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HOW TO USE THIS BOOK

Sidenote: This box will contain material which, although interesting, is not part of
.,N the main material of the text. It's OK to skip over these báxes, buiif yout 

read them, you might learn something interestingl

Bogus Sol

ffi
ution: Just like the impossible cube shown to the left, there's something

wrong with any "solution" that appears in this box.

Exercises, Review Problems, and Challenge Problems

Most sections end with several Exercises. These will test your understanding of the material that was
covered in the section. You should try to solve all of the exercises. Exercises marked with a * are more
difficult.

Most chapters conclude with several Review Problems. These are problems that test your basic
understanding of the material covered in the chapter. Your goal should be to solve most or all of the
Review Problems for every chapter-if you're unable to do this, it means that you haven't yet mastered
the material, and you should probably go back and read the chapter again.

All of the chapters (except for Chapter 1) end with Challenge Problems. These problems are
generally more difficult than the other problems in the book, and will really test your mastery of the
material. Some of them are very, very hard-the hardest ones are marked with a *. Don't expect to
be able to solve all of the Challenge Problems on your first try-these are difficult problems even for
experienced problem solvers. If you are able to solve a large number of Challenge Problems, then
congratulations, you are on your way to becoming an expert problem solver!

Hints

Many problems come with one or more hints. You can look up the hints in the Hints section in the
back of the book. The hints are numbered in random order, so that when you're looking up a hint to a
problem you don't accidentally glance at the hint to the next problem at the same time.

It is very important that you first try to solve each problem without resorting to the hints. Only after
vou'r'e seriously thought about a problem and are stuck should you seek a hint. Also, for problems
rrhich have multiple hints, use the hints one at a time; don't go to the second hint until you've thought
about the first one.

Solutions

I:,e solutions to all of the Exercises, Review Problems, and Challenge Problems are in the separate
:-'-:tions book. If you are using this textbook in a regular school class, then your teacher may decide
: --: t,-, make this solutionsbook available to you, and instead present the solutions him,/herse1f. However,
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HOW TO USE THIS BOOK

A Note to Teachers

We believe students leam best when they are challenged with hard problems that at first they may not
know how to do. This is the motivating philosophy behind this book.

Rather tha¡ fust introducing new material and then giving students exercises, we present problems
at the start of each section that students should try to solve before new material is presented. The goal
is to get students to discover the new material on their own. Often, complicated problems are broken
into smaller parts, so that students can discover new techniques one piece at a time. After the problems,

new material is formally presented in the text, and fuIl solutions to each problem are explained, along
with problem-solving strategies.

We hope that teachers will find that their stronger students will discover most of the material in this
book on their own by working through the problems. Other students may leam better from a more
traditional approach of first seeing the new material, then working the problems. Teachers have the

flexibility to use either approach when teaching ftom this book.

The book is linear in coverage. Generally, students and teachers should progress straight through
the book in order, without skipping chapters. Sections marked with a * contain supplementary material
that may be safely skipped. In general, chapters are not equal in length, so different chapters may take

different amounts of classroom time.

Links

The Art of Problem Solving website has a page containing links to websites with content relating to
material i¡r this book, as well as an errata list for the book. This page can be found at:

http : //rülüw. artofproblemsolving . com/Booklinks/Intermcounting/links . php
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Extra! Ern6 Rubik (19{lprcsent) arrd his Magic Cube

The diagrams at the start of each chapter depi(-t a Rubik,s Cube.

Ernó Rubik was an inventor, sculptor, and architectu¡e professor living in Budapest,
Hungary, when in 1974 he invented a niffv Little puzzle that n ould go on to sell hund¡eds
of millions of copies. it was orlglnally called the "iüagic Cube," but when it became
available worldwide in 1980, it was known simplv as "Rubik,s Cube.,,

TheCubeitselfisabout2incheslongoneachsideandisdividedintoa3x3x3array
of 27 smaller cubes. Each of the 6 faces can rotate independentlv of each other, which
changes the configuraiion of the colors on the outside of the Cube. Initially, the Cube
starts with a solid color on each of its 6 faces, but rotating the sides wili cause the colors
to become mixed.

There are exactly 43,252,003,27 4,489,856,000 different configurations of Rubik,s Cube!
This is a uery _difficult number to count: for those of you keeping score at home, it
is 8! x 12! x 37 x210. The goal of the puzzle is to firsi put thó Cube into a random
configuration, and then to try to retum it to its original configuration, with each side a
solid color.

Rubik's Cube became incredibly popular worldwide in the early 1980s. According to
the official Rubik's Cube website at wwÍ,.rubiks,co& over 100,000,000 cubes were sold
in the period from 1980 to 1982 alone. In 1983, the immense popularity of the Cube even
led to a Saturday-morning cartoon called Rubik, The Amazing Cube.

As if solr.ing the Cube is not challenging enough, many people enjoy the further chal-
lenge of trying to solve it as fast as possible, in some cases while blindfoided! The
world Cube Association is the official keeper of Rubik's Cube speed-solving reeords.
The current world record (as of May 2012) is held by Feliks Zendegs, who solved a
randomly-configured Cube in 5.66 seconds. A detailed list of records is on the wCA s
website, which is on the links page referenced on page vi.

I{ you don't have a Rubik's Cube at home, there's a Java applet allowing you to play
with a virtual Cube; this applet is also available via our links page.

xtv
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:-iP;-3 i REV EW OF COUNTING & PROBABILITY BASICS

1.2 Basic Counting Techniques

Problem 1.1: My city is running a lottery. In the lottery, 25 balls numbered 1 through 25 are placed in
a bin. Four balls are drawn one at a time and their numbers are recorded. The winnlng combination
consists of the four selected numbers in the order they are selected. How many winning combinations
are there, if:
(a) each ball is discarded after it is removed?

(b) each ball is replaced in the bin after it is removed and before the next ball is drawn?

Problem 1.2: On the island of Mumble, the Mumblian alphabet has only 5 letters, and every word in
the Mumblian language has no more than 3 letters in it. How man¡. lr,,ords are possible? (A word can
use a letter more than once, but 0letters does not count as a word.)

Problem 1.3: The Smith family has 4 sons and 3 daughters. In how many ways can ihey be seated in
a row of 7 chairs, such that at least 2 boys are next to each other?

Problem 1.4: How many 3-digit numbers have exactly one zero?

Problem 1.5: Our math club has 20 members and 3 officers: President, Vice President, and Treasurer.
However, one member, Ali, hates another member, Brenda. In how many ways can we fill the offices
if Ali refuses to serve as an officer if Brenda is also an officer?

Problem 1.6: How many possible distinct aflangements are there of the letters in the word BALL?

Problem 1.7: In how many different ways can 6 people be seated at a round table? TWo seating
arrangements are considered the same if, for each person, the person to his or her left is the same in
both arrangements.

Problem 1.8: Consider a club that has n people. \Arhat is the number of ways to form an /-person
committee from the total of n people?

Problem 1.9: Each block on the grid shown at right is 1 unit by 1 unit.
Suppose we wish to walk from ,4 to B via a 7 unit path, but we have to stay on
the grid-no cutting across blocks. How many different paths can we take?

Problem 1.10: In how many ways can a dog breeder separate his 10 puppies into a group of 4 and a
group of 6 if he has to keep Biter and Nipper, two of the puppies, in separate groups?
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CHAPTER 1. BEVIEW OF COUNTING & PROBABILITY BASICS

To get the total number of words in the language, we add the numbe¡ of words from each of our
cases. (We need to make sure that the cases are exclusive, meaning they don't overiap. But that's clear
in this solution, since, for example, a word can't be both a 2-letter word and a 3-letter word at the same
time.)

Therefore, there are 5 + 25 + 125 = 155 words possible on Mumble. o

Problem 1.3: The Smith family has 4 sons and 3 daughters. In how many ways can they be seated
in a row of 7 chairs, such that at least 2 boys are next to each other?

Solution for Problem L.3: lt willbe fairly difficult to try to count this directly with casework, since there
are lots of possible cases (for example, two possibilities are BBBBGGG and BGGBBGB, where B is a boy
and G is a girl). But there is only one way to assign genders to the seating so that no two boys are next
to each other, and that is BGBGBGB. So we use complementary counting: we count the items that we
don't wanf.

If we seat the children as BGBGBGB, then the¡e are 4! orderings for the 4 boys, and 3! orderings for
the 3 girls, giving a total of 4! x 3! = 144 seatings for the 7 children.

These are the seatings that we don't want, so to count the seatings that we do want, we need to
subtract these seatings from the total number of seatings without any resttictions. Since there are 7 kids,
there are 7! ways to seat them.

Therefore, the answer is 7! - (4! x 3!) = 5040 - L44 = 4896. a

Concept:

U/:
Casework is the general technique of breaking up the possibilities
two or more categories. We car. then add the possibilities of the vat
cases to get the total number of possibilities.

\Áy'hen using caseworl it is important that the casesbe exclusiz:e, rr:reanirrtg
that they don't overlap. Otherwise, you'll end up counting some outcomes
multiple times. (Althougtu later in this bool we'll see some techniques
for dealing with overlapping cases.)

Often, complicated casework means that you should think about trying
complementary counting: that is, counting what we don't want and sub-
tracting this count from the number of possibilities (without restriction).
If it's hard to count all the cases that we want, then it may be relatively
easy to count what we don't want.

Concept:

\Jffi

\\{hen a problem asks "How many are not?", we might think instead
count "How many are?" When a problem asks "How many have at le
one?", we might think instead to count "How many have none?"

4
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CHAPTER 1. REVIEW OF COUNTING & PROBABILITY BASICS

We have 3 choices for an office for Ali, either President, Vp, or Treasurer.

Once we pick an office for Ali, we have 2 offices left from which to choose an office for Brenda.

Once we have both Ali and Brenda installed in offices, we have 18 members left in the club to pick
from for the remaining vacant office.

So there are 3 x 2 x 18 ways to pick officers such that Ali and Brenda are both in an office. Remember
that these are the cases that we want to exclude, so to finish the problem we subtract these cases from
the total number of cases. Hence the answer is:

(20 x 19 x 18) - (3 x 2 x 18) = ((20 x 19) - 6) x 18 = 374 x L8 = 6732.

tr

Concept:

t;r'_-"EÉ

Many problems will require you to use more than one counting method.
In the previous problem, we used both complementary counting and
constructive counting.

Problem 1.6: How many possible distinct arrangements are there of the letters in the word BALL?

BogusSolution: We have 4 ways to pick the first letter, 3 ways
and so on, for a total of 4! possibilities.

Solution for Problem 1.6: Fitst, ¡ote that the answer is not simply 4!:

This method overcounts. The reason for this is that two of our letters are the same.

Let's pretend that the two r"s are different, and call them L1 and L2. So our word BALL is now really
BAL1L2. In making the expected 4! arrangements, we make both BALTLz and BAL2L1. But when we
remove the numbers, we have BALL and BALL, which are the same.

With 4!, we've overcounted, and we need to correct for this.

Every possible artangement of BALL is counted twice among our arrangements of BALiL2. For
example, LLAB is cou¡ted as both LIL2AB and LzLrAB, LABL is counted as b;th LIABL2 and L2ABL1,
and so on for every possible arrangement of BALL. We can see this in Figure 1.1:

BAL1L2,BAL2L1 + BALL
BL1L2A, BL2L1A + BLLA
LfiAl¿,L2BAL1 =+ LBAL
AL1BL2,AL2BL1 + ALBL
L1L2BA, L2L1BA + LLBA
LrALzB, LzALTB .+ LALB

BL2AL1 ,BL1AL2 + BLAL
ABL1L2,ABL2L1 = ABLL
L1BL2A,L2BL¡A + LBLA
L1ABL2,L2ABL1 + LABL
AL1L2B, AL2L1B + ALLB
L1L2AB,L2L1AB + LLAB

Figure 1.1: BALr,"s with different Ils
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CHAPTER 1. REVIEW OF COUNTING & PROBABILITY BASICS

6t 16 = 5t = 120 ways to arrange the 6 people around the table. n

¡;¿"É cor''ti',g ort"o-;;ith "t;;Jt ;;;;n, ;;r"' 
"oÁ" 

;;l;i;t;t"si"
C=a overcounting.

Problem 1.8: Consider a club that has n people. 1/hat is the number of ways to form an r-person
committee from the total of n people?

Solution for Problem 1.8: \Ne start by counting the nurnber ofways to choose r people if order matters.
Therearenchoicesforthefirstperson,n-lchoicesforthesecondperson,n-2choicesforthethird
person, and so on, up to ,? - r + 1 choices for the rü person.

So there are
nx(n-1)x(n-2) x...x(r-r+1) (1.1)

ways to choose r peopie from a total of iz people if order matters. (Reca11 that this is the quantity that is
often denoted by P(n, r).)

But we know that there are r! ways to order r people. Therefore, each unordered committee of r
people will corre spond lo rl ordered choices o{ z people. So we need to divide our count in equation (1.1)

by r! to correct for the overcounting.

