on whether the pentagon has adjacent sides on the n-gon or not.

226. Use the Pigeonhole Principle, where the boxes are the pairs of members in the club.

227.

228
- Notice there are 5 “outer” vertices and 5 “inner” vertices. The outer vertices must appear on a

If we color k squares in any given ww,ﬂ\a\ﬂmesquamdebnnh\e(;)columm.%can'thave
the same pair of columns colored in two different rows.

The hard step is proving that a polygon must have an interior diagonal. Try to construct one.

Hamiltonian cycle in groups.

. Compute (C(x))* using the recursive formula for the Catalan numbers.
231.

Set up a recurrence for the number of spacy subsets of (1,2, ..., n), based on whether n is an element
of the subset or not.

232. First show that if we assume every pair of vertices has an odd number of neighbors in common,

233.

234.
. For each 1 € n £ 15, count the number of subsets that has n as an anchor.

237.

then every vertex has even degree.

Count the number of ways to place k distinguishable items into 9 distinguishable boxes, such that
at least one box is empty.

Draw a Ferrers diagram.

Experiment with small values of n. Does this lead to a conjecture as to what values of n have silver
matrices?

If a pentagon has 3 sides on the original n-gon, then at least 2 of these sides must be adjacent. If a
pentagon has 4 sides on the original n-gon, then they must all be adjacent.
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239.

240.

241.
242,
243.
244.

245.

246.

247.

249.
250.
251.
252.

253.
254

255.

256.

257.

258.
259.

AllLHStem\sanofd\eformZ“(:).D\issuggestsformingk-persmcomnﬁtteesinwhid\evay
committee member has 2 choices (of something).

There’s no real magic here—you just have to grind through the algebra. But you should get a nice,
simple-looking answer at the end.

Add an extra number to the end of the sequence so that the sum is 0.
Try to construct some simple examples to better see what’s going on.
Count using casework based on k.

mwom-asemﬁomwbewhu\uuda\ummﬂineucﬂy3ddw6mhym
construct an example in which each student enrolls in exactly 3 courses.

AsusmLyouneedwslwwﬂutwerywhmhtgpodﬁmhaswmeweﬂutludsbaM\g
position, and that all moves from a losing position lead to winning positions.

Compare non-double-good arrangements of n “("s and 2n “)"s with arrangements of n - 1 “(“s
and 2n + 1 )"s. (This is similar to the “path-reversing” argument used to prove the formula for
the Catalan numbers.)

It may initially appear that you don’t have enough data to use the Pigeonhole Principle. You'll
need to use another fact about degrees of vertices in a graph.

Set up a recurrence and look for a pattern.

Start at 1000 and work backwards to determine the winning and losing positions.
Try to construct a cycle of odd length. What happens?

Break into cases, depending on whether a boy or a girl is sitting in the first seat.

Uh-oh, the characteristic equation has complex roots. Don’t worry about it: keep plowing ahead
with the solution.

For any vertex V, count the neighbors of the neighbors of V.
Drawd\e"poasible"mgim(wbjectwd\egiva\ca\diﬁm)onﬂ\e&rwdmphne.musﬂ\e
“successful” region?

Write out expressions for 4, and 4, and use algebra to try to convert the recurrence into a linear
recurrence.

Fimimagineﬂutyouhaveanh\ﬁnitesupplyofead\andy.mdcmmtd\enumberofwayno
Mnmmwmm.mmmudmummwhummmm
than 10 of one type.

Compute P(the die is loaded | k £¥'s are rolled). Then find k such that this probability is at least 0.9.

Try constructing a list of concerts.
Multiply both sides by k!. The counting argument may be easier to see now.
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260. Countthepoasiblenumbetoﬂoumanmts,u\d&\enumberofwumamenuwiu\ﬂ\edeaimd
property.

261. Nextcountdaenumberoftwo—coinsequamﬂ-{ﬂ,l-l'l',m,and'l'l')mtmustbeinﬂ\esequa\oe.
262. Whatmﬂ\epouiblesizesof&\edmluofcelebﬁﬁes(ﬁmnthpmimuhim)?
263. Trytoshowal-lconupa\dmcebetwemsoluﬁomtothispmblemmdsoluﬂamtoﬂ\eprwm

exercise.

264. Ifa,.isthenumberofinhegmwhoaedigitmmisZn,thencomputingtlwﬁrstfewmof
Vi, Vaz, \as, ... should show an interesting pattern.

| ﬂw'boxu“forapplyingﬂn?isemhok?ﬁndpkmhdhgmahofﬂnd\emboud.

265
266. Evayparalldogramhusidepaulldto20fd\e3dduoﬂheu'iangle.'l'rytomeﬁ\eﬂmdside
somehowtoommtﬂ\epanﬂdognmswiﬁ\ddeapanlleltoﬂ\eotheﬂsidu.

Prove by induction that for all k > 3, we have Fy,; < L, < Fra2.