Therefore our answer is

0
n x (n - l) x (n - 2) x... x (n - r + l)

Concept: If we don't care about the order when choosing ¡ items from a set of r
C=É items-for example, when choosing a comrnittee-we have a combina-

tion. The number of ways to choose ¡ items from a set of z items, without

nl
rl(n - r)r.'

tr

/_ _\

regard to order, is l''1, p.ottorrrced "n choose r." (Note: some sources
\ri '

denote this as C(n,r) or as nC,.)

portant:v The formula for combinations is:

/n\ nl n(n -l)(n-2)...\n - r+1)
\r)= ,'1, - ,l'. = ,t '

The first formula is more typica§ used in algebraic proofs involving
combinations, whereas the latter formula is the one that we most often
use to actually compute combinaüons. For example:

(T)=i:ry="'
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CHAPTER 1. REVIEW OF COUNTING & PROBABILITY BASICS

"rrrruuu," where the r's and u's are a1l the same, so we must divide by the 4! possible arrangements of
the r's a¡Ld the 3! possible arrangements of the u's. n

Counting paths on a grid is one appiication of combinations.

Solution for Problem 1.10: Lef's first do the problem by complementary counting.

If we have no restrictions on the groups, then we simply need to choose 4 of the 10 dogs to be in the
smaller group, and the rest of the dogs will make up the larger group. There are (?) *uyt to do this.

But we can't have Biter and Nipper i¡ the same group. So we have to subtract the number of ways
that we can form the two groups with Biter and Nipper in the same group. This calIs for a little bit of
casework.

Case 1: Biter and Nipper are both in the smaller group.
If they are both i¡ the smaller group, then we have to choose 2 more dogs from the 8 remaining to
complete the smaller group, and we can do this in (!) ways.

Concept:

C:

WARNING!! Don't mistakenly .ot-t tt 
" 

possiUitites * Cr." f ,t tgjt3f , Uy i"uton-
ing that we must choose 2 out of 8 dogs for the smaller group, and 6

out of 8 dogs for the larger group. These choices are not independent!
Once we pick the 2 dogs for the smaller group, then we have no choice
but to put the remaining 6 dogs into the larger group.

Case 2: Biter and Nipper are both in the larger group.
If they are both in the larger group, then we have to choose 4 dogs from the 8 remaining to compose the
smaller group, and we can do this in (!) ways.

So to get the number of ways to form groups such that Biter and Nipper are both in the same group/
we add the counts from our two cases, to get (!) + (!).

But remember that these are the cases that we don't want, so to solve the problem, we subtract this
count from the number of ways to form the two groups without restrictions. Thus, our answer is

H (B.(:)) ="'- (28+70) =112

The other way that we could solve this problem is by direct casework. There are two cases of possible
groupings.

Case 1: Biter is in the smaller group, Nipper is in the larger group.
To complete the smaller group, we need to choose 3 more dogs from the 8 remaining dogs. We can do
this in (!) ways.

Problem 1.10: In how many ways can a dog breeder separate his 10 puppies into a group of 4 and
a group of 6 if he has to keep Biter and Nipper, two of the puppies, in separate groups?

10
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CHAPTER 1. BEVIEW OF COUNTING & PROBABILITY BASICS

proutu- i.ir, wflit ir tfr" proUáuitity ttrut *t "" á tuit o-tiááa áie is rolled, a prime number faces

uP?

solution for Problem 1.1'L: Therc are 6 equally likely outcomes. Three of those outcomes are successful:

E, E, o, E. Therefore, the probability is 2 = i. "
il utt o.rt"oÁá" á.e áq"a[y fit"rp then the probability of success is

Number of successful outcomes
P(success) = Number of possible outcomes

Concept:

i.átf"- t.t2: Ast;dard á""t ái.*¿r has 52 cards divided into 4 suits, each of which has 13

ca¡ds. Two of the suits (v and o, called "hearts" and "diamonds") are red, the other two (a and *,

called "spades" and "clubs") are black. The cards in the deck are placed in random order,(usually

by a proáess called "shuffling"). What is the probability that the first two cards are both redf

Solution for Problem 1 .12:

Method 1: For the total number of possibilities, there are 52 ways to pick the first card, then 51 ways to

pick the second card, for a total of 52 x 51 possibilities'

For the number of successful possibilities, there are 26 ways to pick a red card first (since there are 26

total red cards), then there are 25^ways to pick a second red card (since there are 25 red cards remaining

after we've chosen the first card). Thus, there are a total of 26 x 25 successfuI possibilities.

Therefore, the probability is

P(first twocards are red) = ffi ='# = #

Method 2: For the total number of possibilities' there are (s;) = L326 ways to pick two cards (without

regard to order).

For the number of successful possibilities' there are (2f) = zzs ways to pick two red cards (without

regard to order).

Therefore, the Probabili§ is

P(first two cards are red) =
Number of successful outcomes 325 25

1326 702Number of possible outcomes

Method 3: The probability that the first card is red is # = + If the first card is red, then the probability

that the second card is red is ffi. Therefore:

P(first two cards are red) = P(first card red) x P(second card '"d) = 1 "'; = #
tr

12
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CHAPTER 1. REVIEW OF COUNTING & PROBABILITY BASICS

of outcomes and the number of successful outcomes. There are k + 3 total marbles in the bag, so the
number of ways to choose 2 of them, without regard to order, is (k;3).

One type of successful outcome is to choose two red marbles. This can be done i. (l) = 3 
"ruyr. 

n "other successful outcome is to choose two white marbles. This can be done in (!) ways. Since these two
cases are mutually exclusive, we can add our counts. So

P(both marbles are the same cotor) = ' I li).' (*;r)

We set this equal to the given probability of ], and then solve for k. Our equation is

3*(Í) 1'

(n;) 2'

In order to solve this, we'll need to first write out the combinations:

3*w? 1.

We can get rid of the 2's in the denominators by multiplying the numerator and denominator of the left
side by 2:

6+k(k-L) 1

(k+3)(k+4= r'
and then we cross-multiply to get rid of the fractions:

12+2k(k- 1) = (k+3)(k+2).

Multiplying out, we get
2t¿ -2k+1.2=l? +5k+6,

sol?-7k+6=0.Thisfactorsas(k-6Xk-1)=0,soeitherk=6ork=l.Bothsolutionswork.

I Problem 1.15: Mary and James each sit in a row of 7 chairs. They choose their seats at random.
I \A¡hat is the probability that they don't sit next to each other?

Solution for Problem L.15: There are (l) = 21 *"ys lnwhich Mary and James can choose 2 chairs, if we
don't worry about the order in which they sit.

Although we can use casework to count the number of ways they can choose chairs that are not
next to each other, it is easier to use complementary counting. If we number the chairs #1, #2, . . . , #7

Concept:
1:'\_-
\.-.l==

Many probability problems will require some algebraic manipulation in
order to solve them. Don't be afraid to use algebra (in parüculaq, to use
variables) if you need to!
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CHAPTER 1. REVIEW OF COUNTING & PROBABILITY BASICS

When computing probabiüty by counting outcomes and using

P(success) =
Number of successful outcomes
Number of possible outcomes '

!}r!s lpproach will work only if the outcomes are equally likely.

Concept:

@+
In an event that is made up of multiple, independen! sequential sub-
events, we multiply the probabüties of the sub-events to get the probabil-
ity of the overall event.

Solution for Problem 1..17: We could solve this problem by counting the outcomes, but let's instead solve
it by multiplying probabilities.

The probability that both marbles are red is given by:

P(both red) = P(first red) x P(second red after first red is drawn).

The probability that the first marble is red is .4. After drawing a red marble, there are 3 red marbles
and 9 marbles total left in the bag, so the probábility that the second marble is also red is $. Therefore

Plboth red) =4 *1 =210 
.9 

15'

Similarly, the probability that both marbles are blue is given by:

P(both blue) = P(first blue) x P(second blue after fust blue is drawn).

The probability that the fust marble is blue is ,é. After drawing a blue marble, there are S blue marbles
and 9 marbles total left in the bag, so the probábility that the second ma¡ble is also blue is !. Therefore

Plbothblue)= 6 r!=l10 9 3'

Since drawing two red marbles and drawing two blue marbles are exclusive events, we add the
individual probabilities to get the probability of one or the other occurring. Therefore:

P(both same color) = P16o¡. ,"0) + Pftoth blue) = 1 .'- = L.'L5315'
tr

Concept:tu-r@-----EE

When multiplying probabilities of dependent events, be sure to take the
prior events into account when computing the probabilities of later events.

Concept:

e-e

iProblem 1.17: A bag has 4 red and 6 blue marbles. A marble is selected and not replaced, then a
second is selected. I{hat is the probability that both are the same color?

16
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CTIAPTER 1. REVIEW OF COUNTING & PROBABILITY BASICS

1.4 Expected Value

Recal1 that expected value is the notion of a "weighted average," where the possible outcomes of
an event are weighted by their respective probabilities. We can state this more precisely:

Suppose that we have an event with a list of possible values of the out-
comes: )c1, x2, . . . , xn. Yalue ,1 occurs with probability pt, vahrc 12 occurs
with probability p2, and so on. Note that

Pt+P2+"'+Pn=7,

since the probabilities must total to 1. Then the expected value of the
outcome is defined as the sum of the probabilities of the outcomes times
the value of the outcomes:

E=pút+p2x2+,.,+pnxt.

. 
Problem 1.19: Suppose you have a weighted coin in which heads comes up with probability t and
'tails with probability j. If you flip heads, you win $2, but if you flip tails, you lose $1. I4lhat is the
expected value of a coin flip?

Solution for Problem 1.19: We mlltiply the outcomes by their respective probabilities, and add them up:

r = ft*szl * ]t-srl = $1.s0 - $0.2s = g1.2s.

tr

Concept:

@ffi
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:-APTER 1. REVIEW OF COUNTING & PROBABILITY BASICS

ihis simplifies io39 = 84 - 5¡, which means that r = 9. Thusg of the 12 slips have a 2 written on them.

We said this before about probability, and it's true here too: don'tbe afraid
to use algebra in solving expected value problems.

1.5 Pascal's Tiiangle and the Binomial Theorem

Concept:

Problem 1.22: Suppose that we consider Pascal's Tiiangle to be a grid of dots (in other words,
ever).lvhere there's a number, we're just going to place a dot). We can count the number of paths from
the top dot to any of the lower dots, where each step of the path is from a dot to one of the two dots
immediately below it.

a,/\aa
// \l \aaa

,/\,/\,/\aaaa,/\.u\/\--,/\a a a (al a//\,/\2r,,\zr
, 

t 
a. ,r 

t.'. 
, 

t., 
, 

t.. 
,, 

t.. 
, 

t'.
aaaaaaa

For example, the above diagram shows a path to the circled dot. How many paths are there from the
top dot to the circled dot in the above picture?

Problem 1.23: Prove that

[-l).(';')=0
Problem 1.24: Expand (r + y)".

Problem 1.25: What is the coefficient of the term ol (x + 2y2)6 with a y8 in it?

Problem 1,26: Prove that for any r,

fr). (Í). .(:)

Extra! All men's miseries derfue from not being able to sit in a quiet room alon¿. - Blaise Pascal
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C-onceph

h
Most experienced counters think of Pascal's Triangle as:

t3)

(3)

G)

0o

,/
(3)

,/\
(á)

,,/\/0o

()

()

(¿)

(i)

()

G¡

()

()

()

(:)

G)

(3)

Eq$ gry.y i. the number of paths to that point of the triangle.

Problem 1.23: Prove that

Solution for Problem 1..23:

Proof by block-utalking on Pascal's Trinngle: Let's look at a piece somewhere in the middle of pascal,s
Tiiangle:

(;- i). (';')= (l

(:-i)
./\

(:-i)

\/

(';')

,),r(. 
\

We know that each entry is the sum of the two ent¡ies immediately above it, since every path to (i) must
pass through one or the other of the points immediately above (but not both). Thereiore, we conclude
that

(;- l). (';')= (l
Proof by algebra: we start by writing out the algebraic definition of the combinations:

ln-1\ _/, _ i\ 
= 

(n _1.)t _ (n_1)!
(,-r/'1 , 7 (r-l)r((n-1) -(r- 1.))t rt(n-1-r)1.
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o¡r the second line above, we get four terms: each term corresponds to choosing r or y from the first
term, then choosing r or y from the second term, and multiplying them togetherl After"simplification,
we get our usual result on the third line above.

Just to make sure that it's clear what's happening, let's also look at how this works fo r (x + y)o:

(x + y¡3 = (x + y)(x + y)(x + y)

= xnc + )ctcy + )cyx + xyy + ytcx + ytcy + yyx. + yyy
--f +3x2y+3xf +f .

As before, in the second line above, each term is a product of .r or y from the fust term, times x or y from
the second term, times x or y from the third term. We take these iroducts for every possible choice of ¡
or y from each term, and then add them up. when we simplify, lie get our usuar expression for (r + y)3.

Now we can see where the coefficients come from. For example, the coefficient of the ly term in
(r+y)3 is 3. That's because there are 3 ways to choose two ¡,s an d. ine y: xxy, xyx, arrd yxxi. Ártematively,
we can think of this as the number of ways to arrange two ¡'s and orie y tá -ute a tfíee-letter ,,word,,.
And we know how to count this: it,s

we can also think of this as the number of ways to choose one ,,slot,, for the y in our 3-letter word.
Now let's go bark to the general c ase3f (x + y). Every term in the product results from choosing anr or y from each of the n different (r +,y) terms in.{" r"ba.r"t. so if, ior example, we choose k y,s,-the

other n - ft choices will be r's, a¡d we'll get an :n+l tÁrm in the product. But i /s carrbe chosen from
n terms in ([) ways. Therefore, t]re coefficient of r":kf is (i). tr

Solution f^or Problem 1.25: How 
_do 

we geta term in the expansion of (r+ 2f)6 witl ayB in it? The term
with a y8 in it is the term that has a 1Zf¡a n it. We know that wh".. 

"*pááir,g 6 +kf¡6 , we have to
choose 4 copies of 2y2 from the six (x + 2f) terms in order to get a term #itr., 4 ii ii. rni's áu., ¡u aone ir,
(;) ways. we then take an¡fromeachof the rernaining two (x+Zf) terms that didn,t contrib úe a2f .
Therefore, the relevant term in the expansion of (r + Zf¡6 is (r)i(2fy -_ Z4Of yB . The answer is 240. ¡

#=(?)

The Binomial Theorem: for any positive lnteger z, theioeffiEent of the
x"-kyt term of (x + y) is (i). kr Lther words, "

(t + y)4 = (;)" . (:),"-,0 * . * (i)**t *... *

Problem 1.25: What is rhe coefficient of the term of (x + 2f)6 with 
" f Á it?

concept l'llhen dealing with the Binomial Th"o""-, as *ittr -mo"t 
th"*ems -ffi6 tormulas, it is important to not merely memorize the formula, but to

understand it well enough to be able to áe it flexibly.
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CHAPTER 1. REVIEW OF COUNTING & PROBABILITY BASICS

The symbol f means to take the sum where the different terms are given by plugging in k = l, k = 2,
k=1.

and so on up through k = ,?. The letter k is not important, and can be any letter not in the sum's terms.
The variable k is sometimes called a dummy variable.

To take another simple example,

11

li'z =5'z+62 +72 +82 +92 + 1.02 + 11.2 =25 +36+49 +64+81 + 100 + 121 =476.
i=5

Often we will use suÍunation notation to write identities more concisely. For instance, we can write
the Binomial Theorem as

fi t\

(.r+v)" = I lTl,' *r*.

- 
t/(,[=0\/

If the sum is hfinite, then *'e can use the svmbol oo to indicate this. For example, if lrl < 1, then

We will discuss more subtle aspects of summation notation throughout the book as we need them.

1.7 Summary

This chapter is a review of the concepts and techniques that you should know before proceeding
further with this book. The rest of the book will assume that you know and are comfortable with these
techniques. If many of the solutions to the problems in this chapter did not come easily to you, you
may want to review more introductory-level material before continuing on with this book.

The book lntroductioll to Counting ü Probability covers all of the topics in this chapter (except for
summation notation), and does so in much greater detail than we did here.

Y ar' =-a ./-,/ 1-r
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CHAPTER 2. SETS AND LOGIC

2.2 Sets

Sets are the building blocks of mathematics. Like many other extremely fundamental mathematical
concepts (such as "point" or "number"), sets are difficult to precisely define, and we're not going to try
to be precise here.

Roughly speaking, a set is a collection of objects. The objects can be essentially anything: numbers,
functions, other sets, any combination of these, or nothing at all. The order of the objects in the set
is unimportant. All that matters is what objects are in the set. There might only be a finite number
of objects in the set (meaning basically that we could count them if we liked), in which case the set is
called (big surprise) a finite set. Otherwise we call it an infinite set. The objects in the set are called the
elements or members of the set.

There are two basic ways that we can describe a set. The first is to simpiy list its elements. For
example: 

A = e,9,221.
This is a set with three elements, namely 2, 9, a¡d 22. This is the most basic way to define or describe
a set: We list the elements inside of curly braces, and separate the different elements by commas. As
we said above, the order of the elements doesn't matter, so A = 19,22,21 is exactly the same set as

A= 12,9,22}. Also, each eiement can only be in the set once, soforexampleB = {3,6,3} isnotalegalset
(or, altematively, we can think of the second "3" in {3, 6, 3} as being redundant and write {3,6,31 = {3, 6}).

Sometimes it's impractical to list a big set, so we use ellipses if the pattern of the elements i¡ the set
is clea¡. For example, we feel pretty safe describing a set as 11,,2,3, . . . ,99,100) and knowing that this is
the set of the first 100 posiüve integers.

If a set is infinite, then we obviously have no hope of being able to list all the elements, since such
a list would go on forever! But if it is clear which elements are in the se! then we can list the elements
using ellipses. For example, the set of al1 positive integers can be written as {1,,2,3, . . .1, because the
pattem is clear. As another example, we can be pretty sure that {1, 2 ,4,8,16,32, . . .1, without any further
descriptiory is the set of all noruregative powers of 2. Be carefuI though: you should only do this if your
pattem is absolutely clear. Listing a set as Í1,,2,4, . . .l is pretty ambiguous: is it the set of all nonnegative
powers of 2, or the set of all positive integers not divisible by 3, or something else that we didn't think
of? It's not at all clear, so we need more sarnple elements to make the pattem clear, or some words
describing the set, or we can define the set via the properties of its elements, as we're about to see.

Aside from listing the elements, the other basic way to describe a set is to provide a property that
precisely defines the elements of the set. For example:

B = {x I x is an integer}.

In this example, the set B consists of all the integers. Some people use a colon (:) instead of the vertical
bar (l); in either case, you should read the symbol as "such that." For example, we would read our set B
above as "the set of all.r such that ¡ is an integer." Another corunon example is an interval on the real
line; for example,

{r I x is a realnumber and 2 < r < 3}

is the interval of all real numbers that are greater than 2 and less than or equal to 3. One of the maior
strengths of this way of describing a set is that we can use this even if we don't know explicitly what
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CHA,PTER 2. SETS AND LOGIC

we r¡se the notation A c B,to 
Íen-oje 

th_at A is a proper subset of B. (This is very sim ar to thenotatioris < for "less than" and,< 
foJ 

"te¡s than or equar-to": z < and3 < 4and42 4,bttt 4 *4.)Another way to think of this is that á c B means that A is a subset of B, but there is some element of Bthat is not in á. For example, ]1.,2,31 c {L,2,2,41because 4 is not in {1,2,3}.

a.¡

Let's practice with some basic exercises involving elements and subsets:

Problem 2.1: Consider thá fo[t*i"g sets,

A=f1,2,3,4,5]¡, B=l2,z,4L c=lz,l4,5ll.
(a) IsA cA? IsAcA?
(b) IsB cA?IsBcA?
(c) IsCcA?lsCcA?
(d) Is4eB?ls4eC?
(e) List all of the subsets of B. How many are there?

However, in this book, we will always use A c B to mean that á is
a subset of B, possibly equal, and use A c B to mean that á is a proper
subset of B.

The concepts and notarions can get áEiiiánfusing, ;a-iiáG" ¿ittle i

bit of practice to use them properly. For example]if A = t1,2,g1, the; j

it is correct to say that 1 is an element of A ur.d thut {1} is a subset of i

,4. ln notation, we would say

1e,4 and {1} cá. 
i

11 ',1'- 4-":_:"",_tryI¡:1!.I '" 31 
ele111 0r A 

i

WARNINGf!

WARNING!!

(b)

(c)

(a) The elements of Aa¡e 1.,2,3,4,andb. Arl of these elements are elements o f A,soAe A. However,á = á, so A is not a proper subse t of A. Therefore, A Í. A.
All of the elements of B are also elements of A, so B c A. Further, Acontains elements (namely, 1and 5) that are not in B, so B is a proper subset of á ; that is, B c A.
One of the elements of C is {4,5}. This is not an element of z4 (it is a subset of A, which is not thesame thing) . So C ( A and by the same reason ng C É. A.

(d) 4 is an element of B, so 4 e B. However, 4 is not an element of c. The set C has two elements, thenumber 3 and the set l4,Sl. So 4 é C.

Solution for Problem 2.1:

\
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CHAPTEB 2. SETS AND LOGIC

Sidenote: Some special sets

I Some sets are so corrnon that they have special names. (We've alreadyt 
"""n 

orr" such set, namely 0.) Some others are:

o Z, the set of integers

o Q, the set of rational numbe¡s

o JR, the set of real numbers

¡ C, the set of complex numbers

Note that Z c Q c [t c C. (These sets are usually written, as they are here,
in a font called "blackboard boId," which consists of regular capital letters

2.2.1 ls 0 - {0}? $/hy or why not?

2.2.2 For each part, determine if the statement is true or false, and explain why or why not.

(a) 3 e {1.,3,5,91

(b) 12,6l|= {6,2,21

(c) [s[ e {3,5, e}

(d) a e {{a}}

(e) 0 c {r,z,el

@ 0 € {4,F.1,821

(g) {r lris an even integer} c Z

2.2.3 Explain wh.y A e A for any set ,4 .

2.2.4 Explarnwhy lf Ae B andB cA,thenA = B.

2.2.5 \s the subset relationship transitirse? In other words, if A c B and B e C, can we conclude that
A c C? \ /hy or why not? How about for proper subsets?

2.2.6 Suppose that B is a set such that B c 0. I4rhat can we conclude about B?

2.2.7 Explatn why it is true ihat if A and B are finite sets and A c B, then #(á) < #(B). ü/hat does it
mean if A e B and #(á) = #(B)? lf A and B are finite sets such that A c B, what can we conclude about
#(A) and #(B)?

2.2.8 Explain why it is impossible for two sets A and B simulta¡eously to satisfy A cB ard B cA.

2.2.9* What is Pg@»? Hints: 145

2.2.10* Prove that if S is a {inite set and #(S) = n, th.en #(P(S)) = 2". Hints.31,6,276
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CHAPTEB 2. SETS AND LOGIC

A special case of u¡rion and intersection is shown in the following problem.

Problem 2.4: Suppose A and B are sets such that,4 e B.

(a) lÁIhat is A U B?

(b) l,Vhat is A n B?

Solution for Problem 2.4:

(a) If A c B, then every element of A is also an element of B. This means that any element in A or B
must be in B. Therefore, AU B C B. On the other hand, every element of B is also an element of
A U B,so B c AU B. Hence,A U B = B.

(b) Any element in á and B must be in A, so á ñ B c á. On the other hand, every element of áisalso
an element of B, and thus also an element of A O B, so A eA ñ B. Therefore, A nB = A.

Tl

In order to show that two sets á and B are equal, we have to show that
every element of A is also an element of B, and we have to show that
every element of B is also an element of A.

If we only do one of these but not both, all we're showing is that one
set is a subset of the other. For example, if we show that every element
of A is also an element of B, then we've shown thatA e B. In order to
show that they're equal, we have to show the reverse as well.

It is useful to have a word describing when two sets have no elements in common:

We can visualize the operations of union and intersection using Venn diagrams. In particular, if á
are B are sets, represented by circles in a Verur diagram, then A U B is the region inside of the two circles
combined, and A n B is the region inside of both circles:

These two operations-union and intersection-are distributive with respect to each other. We'1i
prove one of the distributive laws and leave the other as an exercise.

portant:v

AUB AnB
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CHAPTER 2. SETS AND LOGIC

on the other hand, the diagrams berow show -4 ñ B shaded in the first picture, and ,4 n C shadedin the second picture. when we, combine the pictures, the shaded ."glo.r l, it 
"."gion 

ir,ut i" i. ut teurtone of üe inte¡sections, so the shaded region in the right picture is 1Á n A¡ v 6 iCl.

AñB AnC

This is visual evidence that
An(BuC)=(A.tB)u(ánq.

Note.that using Venlr diagrams in this way is not a proof, but it does allow us to see visually why theidentity in question is true.

There are a couple more set-theory concepts that come up occasionally. one is the idea of a universal
set, which is a set that contains all possible elements in a given problem ár situation. For example, in anintroductory algebra setting, the universal set might be tte set IR of real numbers, so that, for example,

lxlx2+7=Ol=A,
because it is assumed that we are only considering elements r e lll. on the other hand, if the universal
set were the complex numbers, then

lxlx2 +1= 0l = {,,-4.
Note that the universal set may vary from problem to problem, and it is not always explicitly stated.

U

is unclear' If the universal set is IR, then this set is empty, but if the u¡iversal set is C, then this set is
{1, -l} It's usually much better to be upfront with o* u.rí.,ptio.r.. For example, if we write

{relRlx2+1=0},
then it's clear that this is the empty set.