Duﬁngﬂnlnducﬁves&poﬂheproof,cmsideraepantely&membaeuofll,z,...,n-rll that
contain » + 1 as an element.

UseBinet’sformulaandﬂ\eformuhﬂntyoufmmdinpan(a).

Establish a 1-1 correspondence between subsets S with 10 € S and subsets T with 10 ¢ T.
Do casework based on the number of A’s in the word.

Do very careful casework.

- Ending in the digits 0001 means leaving a remainder of 1 upon division by 10000. This sort of
problem should look familiar!

. Wecanadd1,2,...,24boBMthoutwwy,beaund\emupondmgnumberﬂmmto125is
not in our original set {1,2,...,100].

275. Break up the event “A or B” into exclusive cases.
276. WhmoanumﬁngamboetTcS,howmydwicadoyouhavefme.chdemmthS?
277. Tryitwitlﬂpinhesfirst,d\a\wakyourmybackwudsbalwpinm.

278. Break up the interval [0, 1] into [0, &L[},fl,etc.l.et(r)beﬂ\efncﬁaulpanoh(dmis,(r) = r=|r)).
Use the Pigeonhole Principle.

279. Work out by hand what happens over the first several minutes. Do you see a pattern?

280. lmagimadmduswid\nwuplemdlmd\u.mRHSwunb&nnumbaofn-m
committees. Show that the LHS does as well.

281. Wewmtmﬁndﬂwt%um(ﬂuth,dumumum)indncombhwdmﬁnghnmforh
4 friends.

JN3SE 28
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282. What conditions on A or B must hold if both BC Aand B C (S\ A)?
283. Try an example, say n = 25,
284. Focus on the squares along the diagonal.

285. Write the sequences just using 0's and 1's: 0 for an even term, 1 for an odd term. This may make
the pattern easier to see.

. This looks like a job for substitution into the Binomial Theorem! How can we make all but every
third term cancel?

. Given a winning position, find the left-most digit position that has an odd number of 1's. Take
chips from that pile.

Set up a recurrence for the probability that Alfred wins the n™ game.
In any set of 3' + 1 = 82 4-tuples of points, there must be two that are colored in the same way.

. Let S; be the set of 6-digit numbers with no digit i (where i = 1,2,3). Compute #(S; U S; U S3) using
PIE.

1. Show that silver matrices exist for n = 2* where k is any nonnegative integer.

292. Try it first for a fewer number of clubs, say 2 or 3 or 4. You might notice a pattern.

Note that a rectangle is determined by a choice of a pair of rows and a choice of a pair of columns.
Note that all of the flips before the last flip are irrelevant.

Compute Tina’s generating function. Then use casework.

. After multiplying both sides by k!, the LHS counts the number of ordered partitions of (1,2,...,n)
into k disjoint sets. This is the same as distributing the elements of {1,2,...,n) into k distinguishable
boxes so that no box is left empty. Use PIE to show that the right side counts this as well.

Suppose we picked the 6 numbers first, then tried to assign 3 of them to be a’s and 3 of them to be
b's. In how many ways could we do this?

Think of using the Binomial Theorem.
Note that (d - 2)(b ~ 2) must be 1, 2, or 3. Determine the possible graphs for each of these.

Answer the question where the numbers are chosen from the set (1,2, 3,4, 5, 6). How is this different
from the problem where we choose our numbers from (1,2,...,1000)?

301. Pick a student; call her Sally. Compute the number of ways to distribute the handouts so that Sally
gets one.

302. Assemble the celebrities into circles, in which each celebrity shakes hands with his or her neighbors.
303. Start by experimenting with the small cases.
304. Prove by induction.
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305. Think about drawing all 6 balls at once, and then arranging them.

306. Usetheextnmalprindple:focusonﬂ\evenexofhighestdegme.

307. Itmybeeasiertovisualizecoloringthevertioesofacube.Whyisthisthesamcproblem?

308. Oncekisﬁxed,thinkofcountingu\cnumberofsubsetswithkeleumtsasadistribuﬁonpmblan.

309. Let[,s.mdxbedtenumberofstudmbinl’rmdx,Spuﬁshmdboﬁ\,xespectively.Writeequatiau
to represent the given facts, and solve for s.

310. Count the selfish subsets by casework, depending on whether or not n is in the subset.

311 Chsifythesubsetsmtermsof(a,d),wheteaismelema\tofﬁ\eaﬁﬁ\mticseqmmddisme
common difference.

312. WriumegezmtinghuttionforAlice‘ssums.Mtrytofactoritinadiﬂexmtwaybogetﬂetty’s
bags.

313. Ra&mﬂnna\ephyuhkh\gaﬂhkswh\gsmdﬂmhmhuphyahkingaﬂhhm,
imagine that they are alternating swings.

314. Counting the colorings in which more than one 2 x 2 square is white must be done
number of these with two adjacent 2 x 2 white squares is different than the number of these with

two diagonally-opposite 2 x 2 white squares.

315. Note that you only need prove the statement for 0 < N < 2", For N > 2™, just color as for 2" - N
and then reverse the colors.

316. For any element x € S, and any subset T C S, eitherx€ Torx ¢ T.

317. Another solution is to write a system of 27 equations and sum them all.

318. Use the Pigeonhole Principle.

319. In any set of 4 points, there must be two of the same color.

320. Count the number of ways that a tournament can have an undefeated team or a winless team.
321. Do casework, based on the first urn chosen and the color of the ball chosen from that urn.
322. Compute a few examples. You should see a pattern.

323. What choices do you have to make to place the rooks?

324. Use the Binomial Theorem on (1 - 4x)!.

325. You might think that because there are 52 cards and 4 Aces, the answer must be 52/4 = 13. It's not.
Butd\inldngind'dswayistheﬁghﬁdea—lookfonaimpleamwerﬂntinvolvasymmetry.

326. First count the number of heads and tails.
327. Use geometry. Draw the “possible” and “successful” regions on the Cartesian plane.




HINTS TO SELECTED PROBLEMS

328

g B

331.

Place the first tile so that it covers the upper-left square. What's left to do?
Show by induction that C; is odd if and only if k is 1 less than a power of 2.

Focus on the outside edges. At least one must be missing (otherwise there’d be a loop). Use
casework based on the position of the missing edge.

Pay particular attention to the corners of the board.

332. Note that no 2 students can have the exact same club memberships. There are 2'* possible different

333
334

335.

subsets of clubs that any student could be a member of, so 1024 is an upper bound for the possible
number of students.

The block 101 shows up a lot. Rewrite the 5,,s in terms of these blocks.
The LHS counts pairs of pairs of n objects.
Experiment withn = 2and n = 3.

336. Prove the more general statement where 2002 is replaced by n.

EE BE EQES
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If no pair has overlap greater than 1, and B 2 10, what can we conclude?
Think of extending the sides of a parallelogram to intersect the 3" side of the triangle.

Bipartite graphs don’t have any triangles.

One “half” (as in the previous hint) is sets that contain their average. This doesn’t quite work, but
how can we fix it?

. The side lengths of a triangle with perimeter n form a partition of n into 3 parts.
. The previous hint doesn’t quite work as-is. Instead, draw a larger triangle with side length n + 1

outside of the original triangle, and try the previous hint again.

. List the first 10 or so Catalan numbers. This should lead you to a conjecture.
. Work backwards from the end of the game. First determine what the position must be for a player

not to be able to move. Then determine what positions have a move that leads to the immediate
loss. And so on.

What is the expected number of handouts received by a randomly-chosen student?

Try to find a 1-1 correspondence between “Triangle inequality” partitions and some other type of
partitions, for which it is easier to write a generating function.

. Focus on the corner squares of the checkerboard.

Consider the games as paths on a grid from (0,0) to (n — m, n + m). What line can’t be crossed?

. It may be helpful to use a graph with loops.
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cycle, 342
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Dirac’s Theorem, 362
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length, 342
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planar, 349
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Platonic, 354
simple, 333
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vertex, 332
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Sheffer stroke, 43
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loop, 332
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mathematical induction, 161-171
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inductive step, 162
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Monty Hall problem, 239
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Nim, 290, 294, 297
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onto, 94
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path, 342
length, 342
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simple, 342
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Pick’s Theorem, 171
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Pigeonhole Principle, 77, 118-128
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planar representation, 349
Platonic, 354
power series, 298, 308
power set, 31
principle of inclusion and exclusion, 49-80
with many sets, 65-68
with three sets, 54-57
with two sets, 50-53
problem solving, iii
proper subset, 29
proposition, 37

Q32
quantifier, 43-45
existential, 44
universal, 44
R, 32
random walk, 265, 266, 273-276
recurrence, 195
characteristic equation, 202
linear, 201
recurrence relation, 195
recursion, 137, 168, 193-223
resources, v
RHS, 245

set, 27-37
cardinality, 29
complement, 37
difference, 37
disjoint, 34
elements, 28
empty, 29
intersection, 33
members, 28

power set, 31




INDEX

subset, 29
proper, 29

superset, 29

union, 33
set-theoretic difference, 37
Sheffer stroke, 43
simple graph, 333
simple path, 342
stack, 93
state, 265, 268
statement, 37
Stirling numbers, 264
strong induction, 166
subgraph, 337
subset, 29

proper, 29
summation notation, 25
superset, 29
surjective, 94
symmetric difference, 48
symmetry, 7, 8

totient function, 60
towers of Hanoi, 194-196
history, 195
tree, 342
triangle inequality (generalized), 170
triangulate, 207, 214

true, 37
truth table, 39

uncountable, 117

union, 33

universal quantifier, 44

universal set, 36
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Vandermonde’s identity, 255
vertex (of a graph), 332

winning position, 286, 287
Wythoff’s game, 294
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