In a Venn Diagram, often a universal set is denoted by a large box
surrounding the diagram, as shown to the right. ln any context in which
we have a universal set, we have the implicit urrr*piio., that evety set
under discussion is automatically a subset of the unive¡sal set. In other
words, we're not allowed to go ,,outside the box,, of the universal set.

Generally, we prefer not to use universal sets u¡less the context is ab_
solutely clear. For example, as discussed above, without a clear universal
set, the set

{rl12+1=0}

(ánB)u(ánc)
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CHAPTER 2. SETS AND LOGIC

should use your common sense. (Philosophers, maüematicians, and logicians have been debating for
centuries about the meaning of "truth," and we're certainly not going to enter that debate here.)

Some examples of statements are:

Paris is the capital of France. (This is a true statement.)

New York is the capital of the United States. (This is a false statement.)

0 = 1. (False.)

3 < 8. (True.)

All even integers are divisible by 2. (True. The word "all" means that this is an example of a
quantified statement, which we'll talk more about in the next section of the chapter.)

There exists an integer whose square is 7. (False. The phrase "there exists" is another example of
a quantified statement.)

There exists a real number whose square is 7. (True.)

Some examples of things that are nof statements are:

Is Madrid the capital of Spain? (This is a questio& not a statement.)

Pizza ís good. (This is an opinion, not a statement of fact.)

o Kaflooy is the capital of Garglbox. (This is iust nonsense; it's not true nor false since the words
have no meaning.)

2 + 9. (This is a value.)

There exists a number whose square is 7. (This is not a statement urless we more carefully define
what "number" means. If "number" means "integer," then it's false. If "number" means',real
number," then it's true.)

¡ This statement is false. (This carurot be true or false without contradicting itself, so it is not a
statement.)

There are three basic operations that we can perform on statements to get new statements, sometirnes
called compound statements.

The negation of a statement p, denoted -p, is the statement that is true when p is false and is false
when p is true. Stated more simply, -p is the opposite of p. For example, if p is the statement
"Paris is the capital of France," thsn -p is the statement "Paris is not the capital of France."

The conjunction of two statements p and 4, denoted p A4, is the stafement "p and q". For example,
if p is "Paris is the capital of France" and 4 is "Madrid is the capital of Spa1n," therL p a 4 is "paris
is the capital of France and Madrid is the capital of Spain." The statement p 

^ 
17 is tuue provided

that both p is true and 4 is true; otherwise p A 4 is false.
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.But to formally establish this, we can resort to a truth table. The statement p can itself be either true
or fálse. so we make a table listing the possible values of p, and the resulting values of ,,p and (not p).,,

As we can see from the table, any input value of p makes the statement false. ¡
Here is a slightly more complicated example. We'l1 write it using symbols because it,s a bit compli-

cated to wdte it in words.

solution for Problem 2.7: This.one js a bit too complicated for us to use ,,common 
sense,,, so let,s go

shaight to the truth table. we list the truth table foi a1l possible values of p and ,7. Note áat we show
the truth value of a1l the intermediate terms, to make thé results clear_

Note that the 3rd and last columns are identical, proving the assertion. tr
By the way, the statement of problem 2.7 is known as one of DeMorgan,s Laws. IrL English, wewould say that "p or q" is equivarent to the statement "not((not p) and (not 4)).,, Think abou! in Engrish,

why that makes sense. You'l1 get a chance to prove a version ol another o.rá of oeMorgan;s Laws in the
exercises.

The other very important operation that we use to make compound statements out of simple

CHAPTER 2. SETS AND LOGIC

statements is that of implication. This is the operation given by th-e statement ,,rf p, then4,, and is

*l"Y.ll t - f: W," may.also.read p - q as;p impheí q.,, This is a ,."" ,rr*á*"íi""r";'p ;;;;
lll^1^r: 3,'_"1 n;ltricl cas9,ll is false. For 

"ru*p,", 
if p is the statement ,,4 is u. oaa .r*¡1.1,';'; ,;

the statement "10 is prime," then p + q is the státement "If 4 is an odd number, then 10 is prime.,, This
rs an example of a true statement although some people find this a bit counterintuitive, and draw thefollowing incorrect conclusion:

Bbgus Solution: 4 is an even n umber, not an odd number, and 10 is composite, not
úD prime, so the statement ,.[f 4 is an odd number, then l0 ii prime,, is

-__ - a false statement. '

,, J.;;-;.*;-, "*" "**;;. "" odd ru,mber, then 10 is on-";,* o,".If the part following the "If " in an implication is false, then the implication is automatically true. For
example, "If pigs can fly, then I am a b rionaire" is a true statement: pigs can,t fly, so we can put any
statement we like after the "then" and get a true statement 1ever, thorgh] srdly, I am not a bi1liánaire).

Problem 2.7: Prove that, for any statemeniffid 4, the statemen ts pv q and -((-p) r, (-4))are either
both true or both false.
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OIAPTER 2, SETS AND LOGIC

Important: A very common logical mistake that students often make when working
proof-style problems is to prove the conaerse of what the problem is
asking. As we have seen, the converse of an implication can be true
even if the original implication is false.

The other common operation that we can do to an implication is to take its contrapositive.

Definition: The contrapositive of the statement p = 4 is the statement -4 :+ -p.

In other words, we swap the "if" and "then" parts and take the negation of both.

In contrast to the converse, the contrapositive of an implication has the same truth value as the
original implication. For example, the statement "If a man lives in Los Angeles, then he lives in
California" is true, and its contrapositive "If a man does not live in California, then he does not live in
Los Angeles" is also true. We can also see this in a truth table:

Sometimes in proof-style problems, it's easier to prove the contrapositive
of what the problem is asking than it is to prove the original problem
statement. As we've just seen, this is logically valid: an implication is
logically equivalent to its contrapositive.

.'..'.-

2.4.1 \A4rich of the following are statements? (For any that are not statements, briefly explain why
not.)

(a) 2 is an odd number.

(b) The author of this book has brown eyes.

(c) Infinity is really cool.

(d) Ceorge Washington was the first president of the United States if and only if ((a touchdown in
football is worth 11 points) and (8 + Sz = 2a + 1)).

(e) Can you drive a car?

(f) x2+x-3
2.4.2 Prove thaf "p or (not p)" is always true for any statement p.

2.4.3 Prove that, for any statements p and 4, the statements -(p n q) and (-p) v (-4) are either both true
or both false. (This is another of DeMorgan's Laws.)

Concept:
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o The universal quantifier is the equivalent of the words " ,or a.|" or "every.,, It is sometimes
denoted by an upside-down "N',ltke so: v. For example, we can write the (ialse) statement,,All
integers are divisible by 2" as

Yx e Z, Zlx.

ln English, we would read this as "For al1 elements;r of the set of integers, 2 divides x.,, This
means, naturally, that 2 divides ezrery element of Z, tine integers. Of course, this is a false statement,
but it is a legal statement nonetheless.

The existential quantifier is the equivalent of the words "there exists.,, It is sometimes denoted
by a backwards "E",like so: 3. For example, we can write the statement "There exists an integer
¡such thatx2 - 5x+b = 0" as 

* e z, t2- 5x-o = 0.

In English, this reads "There exists an element ¡ in the set of integers such that x2 - sx + 6 = 0.,,
This means that there is sonze element of Z that makes the statement true.

Here is the general description of the two quantifiers:

If S is a set and p(z) is a statement that depends on an element x of S, then:

. Yx e S,p(x) means that p(;r) is true for a/l elements r of S.

o h e S,p(x) means that p(r) is true for at least one element x of S.

The symbols are not that important, and you won't see them th¿t often.
The meaning of fhe quantifiers is what's important. Itis very important to
understand the difference between a statement being true for ali elements
of a set, and merely thaf there exisfs an element of the set that makes the
statement true.

For example, the statement "All triangles are equilateral" is clearly fa1se. But the statement ,,There
exists an equilateral triangle" is clearly true.

We can combine quantifiers in the same statement; for example, the statement:

For every positive real number x, there exists a positive real number y such that x = y2.

This statement can be written symbolically as

Vr e IR, x > 0 =+ (3y e IR, (/ > 0),r (r = yr¡¡

I said that the statement caÍ be written symbolically, but we almost never do so, because as you can see,
it's pretty unreadable. lust use English.

Concept:

Important:

V

Note that the order of quantifiers is important! The following is wrong:

Bogus solution: There exists some positive real num ber y such tha t for every positive

üD real number x. we h¿ve x = y2.
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CHAPTER 2. SETS AND LOGIC

2.6 Summary

In this section, we discussed some of the basic building blocks of higher mathematics: sets and logic.
The point of this chapter is not to study these topics v"ery deeply in"and of themselves, but rather to
make sure that we have the necessary tools to construct valid pioofs. The synbolism in this chapter is
not really that important.

h Normally, we do not write the logical syrnbols. We p.efei to "i" *o.ar,
because_words convey the meaning of our logical arguments better than

Importanv the symbols do.

- What's important is to understand the concepts that unde¡lie set theory and basic logic. Some of
these concepts are:

) \ /hat sets are and how they can be described

) How sets are related to their subsets

L The empty set 0

L The power set P(5) of a set S

How to combine sets by union and intersection

The basics of truth and logic: statements are either true or false

The meanings of " and" , " or " , and ,,not ,

The meaning of an "if. . . then. . . ,, inference

The converse and contrapositive of an inference

The meanings of, and difference between, ,,for all,,and ,,there exists,,

2.8 Lei

s = l.1,2,3,...,30]l,
D = {n e S I n > 0 and the units digit of n is 9},
P = fp e S I p is a positive prime|,
U=[ne Sln=1 (mod 4)] = {n e S l1k e Z, n = 4k + 1¡,
V=ln€Sln=J (mod a)) = {ne SlakeZ,n=4k+3l1,
W =lne Sln=2 (mod  )) ={n e S llke Z,n=4k+2l,.

46
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CHAPTER 2. SETS AND LOGIC

(e) Every mathematician has taken a photo of a snob.

(i-) Everyone who has been to Mars is a snob, except for scientists.

(g) The oniy people who have taken a photo of everyone who has d¡unk a coffee are scientists.

2.17 Let p(x) be a statement that depends on the element ¡.

(a) 'tA4rat can you say about the truth of the statement "V¡ e A, p@)"?

@) \44rat can you say about the truth of the statement ":l.r e A, p@)"?

2.18 Show that for any sets A, B, and C, we have C e A if and oniy if (A n B) u C = A n (B U C).

2.19 A set S of real numbers is called an interaal if for allx,y e S,wehave

{zeflRlx<z<ylcS.
For example, the sets [0,1], (-10,5), and [3, oo) are all intervals.

(a) Is the union of two intervals always an interval?

@) Is the intersection of two intervals always an interval?

2.20 The exclusive or operation, denoted by @, is defined so that p O q is true if and only if p is true or
¿i is true, but not both.

(a) Show that for any statements p, q, ar.d /, the statements (p @ q) @ r ar.d p @ (4 O r) are equivalent.

(b) Show thai for any statements p, q, andr,the sfatements p A (4 o r) and (p nq)e(p.l r) are equivalent.

2.21 \A4rich of the following statements are equivalent to -(Vr € S, ay e T, p(x, y))? (More than one
may be equivalent.)

(i) Vr e S, )y eT,-p(x,y).

(ii) :k e S,Yy eT,-p(x,y).

(iij) Vx e S, -(1y € T, p(x, y\).

(iv) i¡ e S, -(1y cT,p(x,y)).

(v) Jx e S,-(vy eT,pk,y\).

2.22 The symmetric difference of two sets ,4 and B is defined as (A \ B) u (B \ A), and is denoted by
AaB.

(a) Letá = 11,2,3,4,7,8]r,B = 12,4,5,7,9,1,01 andC = i.3,6,7,8,91. FindAeB, (AeB)eC,BeC,and
Ae(BeC).

(b) Use part (a) of Problem 2.20 to show that (,4 e B) e C = A e (B e C) for all sets A, B, and C.

(c) \Arhat identity of set theory does part (b) of Problem 2.20 give rise to?
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CHAPTER 3. A PIECE OF PIE

(a) How many 6-digit numbers start with an even digit?

(b) How many 6-digit numbers end with an even digit?

Suppose that we have two sets A and B. We'd like to count the number of elements in their union
A U B, which is to say, we want to count the elements that are in,4 or B.

\4rhat's wrong with the following argument?

The number of elements in A U B is the number of elements in A
plus the number of elements in B. Or, as an equation,

#(Au B) = #(á) + #(B).

This argument doesn't take into account the
a simple example, suppose that A = 11,2,31 and

Bogus Solution:fl

#(A]B)=S but

fact that some elements
B = ¡3,4,5]¡. Then,4 U B

#(A)+#(B)=3+3=6.

Let's see a basic example of this phenomenon in a problem setting.

Problem 3.1: If 20 girls are on my school's soccer team, 25 girls are on my school's hockey team, and
11 girls play both sports, then how many girls play soccer or hockey?

Solution for Problem i.1: Abogus solution to this would be:

There are 20 girls on the soccer team and 25 girls on the hockey
team, so there are 20 + 25 = 45 girls on either team.

This doesn't work since there are 11 girls on both teams. If we simply count 20 + 25, we've counted
these 11 girls twice, once on the soccer team and once on the hockey team.

Therefore, we must subtract these girls from our count, since we've counted them twice and we
only want to count them once.

So the number of girls playing soccer or hockey is 20 + 25 - 1l = 34.

We can also see this by using a Venn Diagram.

might be in both sets. To take

= 11,2,3,4,511, and we see that
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CHAPTER 3. A PIECE OF PIE

Solution for Problem 3.2: We can write PIE for 2 sets as a formula:

Going back to our first example, Problem 3.1, we can write this in words as

Number of girls playing soccer or hockey = Number of girls playing soccer
+ Number of girls playing hockey
- Number of girls playing both soccer and hockey.

¡
Problem 3.3: At my school, the only foreign languages offered are Spanish and French, and there
are 40 students enrolied in at least one of the classes. If 28 students are in the Spanish class and 23
students are in the French class, then how many students are taking both languages?

Solution for Problem 3.3: This problem is slightly different from Problem 3.1. Here, we're told not only
the sizes of the two sets, but also the size of their union; we want to find the size of their intersection.

Let ¡ be the number of students in both language classes. (Note that we're using the very common
problem solving technique of letting a variable denote what we want to find.) Then PIE tells us that

40=28+23-x,
which we can solve to get x = 11.

As a quick check, we can draw the Venn Diagram for this problem, with all of the numbers filled in:

It is easy to verify from the diagram that there are 28 students in Spanislg 23 students in French, and
40 students total, and thus there are 11 students in both languages. n

Problems 3.1 and 3.3 were Pretty transparent-it was clear that we needed to count the elements
in two overlapping sets, and that PIE was the tool to use. Most PIE problems are not quite so simply
stated. Here's an example:

Let's see the general statement of PIE for counting the number of elements in the union of two sets:

P¡oblem 3.2: IÍ A and B are sets, write an expression for the number of elements inA U B in terms
of the number of elements in A, B , and A ñ B.

#(Au B) = #(A) + #(B) - #(A ñ B),

where #(S) denotes the number of elements in set S.
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CHAPTER 3. A PIECE OF PIE

3.2.2 How many 10-digit binary numbers start with 2 ones or end with 2 ones (or both)?

3.2.3 Suppose that 80% of U.S. households own a DVD player and that 70% of U.S. households own a

computer. whut ir the .u.rge of possible percentages of U.s. households that own both? Hints: 25

3.2.4 How many positive integers less than 100,000 are neither squares nor cubes? Hints: 62

3.2.5 Of the 85 teachers at my schooi, 25 have no children, 50 have a son, and 45 have a daughter. How
many have a son and a daughter?

3.2.6 How many 9-digit numbers have the property that the product of their first and last digits is

even?

2.2.7* A school with 100 students offers French and Spanish as its language courses. Twice as many

students are in the French class as the Spanish class. Three times as many students are in both classes

as are in neither class. The number of students in both classes is even, and fewer than 10 students are

in neither c1ass. How many students are taking Spanish? Hints: 309, 141

3.3 PIE With 3 Properties

We've seen how to use PIE to count the number of elements in the union of two sets. It seems

reasonable to ask whether PIE can be used to count the number of elements in the union of a bunch of
sets. We'1l explore this general question in Section 3.5, but in this section we'l1 look at the example of

counting elements that are in one or more of three different sets. Let's start with a concrete example.

problem 3.5: Now my school offers 3 foreign languages: Spanish, French, aná Cliinese. There ¿re

57 students enrolled in at least one of the classes. If 29 are in the Spanish class, 34 are in the French

class, 33 are in the Chinese class, 15 are taking both French and Spanish, 16 are taking both French

and Chinese, and 12 are taking both Spanish and Chinese, then how many students are taking all

three languages?

Solution for Problem 3.5: Suppose that we try to count the number of students in at least one of the

d4-
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CHAPTER 3. A PIECE OF PIE

Solutbn for Problem 3.6: We start with just summing the elements in the three sets:

#(,4)+#(B)+#(C).

However, this sum overcounts elements that appear in more than one set. We can try to correct for this
by subtracting the number of elements in each pair of sets:

#(A) +#(B) +#(c) -#(A n B) - #(A n C) - #(B n c).

If an element is in exactly two sets, it will now be counted exactiy once. For example, if ¡ is in A and B,

then x wil1be counted once in #(A) and once in #(B), but r will also be subtracted once in #(A n B). So x
will be added twice and subtracted once, which means that ¡ will be counted one time overal1.

Now we look at those elements in all three sets. These elements are added three times when we
count the individual sets, but they are also subtracted three times when we subtract the pairs. So these
elements have not yet been couated at all! We finish our count by adding them back in.

Our conclusion:

If A, B, C are finite sets, then

#(áuBuC) = #(A)+#(B) +#(C) -#(AñB) -#(AnC)-#(BnC)+#(AnBnC).

tr

Let's see an application of the 3-set PIE process.

Problem 3.7: How many positive integers less than 1000 are divisible by neither 2,3,rLor 5?

Solution for Problem 3.7: There seems to be no good direct way to count this, so we think about trying to
count the opposite: how many positive integers less than 1000 are divisible by at least one of 2, 3, or 5?

The "at least" in this question should make us think about PIE. Our three sets are:

A = "Positive integers less than 1000 that are divisibleby 2"
B = "Positive integers less than 1000 that a¡e divisible by 3"
C = "Positive integers less than 1000 that are divisible by 5"

Our goal is to compute #(A u B U C). This means PIE.

IÁ/hat's the easiest way to compute the number of positive integers less than 1000 that are divisible
by n? We simply take the largest integer less than 1000/n.

So, using our notation above:

#(A) = (largest integer less than 100012) = 499,

#(B) = (iargest integer less than 1000/3) = 333,

#(C) = (largest integer less than 1000/5) = 199.

Important:]v
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CHAPTER 3. A PIECE OF PIE

3.3.2 How many 3-letter words (where a "word" is any string of 3 letters) have at least one A? (Solve

using PIE.)

3.3.3 Vemonia High School has 85 senior boys, each of whom plays on at least one of the school's three

boys varsity sports teams: football, baseball, and lacrosse. It so happens that 74 are on the football team;

26 are on tÁe baseball team; 17 are on both the football and lacrosse teams; 18 are on both the baseball

and football teams; and 13 are on both the baseball and lacrosse teams. Compute the number of senior

boys playing ai1 three sports, given that twice this number are membets of the lacrosse team. (Source:

HMMT)

3.3.4 Four coins are flipped one after the other. \Alhat's the probability of getting two consecutive tails?

3.3.5* A new ciass of 180 dogs has enrolled in the GoodDog school from Problem 3.3.1. We have the

following facts:

An equal number of dogs have each of the ribbons.

An equal number of dogs have each pair of ribbons.

15 dogs have al1 three ribbons.

A1l dogs have at least one ribbon.

The number of dogs with exactly one ribbon equals twice the number of dogs with more than one

ribbon.

How many dogs have blue ribbons? Hints: 102, 119

3.3.6* How many 6-digit numbers, written in decimal notation, have at least one 1, one2, and one 3

among its digits? Hirrlsz 96,290

3.4 Counting Problems With PIE

(a)

(b)
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:-APTER 3, A PIECE OF PIE

Thus, our calculation is

180 180 180 180 _ 180 _14 *1S =90+60+36_30 _18_12+6=732.
2+ 3 * s - o 10 15 30

Since there are 180 total positive integers less than or equal to 180, and 132 of them are not relatively

prime to 180, that leaves 180 - 132 = 48 that are relatively p me to 180' tr

sidenote: civen any positive integer n, tl:ere is a {airly easy formula for computing

\ the numbei of positive integers less than or equal to ,4 that are relatively
d prime to n. If pt,pz, . . - ,p*are the distinct prime divisors of n, then

otrr=,(r-;)(,--t) (,;)
is the number of positive integers less than r that are reiatively prime to tr.

For example, as we already have computed in Problem 3'8,

Q(180) = ,*('-;X, - i)(, - i)= ,* I Z t= *
This is known as the Euler phi function (or totient function), and has

many important applications in number theory, the most well-known of

which is Euler's Theorem, which states that

af{n):1 1lllo¿ r¡

for all a that are relatively prime to n. You can prove the formula for @(n)

using PIE: try it for yourself in the Challenge Problems'

problem 3.9: The sanders family has 3 boys and 3 girls. ln how many ways can the 6 children be

seated in a row of 6 chairs, so that the boys aren't al"l seated togethc ánd tire girls aren't aI1 seated .

together?

solution for Problem j.9: we can do this problem in two stePs. First, we determine how many ways

there ará to assign the 6 chairs by gender: 3 to boys and 3 to girls. Second, we count the ways to place

the boys and the girls into their assigned chairs.

It seems like messy casework to try to count directly the number of legal configurations for the boys

and gir1s, so we think instead of couniing the il1egal configurations: those configurations where 3 boys

or 3 girls are all consecutive.

Concept: Messy casework often means that there is a simpler solution using com-

C-É plementary counting and PIE.

with no restriction, there are (!) = z0 ways to assign the seats' since we must choose 3 of them for

the boys to occupy (the girls will ihen occupy the other 3). Now we need to determine how many of

these 20 configurations are illegal.
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we have to subtract off configurations in which two ranks are grouped together.

We count configurations with both the Jacks and Queens together as follows: think of arranging
a block of J's, a block of Q's, and four K's into 6 slots. There are 6 choices for where to place the

block of J's, then 5 choices for where to place the block of Q's; the K's will go in the remaining
empty slots. Therefore, there are 6 x 5 = 30 configurations with the J's and Q's together. Similarly,
there are 30 configurations with the J's and K's together, and 30 configurations with the Q's and

K's together.

Finally, we count configurations with all three ranks together: we have a block off's, a block o{

Q's, and a block of K's. Al1 we need to choose is in what order they appear. Therefore, there are

3! = 6 configurations with all three ranks together, which must be added back to our count.

Thus, there are a total of
3(630)-3(30) +6=1806

illegal configurations, and hence 34650 - 1806 = 328tt4 legal configurations. Final1y, our probability
is ^-32!41 = --4- = 91.8%.

Similarly to part (a), we don't have to worry about the ranks of the cards here. All we have to do
is keep track of the suits.

We proceed in a manner similar to part (a). We start by noting that there *" (?0€) = 369,600

possible configurations: we choose 3 of the 12 spaces for the ls, then 3 of the 9 remaining spaces

for the 9s, then 3 of the remaining 6 spaces for the os, then the *s go in the final 3 spaces.

To count the number of arrangements with all of the as together, we note that there are 10

choices for where the as go, then there are (lxll -uyt to allocate the remaining suits. So there

are tO(!)(!) = 16800 configurations with the 3 as together. By symmetry, there are also 16800

configurations for each of the other three suits being together.

Next, we look at configurations with pairs of suits together. For example, if we want all of the

as together and all of the vs together, there are 8 x 7 x (3) = 1120 configurations (thinking of the rs
as a block and the 9s as a block). There are this many confiSurations for each of the (1) = 6 Palrs of
suits.

Next, we count configurations with 3 suits together. For example, if we want all of the ls, vs,

and os to be together, there are 6 x 5 x 4 = 120 configurations. There are 120 configurations for each

of the 4 choices of 3 suits to keep together.

So far, we have
4(16800) - 6(1.120) + 4(120) = 60960

configurations counted. Is this count correct? Is it too high? Too low?

We know, based on our previous work with PIE, that this accurately courts all configurations
witl. l, 2, or 3 suits together. But it doesn't correctly count the configurations with all 4 suits

together. These configurations are counted 4 times in the first term, subtracted 6 times in the

second term, then added back 4 times in the third term, for a net total of being counted twice.

Therefore, we need to subtract them once to get them properly counted once overa1l.

There are 4l = 24 configurations with all four suits togeiher (we merely have to choose in what
order the four suits appear), so our complete count of configurations with at least one suit together
is 60960 - 24 = 60936.
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people. There are also 2 ways to seat the people within each pair, so there are a total of 22 . 3l = 24ways
to seat all the people with two specified pairs together. There are 3 choices of two pairs, so we have to
add 3(24) back to our running count.

Finally, if we wish to seat all three pairs togethet there are 2 ways to arrange the pairs, and 2 ways
to arrange the people within each pair, for a total of23 .2 = 16 ways to seat all the people with all three
pairs together.

Therefore, the final answer is:

720 - 3(48) + 3(24) - t6 = 32.

Problem 3.12: How many 6-digit binary numbers (numbers with 0's and 1's as digits) have a string
of three consecutive 1's appearing in them? (For example, 101110 and 111100 both have a string of
three consecutive 1's, but 100110 doesn't).

Solution t'or Problem 3.12: Therearefourpossiblepositionsforarunofthreeones:111???,?111??,??111?,
and ???111.

We can save ourselves a bit of work by noticing that everything of the form ?111?? must have a 1

in the first slot as well (since every 6-digit number begins with a 1), so everything of üe form ?11L?? is
included in those numbers of the form 111???. So we really have only three types of 6-digit numbers to
worry about: 1.1.1??? ,1?11.1? , and 1??111.

There are 8 numbers of the form 111???,4 numbers o{ the form 1?111?, and 4 numbers of the form
1??111 (in each case, there are 2 choices for a digit to replace each "?").

Now we count the numbers that fal1 into more than one of the above categories. There are 2 numbers
of the form 11L1-1?,l number of the form 111111, and 2 nurnbers of the from 1?1111.

Finally, there is one number of all three forms, namely 111111.

Sothenumberof6-digitnumberswithatleastonerunofthreel,'sis8+4+4-2-1,-2+1,=12.

It is also pretty easy to list them: 100111, 101110, 101111, 110111, and all 8 numbers of the form
L11.??? . E

r,ffi«'
. 3.4.1 In how mar-ry ways can we arange the letters of the word STRATA so that the two ¡r s are

nonconsecutive and the two T's are also nonconsecutive?

. 3.4.2 How many positive integers less than 211 are relatively prime to 126?

. 3.4.3 How many positive integers less than 1000 are relatively prime to both 10 and 12?

. 3.4.4 3 fans each from Austin High School, Butler High School, and Central High School are seated in
a row of 9 seats. In how many ways can we seat the fans if no tluee fans from the same school are all
three seated consecutively?
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Problem 3.14: Let At, Az,
At L) AzU "'U An.

be n sets. Find an expression for the number of elements of

Solution for Problem 3.1,4: Based onwhat we've done before, we exPect that we should successively add

and subtract the sizes of the intersections of more and more sets. specifically, we should 8et:

#(A1u A2u "'u A,) = #(A) + #(A) + "' + #(An)

- (#(A1 ñ A2) + #(,{1 n A3) + . . . + #(A"-1r' A))
+ (#(A1 o Azn A3) + "' + (An-z ñ An-t ñ An))

- (#(A1 ct A2nA3 o A4) + ... )

':
+ (-1)'+1#(,{1 ñAzñ...ñ A).

How can we prove that this is indeed the correct formula?

As always, the goal of PIE is to make sure that every element is counted once and only once.

Therefore, we can take arr arbitrary element of the union of the sets, and count how many times it is
counted in the above expression. We do this by considering the number of individual sets that our

element is a member of. In palticulaf, suppose element r is in exactly k of the A¡'s, where 1 <k < n.

Let's count the number of terms in which r gets counted.

x appears in k of the sets, so it's counted +k times in the first line of the formula.

x appears in (!) of the intersections of pairs of sets, so it's counted -(!) times in the second line of the

formula.

r appears in (Í) of the intersections of triples of sets, so it's counted +(!) times in the third line of the

formula.

This pattern continues, until we get to the kü line of the formula, in which r aPPears in only one

intersection of k sets, so it's counted (-1)t+1 dmes (it's counted +1 if k is odd, and -1. if k is even).

Thus l gets counted a total of

r-(i).(1)- .''r'
times. We need to prove that this quantity equals 1, meaning that our element x gets counted exactly

once.

Let's rewrite the above expression so that all the terms are binomial coefficients:

(f) 0.0_ .(_,r-,(l)

Only one of the binornial coefficients with top entry k is missing, namely (á). If we add and subtract

(f ) = t to the expression, then üings become clear:
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tr

'!., a\ s to seat the 10 people so that at least one pair of twins is together. Hence there are

,, -(?), ,,.(i),' u,-(i)r' ,,.(l),'or-(!)z' sr

\\'avs to seat them so that no pair of twins is together. This can be simplified by factoring out 5!:

5t(30240 -30240 + 13440 - 3360 + 480 - 32) = (120)(10528) = 1,263,360.

This may seem like a lot, but it's quite a bit less than 10! = 3,628,800. If we were to seat the twins
randomly, then the probability that no person is sitting next to his or her twin is

1 .263.3t'0 47
=_:q4Rna3,628,800 135

3.5.1 How many positive integers less than 529 are relatively prime to 462?

3.5.2 Yeechi has a deck of cards consisting of the 2 through 5 of hearts and the 2 through 5 of spades.
She deals two cards (at random) to each of four players. What is the probability that no player receives
a pair? (Source: Mandelbrot) Hints: 195

'3.5.3* Three Americans, three Canadians, three Spaniards, and three Russians are flying on a sma11
plane that consists of 6 rows of 2 seats each. In how many ways can they be seated, so that no two
people from the same country sit in the same row? Hints: 180

'3.5.4* Each square of a 3 x 3 grid of squares is painted black or white with equal probability. \AtLat
is the probability that the grid does not contain a 2 x 2 square that is entirely white? (Source: AIME)
Hints: 82, 314

3.6 Counting Items With More Than 1 of Something

Problem 3.16: My school now offers 3 new foreign languages: Arabic, Japanese, and Russian. There
are 50 students en¡olled in at least one of the classes. Suppose that 18 are taking both Arabic and
Japanese, 15 are taking both Arabic and Russian, 13 are taking both |apanese and Russian, and 7 are
taking a1i three languages. We wish to count how many students are taking at least two languages.
(a) Why is the answer ,?of 78 + 15 + 13 - 7?

(b) What is the answer?

Problem 3.17: lf A,B,and C are three sets, how canwe count the number of elements in at least two
of the sets?
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rrhich matches the number that we got from the Venn Diagram. n

As we saw in Problem 3.16, using PIE properly requires that we think abott what we're doing, and
not mindlessly add and subtract numbers.

Concept: Don't memorize a "fo¡mula" for PIE. Instead, think about how many times
each item is counted, and make sure that each item is counted once and
onlv once.

Let's look at the general case of the situation from Problem 3.16.

Problem 3.17: If A, B, aÁd C are tt'.áe iáii, ñ;; ¿;; ;; .;;i ihe number of elements in at least two
of the sets?

Solution for Problem 3.lT: t/y'e start by counting the number of elements in pairs of sets; that is,

#(AñB) + #(A n C) + #(B o C).

However, any element that is in all three sets is in al1 three of these pairs, and will thus be counted 3
times. Since we only want to count it once, we must subtuact twice the number of elements in a1l three
sets. So the number of elements in at least 2 sets is

#(.4n8)+#(¿nC)+#(BnC) - 2#(A oB 
^ 

C).

¡
Problem 3.18:
(a) How many positive integers less than 2000 are divisible by at least two of 2, 3, and 5?

(b) How many positive integers less than 2000 are divisible by exactly fwo of 2,3, and 5?

Solution for Problem 3.18:

(a) We can use the expression that we just found in Problem 3.17. The answer is

t1999t t 1999t t-1999 t t1999t
I i:=: I + | . I ¿ I .. I _ 

" 
I 

- 
I _ ?33 + 199 + 133 _ 2(66) = 533.L6I Llol L15 l -L3ol

(b) We simply need to subtract, from our answer to part (a), the number of elements that are divisible
by all three oÍ2,3, and 5. There *" ltf] = 66 of these, so the answer is 533 - 66 = 467.

D

We've done " atleasf 2." Let's see if we can do "at least 3."

Solution for Problem 3.19: As hopefuily you've come to expect by now, the phrase "at least" in the
problem statement is our signal that we want to think about using PIE.

Problem 3.19: Five standard 6-sided dice are rolled. \Arhat is the probability that at least 3 of them
show aE&
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CHAPTER 3. A PIECE OF PIE

If an element appears in exactly 6 sets, it is courted 6 times in (*), since there are (!) = O *uyt to

choose 5 of the 6 sets that the element appears in' Since we only want to count these elements once' we

need to subtract the sum of the 6-fo1d intersections 5 times:

^ ^ \ ,4/^..\ ¿^ .'\ . .. n .Á-\ + . . . +#(A.OAc n " nAv)) (**)

Once again, we will abbreviate this term with the notation

-s. I #(intersectjons of 6 sets).' 
, "t',^, 

'

Finally, we look at the elements that appear in atl 7_ sets. These elements appear in every term of

bothG)andG4,sotheyareaddeazrtimeslnl-¡andsubtracted5.T=35timesin(**);hencetheyhave
been counted a net 21 - 35 = -14 times. Since we want to count them exactly once, we need to add

them back 15 times.

So our "formula" is

#(elements in at least 5 sets) = f +littt"ttections of 5 sets)

21 terms

-5'I #(intersections of 6 sets)- /-¿
7 terms

+ 15 '#(intersection of 7 sets)'

3.6.1 How many positive integers less than or equal to 3150 have ai least three different prime factors

in common with 3150?

3.6.2 The four s ets A, B, C, and D satisfy

#(AnB) = 166, #(AnC) = 100, #(A(\D) =7L, #(B t-',c) = 66' #(B ñD) = 47', #(ct'D) =28'

#(.4 nB n c) = 33, #(,4 nB n D)=25, #(AñCr\D)=14' #(BnCñD) =9'
#(ánBnCnD)=4'

(a) How many elements beiong to at least two of the setsA' B'C'andD?

(b) How many elements belong to exactly two of the sets á' B ' C ' ar.d D?

3.6.3 Four standard 6-sided dice are rolled'

(a) \rfhat is the probability that at least 3 of them are E or greater?

(b) What is the probability that exactly 3 of them u'" E ot greater?

Hints: 65

-5 (#(A1 cl A2n " nA¿) +#(A1ñA2n'"nA7) +"'+#(A2oA¡ n " nAz))
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CHAPTER 3. A PIECE OF PIE

equally likely choices (each can be throwing at any of the other 6 people), and there are 7 people, rr-e
have 67 total possibilities.

Now we'd like to count the "successful" outcomes: those outcomes in which at least 2 people are
throwing balloons at each other. As we've seen many times before, the "at 1east,, is youi signal t..
consider either PIE or complementary counting. However, a quick look at the compláment-tryi¡i
to count those cases i¡ which no pair is throwing at each other-seems to lead to i calculation th¿:
deg,enerates into some really messy casework (try it and see for yourself if you don't believe me). S
we'11 try counting this directly, and for that we'll use pIE.

First, we count the number of outcomes in which any particular pair is throwing at each other. There
a¡e (l) = 21 pairs of people. Besides the pair throwing ut 

"u.fr 
otirer, the other ípeople each have ¡

choices each. So there are 21 . 65 total possibilities.

However, this overcounts those outcomes in which two or more pairs are throwing at each other. St-
we have to correct for this overcount. This is the point in the solutiron where it is móst likely that you
would make a mistake:

on: There are (l¡¡l¡ = 27 . 1.0 = 210 ways to choose two pai., of people,
since there are (tr) = Zt *^y" to choose one pair from 7 people and
then (!) = 10 ways to choose a second pair from the remaining 5
people.

Seems right, but there's a subtle error. The error is that this counts the number of ways to choose ¿
" hrst" pair and then choose a "second" pair. what we really want to count is the numter of ways to
choose two pairs, without regard to order. So we must divide (l)(;) by 2 to correct for this overcó¡nt-
Thus there are21.0l2 = 105 ways to choose two pairs of people. 

- -

Once we have chosen our two pairs, there are three people left over who each have 6 choices oi
person to throw at. Thus there are 105 . 63 total possibilities with two pairs. Since each two-pair case is
counted twice in our original 21 6s count, we have to subtract our new count once, so that our running
total at this point is

QI..65) - (105.63).

How many times do we count possibilities in which there are 3 pairs of people throwing at each
other? These possibilities are counted 3 times in the first term (once for eich of the 3 pairs), and
subtracted 3 times in the second term (once for each 2-pair subset of the 3 pairs). Thus they currentlr'
aren't being counted at all, and we have to add them back in.

There are (l) = 21 ways to choose the first pair from the 7 peoplu, (l) = 10 *uy, to choose the second
pair from the 5 remaining people, and (l) = 3 ways to choose the third pair from the 3 remaining people,
so there are 21 ' 10 ' 3 ways to choose 3 pairs in order. However, we áon't care about the order of the
pairs, so we must divide by 3! to correct for this. There{ore there are 21 . 1.0 .gl3l = 105 ways to choose
3 pairs. The 7th, unpaired, person has 6 choices for whom to throw at, so this gives a total of 105. 6
possibilities with 3 pairs.

Therefore, there are

Q1 .6\ - (10s.63) + (10s.6) = 141,246

Bogus Soluti

ffi
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CHAPTER 3. A PIECE OF PIE

1\'e can pick two consecutive sides in n ways. This gives 3 vertices of our quadrilateral. Then,
rre hate to choose a fourth vertex, which we can do in n - 3 ways. Thus there are a total of n(n - 3)

quadrilaterals of this type.

Altematively, we can pick two nonconsecutive sides: we have r choices for the first side, then
r¡ - 3 choices for the second non-adjacent side. We then divide by 2 since this counts every pair of
non-adjacent sides twice, once in each order. Therefore we have n(n - 3) 12 pairs of non-adjacent sides.
This gives us all 4 vertices of the quadrilateral, so there are no more choices to be made.

Thus, adding these two cases, we see that there are n(n-3)+n(n-3)lZ = ]n(n-3) such quadrilaterals.
These quadrilaterals are counted twice in our original count, so we need to subtract them once.

Finally, any quadrilateral with 3 sides on the original n-gon must have all 3 of those sides adjacent
(otherwise we use up too many vertices). There are n of these quadrilaterals, since there are n choices
for the middle of the three adjacent sides on the n-gon. These quadrilaterals are counted 3 times i¡r
our original count (once for each side on the original n-gon), but are subtracted 3 times in our count of
quadrilaterals with 2 sides on the n-gon (once for each pair of sides on the original n-gon). So we need
to add these back once.

Thus the number of quadrilaterals is

_ n(n - 2)(n - 3) - 3n(n - 3) + ? _ n3 - 8n2 + \7n

tr

As a quick check, we can verify that this formula works for n = 5, 6,7 , and 8. For n < 7, the answer
is just (l) (since any choice of 4 vertices will give a quadrilateral with at least one side on the original
n-gon). The answer for fl = Sis () - 2 = 68, since the only way that we can choose 4 vertices on an
octagon that will give a quadrilateral with no sides on the octagon is if we choose every other vertex,
and there's only 2 ways we can do that. Checking our formula, we see that it gives 5 when n = 5, 15
when rz = 6, 35 when n = 7, and 68 when n = 8, so we probably didn't make any obvious mistake.

Concept: rf irJpoisrÚre io ao ; di¡k ¿ha¿k o¡tdi;ildi. i..Ápriiái"a p,.urá-,
C=a it's usually a g-ood idea to do so,

We'l1 conclude our study of PIE with a very difficult problem. Solving this problem requires a solid
understanding of the principle behind PIE, and not just a "memorize a formula" knowledge of PIE.

The statement of the problem is deceptively simple.

Solution for Problem 3.24: If rnay not be immediately clear how to proceed. We can start by introducing
some notation and lisiing facts that we know. Let's call the patches P1, P2,P3,Pa, P5, and let's usebrackets
to denote area (for example, [Pr] is the area of patch P1).

What do we know? What are we trying to prove?

,(' ;') - 3,,,n 
- ,, * ,

76
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CHAPTER 3. A PIECE OF PIE

I

Bogus Solution:
X=B-C+D-E.

No! As we saw in Section 3.6, PIE is not so simple when we're counting "af least 2" of something.
We have to think about how many times each region gets counted. For example, B counts the triple
overlap regions 3 times, so we have to subtract C twice tn order to get them counted once. Similarlr',
B counts the quadruple-overlap regions (l) = O times, btt -2C subtracts them 2(4) = 8 times, so n'e
need to add them back three times to get them counted once. Finally, the five-way overlaps are counted
() - 2() + s(l) = 19 - 29 + 15 = 5 times, so we need to subtract 4E.

Therefore, we know by PIE that
X=B-2C+3D-4E. (3.7.4)

So what? We don't know a¡ything about X, right?

Wrong! We know that X < 5 (since X can't be bigger than the whole coat). This fact, although
seemingly trivial, is very important! Thus we have

5> B -2C+3D 4E.

We can use this to eliminate one of the variables in (3.7.3). Let's solve (3.7.5) for C:

c> ]1e* 3D-4E-5),-2
and plug this into (3.7.3):

(3.7.5)

which simplifies to give

or

Remember, we wanted to
problem is that D - 2E > 0.

But this is yet another use of PIE! Note that D counts the area in the overlap of al1 5 patches y'zre

times, once for each subset of 4 patches. Therefore D > 5E, which certainly means that D > 2E, and
henceD-2E>0.

Thus we've proven that B > 10, which is what we needed to show, so we're done! ¡

: :: :" :,:i. ..: t:,., 
":.,' 

t..,:,.,', :... t..: .

3.7.1 Six children are playing dodgeball. Each child has a ba1l. At the sound of the whistle, each
child chooses another child at random to chase. IAIhat is the probability that there is at least one pair of
children who are chasing each other?

B>7.5+C-D+E
1

>7.5 + 
r(B 

+3D - 4E - 5) - D + E

=s+1a *!r-r22

le,s*lo-r,22
B>10+D-2E. (3.7.6).

prove that B > 10, so we're very close. All we need to show to finish the

78



AI

'aJuo fluo pue aruo pa+unoJ qJea ale ' lla 'slas Z fllJpxa /las 
I fllrExa rrl s+uauala lerD a¡ns

aI¿I i 'pallmol sta8 luaruala qrpa saurrt dlrErrr ,4^or{ tnoqe Állrya¡pr Iurql 'AId dlddp dlpulq l,uoc

'lr a+eInJIEJ ol uorssaJdxa f,I¿ E

aq IIr.\ arar.]l /s+as ll 
,o uoBrallol ¿ 1IIoq slas ry ]s¿al ur are ]eql sua]r aql +uno] o+ paau a,!r aluI+fuv

'saruadord Jo tas p Jo ,,{ }seal lE,, a^Eq l¿ql suralr lunoJ ol a^Er{ a^,r ra^auaqM pasn aq osIE uEJ gld

'(uV v "'vzV u tv)#r*"(f-) +

('.. + (ty u ey ¿ zy ¿ ty)y) -
((V u t-"V u z-"V) + .. + (EV u zV u tV)#) +

((V u r-"V)# +... + (€y u rV)# + (zV u tV)$ -
(ñ* + " + (zV)+ + (rV)* = (V ¡ "' ¡zy ¡ ty)¡

uaq]'slas aru "O '"' 'zy'ty ¡t'Á1¡uraua8 a.ro¡,t1 a

'(J u s u y)# + (l u a)# - (l u v)# - @ u y)# - (f,)# + (s)+ + (y)+ = (¡ o s a ñ*
uaql 'slas aaJt0 aJE J pue 'A'V il <

'@vv)+- (s)++ (y)+ -- @nv)*

uar{t 's+es o^{l a¡E g puE y JI

'saqrado.rd ¡o raqrunu e Jo
,,auo lseal +8,, a^Eq leq+ sura¡r Sulunor se ¡o lq8noql aq ue) srql 's+as aJorü Jo oml Jo uorun ar¡
ur ar€ l¿rp srua+r Jo Jaqunu aql +unoJ ol pasn fl (g1¿ ro) uorsnpxa pue uorsnlrur Jo aldnur,rd aq¡

z(ruwurng 8'€

6fZ 
t 
lE€:slulg saqrled ¿ ueqi aroru fq paralo; $ leor arp uo +rnod ou '1 uer¡ aroru

¡o eare ue sdel:a,,r.o saqr¡ed ¡o rred ou qorq.,vr uo s+eoJ r{Jns fie rcj ¡tr1'e ualqord ur /}pq} a^ord +g.¿-€

8€Z 'gZZ :slulH ¿uo8-u aql ¡o saprs a.re uo8eluad aq¡ Jo saprs Z lseal le 1eq1 qrns 'uo8e¡uai
xa^uoJ e ruJoJ ol (g < lr aJaqm) uo8-z xaauoc u ¡o saf,qJa^ g asooll¡ arut ue¡ sfe.+r fueur ,r,t.or{ trJ +ü'¿'€

g

V ZgZ 
t 
6Zf tstulH GINIV :acrnog) ('y ur 1ou ar¿ 1eq1 S Jo stualuala II¿ ro

las aqt $ y\S tas aqt +pq+ IIpraU) 'y\S ro yJo auo lsEaltE14 paure+uol
sr g treq} flrrqeqo¡d aq+ putC d ruorJ rrropuer ¡e pue .(¡¡uapuadap'_.r
uasor{J aJu louBsrp .(¡.ressaf,au }ou 'S Jo g puE y slasqns 'S Jo sl6
-qns IIe Jo les ar{+ aq ¿ }a.I 'sluaruala xrs qlr^{ las u aq s }a.I g.¿.€

¿a.renbs papeqs aql ¡o a8pa ue apnpur sqled
qrns lueur ,u.og 'aruq p 1e lrun euo ¡q8rr aq¡ ol pue dn d¡uo Sur,roru
'g Jauro) ol y ¡auJoJ ruo:¡ oB o1 qsr-rt a,ra. 'lq8rr 1e pr.r8 aql uI Z'¿'€

AUVy.,tt/.,lns 
.8.0



CHAPTER 3. A PIECE OF PIE

Here are a couple of problem-solving concepts regarding PIE:

If a problem asks you to count how many items have "at least" one Prop-
erty, that's a good sign that you may want to use PIE. Similarly, if a problem
asks you to count how many items have "none" of several properties, that
may be a sign to use complementary counting with PIE.

Don't memorize a "formula" for PIE. Instead, think about how many times
each item is counted, and make su¡e that each item is counted once and
only once.

We also saw one general good piece of advice when trying to do proofs:

3.25 How many 4-letter words (consisting of any sequence of 4 letters, possibly repeated) start or end

with a vowel? (For the purposes of this problem, consider A, E, I, O, and U to be vowels, and consider
Y to be a consonant.)

3.26 How many 3-digit numbers have two consecutive digits the same?

3.27 ls it possible that among a group of 20 ninth-graders, 15 of them play lacrosse, 12 of them plav
soccer, and 6 of them play both? \A4ry or why not?

3.28 When I go to work, there's a 201" probabllity that I'll forget my office keys, and a 30% probabiliS'
that I'11 forget my wa11et. If there's a 5% probability that I forget both, then what's the probability that I
arrive at work with both my keys and my wallet?

3.29 How many 4-letter "words" (any combination of 4 letters) have no two consecutive letters iden-
tical?

(a) Solve the problem using PIE.

(b) Solve the problem using constuctive counting.

(c) Can you algebraically explain why your two answers from (a) and (b) are the same? (Of course we
know that they must be the same, since they're just two different ways of counting the same thing,
but can you expiain it i¡ terms of algebra?)

Concept:
/:\-L_-t

Concept:

Messycasework often means that it's simpler to use complementary count-
ing and PIE.

ln proof problems, one way to start is by listing what you know and what
you're trying to prove.
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OHAPTER 3, A PIECE OF PIE

3'40 
_Frnd the number of positive integers that are divisors of at reast one of 1010, 157, and 1g11

-{I\'fE) Hints: 138

3'41 There are ru chairs at a table, each with a name card with the name of one of n people (with onename card for each person). The n people sit at the tabre. Let D, be the number or #uyJthe , peopt"
can sit at the table such that not a single person is sitting in the correct seat. (D, is caleá the number ofderangements of an n-member set.)

(a) Use the Priaciple of Inclusion-Exclusion to find an expression for D,.

(b) Find a counring argument to show ,nr, I /Í'lr,-u = ,,
Eñ \N/

3'42 rn a five-team tournament, each team prays one game with every other team. Each team has a
50o/o chance of winning any game it p1ays. (Therá a.e nJties.) Find the probab ity inrt 11,u tormamentwill produce neither an undefeated team nor a winress team. (source: ÁrME¡ Hints:320
3'43* The goal of this problem is to derive the function for the number of positive integers less thanor equal to n which do not have a factor besides 1 in common with n. Recall that this function is calledthe Euler phi function, denoted @(n ), and was discussed in the box on page 60.

Let the prime factorization of r be n = p\'p'| 'p"i . .How many positive integers ress than or equal
to ir are divisible 6y pl By p? By p, for t i ¡ < fi
w-hat's wrong with just subtracting all the numbers we find in (a) from n fo get q@) (the number
of positive integers less than or equal to n that have no factor besides r ir, "o.ñ-#íiih ,¡lHow can we use PIE to cor¡ect for our error in part (b)?

After writing an expression for @(n) using pIE, compare youf expression to the expansion of theproduct

"(,-
What can you conclude?

3.44* Define a regular ru-pointed star to be the union of n line segm ents p1p2, p2p3, .. . , p,lp1 such that:
o the points Pr, Pz , . . . , Pn are coplanar and no three of them are collinear,

each of the n line segments intersects at least one of the other line segments at a point other than
an endpoint,

all of the angles at P1,P2, . . . ,p¡1are congruent,

all of the n line segments P1p2,p2ps,...,pnp1 are congruent, and

o the path P1P2,P2Pv...,p,,p1 turns counterclockwise at an angle of less than 1g0 degrees at eachvertex.

There are no regular 3-pointed,4-pointed, or 6-pointed stars. All regular S-pointed stars are similar, butth"1: utlty^o non-simjlar regulai 7-pointed stirs. How many nÑsimilar regular 1000-pointed starsare there? (Source: AIME) IJints: 9b 169

(Source:

(a)

(b)

(c)

(d)

;)(, ;) (, á)
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CHAPTER 4. CONSTRUCTIVE COUNTING AND 1-1 CORRESPONDENCES

We can think of using a 1-1 correspondence as a more general version of one of our basic problem-
solving shategies: if we don't know how to solve a problem, try to find a simpler, related problem that
we do know how to solve. That's really what a 1-1 correspondence allows us to do: if we have a set
that's hard to count, try to find a related set that's easy to count, and count the easy set instead! As you
might expect, the tricky part is finding the "easy" set and showing that it's the same size as the "hard"
set.

4.2 Some Basic Problems

ffiie'
Problem 4.1:
numbers?

How many license plates consist of 1 number by 3 letters followed J

Problem 4.2: How many S-digit palindromes are there? (A palindrome is a number that ¡eads the
same way forwards and backwa¡ds. For example ,27872 and, 48484 are palindromes, but 28389 and
12541 are not.)

Problem 4.4: Four points are chosen at random from the grid at right. What is
the probability that the four points are the vertices of a rectangle whose sides are
paralJel to the sides of the grid?

The general idea with constructive counting is that we build (or "construct") the items that we're
tuying to cor.:lt, and while doing so, keep track of the number of choices that we have at each step in
the construction.

The problems i¡ this section are all relatively basic examples of constructive counting, and should
be review for you if you've mastered the lntroduction to Counting I Probability textbook.

Problem 4.1: How many license plates consist of 1 number followed by 3 letters followed by 3
numbers?

Solution for Problem 4.1: Wehave 10 choices for the first number, then 26 choices for each of the 3letters,
then 10 choices for each of the last three numbers, for a total of 10 .263 . 103 = 10a .263 = 175,760,000
possible license plates. n

Problem 4.2: How many S-digit palindromes are there? (A palindrome is u ""-¡éi tnut reads the
same way forwards and backwards. For example, 27872 and 48484 are palindromes, but 28389 and
12541 are not.)
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choosing it is ,!.
Case 2: The second vertex is not in the same row or column as the first vertex. This occurs rrj¡
probability ff = J. These two points must be opposite corners of our rectangle, so the final two poin=
that we choose must be the other two corners. They are chosen with probability * . +.

Therefore, the probability of choosing the four corners of a valid rectangle is:

3.23.22 253'

!

4.2.1 A dot is marked at each vertex of a triangle ABC. Then 2, 3, and 7 more dots are marked on t}r
sides AB, BC, and CA, respectively. How many triangles have their vertices at these dots? (Source
HMMT)

4.2.2 Consider the set S = {1,2,3,...,34\. How many ways are there to choose (without regard tr--'

order) three numbers from S whose sum is divisible by 3? (Source: ARML)

4.2.3 How many orderings of the letters in MISSISSIPPI read the same forwards as backwards?

4.2.4 Nine tiles are numbered 1,2,3,...,9. Each of th¡ee players randomly selects and keeps three oi
the tiles, and sums those three values. Find the probability that a1l three players obtain an odd sum-
(Source: AIME) Hints: 131

4.2.5* Robert has 4 indistinguishable gold coins and 4 indistinguishable silver coins. Each coin has an
engraving of a face on one side, but not on the other. He wants to stack the eight coins on a table into a

single stack so that no two adjacent coins are face to face. Find the number of possible distinguishable
arrangements of the 8 coins. (Source: AIME) Hints: 13

4.3 Harder Constructive Counting Problems

Problem 4.5: We wish to compute the sum of all of the S-digit palindromes.
(a) How many 5-digit palindromes are there?

(b) How many have '1' as the last digit? How many have '2' as the last digit? And so on?

(c) \ /hat is the units digit of the sum of all of the S-digit palindromes?

(d) Ca¡ you extend your reasoning from parts (a)-(c) above to find the sum of all of the S-digit
palindromes?

t218122 L+_ 
-.--i7722 i2722
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Therefore, all of the numbers sum to

ls00(104)+4050(103)+40s0(102)+4050(101)+4500(1)=4s00(10001)+4050(1110)=49,s00.r:\-':

AnotherwaywecouldapproachthisistocalculatetheallerageS-digitpalindrome.RasedL-:
construction, *" k ,o* that iÉe average first and last digit is 5 (the avgr.Se^of 

.1 
through 9)' ar':

u,r".ug" ot 
"á"h 

of the middle three diiits is 4.5 (the average of 0 through 9). So the average num:-

5(104) + 4.5(103) + 4.s(102) + 4.5(101) + 5(1) = 55000,

andhence,sincethereareg00suchnumbers,thesumofallofthemiS(900X55000)=49,500,000._

Co.""pt, In order 6 dete;mine the sum of a set of numbers' we can often use a

two-steP process:
1. Count the number of elements in the set'

2. Determine the average element of the set'

Then, we multiply the aniwers from our two steps to get the sum of the

eiements in the iei. Note that this is essentially what we do when we sum

an arithmetic series, such as L +2+ " +n 
. 
There aren elements in the

"" ""''""t-:- "-'---' ,I.'-r'
series, and the average is !, so the sum IS ---

Sometimes just figuring out if a construction exists or not is a big part of the problem'

i.oÚi"- +.á: In a special iort or iott",y iitiiá t""t' keno ' a player may buy a ticket on which he

selects 10 numbers from 1-100 (inclusive). Then, 10 of the numbers are drawn at random' The player

wins if his ticket contains none of the numbers which are drawn'

(?3)
= 33.05%.

(1$ 100x9ex "xe1

(b) We need to think about whether we can construct 10 tickets that guarantee a il::l^1fry::t:i:
drawing. We may find the opposite problem easier: whethet Siven anY 10 ticke!1::":i::::iti::l
}T;;;i,.s iilil'"t o" uu ió ti.t"á' In fact, since everv-drawins hi' 10 i"'"l"Tl-1"-Tlq1t,f:'
;".;ffi;"ü;;á r.á"" ir.," n*, 

"umber 
drawn on ticketil' the seco* ii*"1-1:111,:ij:511;

;#;;,; iluu.h,i.t"r _"oins one of the 10 numbers drawn, and thus we would lose on all

(a) \Atrat is the probability that a ticket wins?

(b) Is it possible to carefully select numbers on 10 tickets so that I am guaranteed that one of them

will win, regardless of what numbers are drawn?

winning is

Solution t'or Problem 4.6:

(a) There are {r,Üf ) equally likely possible drawings. To count the number o[ winnin¡, drawirgs, r' t

think about how we would'cánstruct a dru*ii-tg for which our ticket wins Our ticket wins if th¿

10 numbers drawn are a1l among the 90 numbeñ that are not on the ticket. Thus, the probabiliry* o:

90x89x...x81

88

tickets. So it is not possible to guarantee a win using 10 tickets'
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We notice that our list has one number for each possible choice of first digit. That might mi<e
us rvonder why, and if there's a more clever solution.

Suppose that ab is a 2-digit multiple of ganda t ü. We know that a + ümustbe a multiple of :
so the only possibility isa +¿ = 9. (We can'thavea+b = 18 since then we'd have to have a = b = !
and that's not allowed.) Thus b = 9 - a. We conclude that for every choice of a between 1 and 3

(inclusive), we get one valid number, by setting b = 9 a. Therefore there are 9 numbers.

Sidenote: If you aren't familiar with why a + b must be a multiple of 9 in order for aú

.l\ to be a multiple of 9, write

ab =10a+b =9s+(a+b).

Clearly 9a is a multiple of 9, so for the whole expression to be a multiple of
9, (a + b) must be a multiple of 9 as wel1.

Since we are looking for 1O-digit numbers with all digits different, we know that each digit.
through 9 must be used exactly once. Surely that must help somehow.

We can use the same observation that we used in part (a), which is that a number is a multiple
of 9 if and only if the sum of its digits is a multiple of 9. If our digits are 0 through 9, their sum is
(0+ 1+...+9) = 45, which is a multiple of 9. So, every l0-digit number with all different digir.
is a multiple of 9, and since 9 and 11111 are relatively prime, we may conclude that every 10-digit
multiple of 11111 with all different digits is a multiple of 99999. How can we use this observationl

Note that 99999 = 100000 - 1. If we write a lO-digit number n asn = ur¡, where ¿¿ and a are each
S-digit numbers, then

n=ua= 100000r +zr =99999u + (u +o).

Son is a multiple of 99999 iI a¡d only if u + zr is. This means that u + a = 99999, stnce that's the orür
multiple of 99999 that could possibly be the sum of z + r,.

Therefore, once we choose u, we must have ¿, = 99999 - u in order for ua to be a multiple o:
99999. }{ow can we construct such a number?

Note that the digits come in pairs that sum to 9: the units digit of a must sum with the uniL<

digit of o to make 9, the tens digits o{ r and a must sum to 9, and so on. Also, there are 5 pairs oi
digits that sum to 9: 0and9, 1and8,2 and 7,3 and 6, and 4 and 5.

We have to allocate the five pairs of digits that sum to 9 to the five positions in u and zr. This ca¡
be done in 5l ways. We also have to choose which digit in each pair goes to r; and which goes to i.
so this js 2 choices lor each pa ir.

This might lead you to finish the problem by concluding:

ution: Hence, the answer is 5!(25) = (120X32) = 3840.

The problem is that a 10-digit number can't begin with 0. Since in our count above, any digit is

equally likely to end up in any position, 1/10 of the numbers that we constructed above start with
0. That's not a11owed. So only 9/10 of the numbers we constructed are actually allowed, hence our
final answer is (9/10X5!X25) = (9/10X3840) = 3456. a

Bogus Sol

ffi

90



JO qJIq.4 
^ 

oLDI r,uop a,!r lnq /pa-\Lr-rE .{puar¡e aaeq gg qSnorq¡ I# leq+ supau srq¿ .pauSrs uaal ¡
pa,rr:.re lpearp seq 6# ]er{l .rlorDl aM .,,l-r.or.»i 

l,uop a,la. lpq ^ 
pue r*ouI arnr lpr{.tr Burlsi¡ dq +rers au

'ura¡qord ar¡¡ .ro¡ 1aa¡ e ¡aB o1 aldurexa uu qBnorql ryo-+r d.ressaaau ¡1 r
'8tn¡su sr r.ualqord aq¡ ¡uqm puuls¡apun .

dgryarea tualqo.rd aq¡ pea¿ .
:no,( ¡uq¡ atns a¿eru 'uralqord e olur Sur,rrp a.ro¡ag

¿alqrssod a.re s8urJapro qJunl-
lua¡a+M -iueur ,noq :sr uor¡sanb aqJ .I# ,Z# ,T# :s\ aldurexa srtp r.n Japro Buru8rs q,m11soá

'y¡ Ete '7¡ 'tr¡ su?rs ¿urup6 .

iqlm-I .
g# pue t6# /Of# suSrs eur¡.re¡q r

a^rrre 0I# pue 6# sla{Js}I .
94 suSrs euq.re¡4 r
sa^uIu 8# la{Jeu .

9g pue ¿g su8rs euluEIA .
a^üre l#'9#'9#'ú# s+a{reu .

gg su8rs eur1.rel¡¡ o

a^rrr¿ t# puE 'Z#'I# sla{Jeu .

ErE----A

:¡daruo3

:aldurexa ue s,ara1_1

'1a>1ce.r pa,u.r.re-dl+ua)al lsour et su8rs eurgu¡41 'auo su8rs aqs raaauar.¡14 fep aq¡ ¡o s¡urod snorrea 1e a,rr.rre g1g q8norq¡ i4 .¡rr1rr¿ ."q
uo Suro8 s,leq.^{ puelsraprm o1 luelrodun s,}I ,uo]}nlos aq} o+u, Bur^tp arolag :g I *r!q,or¿ rá¡ *a"§

(gyt¡yy :attnog) ¿araq+ are saf,uanbas BunÉr
ta)IJer q)rml-lsod a¡qrssod fueur ,Ioq'paxlJ sr IE^rrrE ,sla>per aLI+ Jo ¡apro aq+ lEr{+ ua^rD .pa^!¡-
leq] +a rer qr6 aHl pauSrs sur{ ar{s +er{t raq s[al q)€o) s,Elrru€tr tr 

,qctm1 3urm6 .¡cnq 1, 
"p,rr" 

pr" ¡ su8rs uar¡ 'lr rür^ saIo4s ¡aa} E sa{Et 1a{)er pa^rre fpuaca; fsoru iq+ 
"qrñ 

,q" 1r¡rn, , i3r. q
sappap aqs ra^euaq 4 'sla{JeJ aql Jo awos u8rs o¡ Surop sr aqs raaaleq.u rüoq {eaJq ¿ sa{E} ¿urtre¡t
'fep aq1 Sur,rnp qurod snorr,^ +v .qa{lp¡ aql um+ar pue ,r8r" o¡ ,aq lrre^ áq ."n¡ *tr¡ .¡r¡ro
sluual +uaraJJrp 0I sa^ra)al e^ornqluo3 eu4re¡41lade1d sruua¡ lu¡s dep u,o asrnoJ aql uI :g., u¡olqo¡¡

¡l¡ryaler uralqo.rd aq1 pear o1 aq
p¡noqs Bur,rlos r.ua¡qord ¡o alnr ls,ir¡ rnod ¡urll raqluarua¿ .qgno1 sr uorrJas 

"r.p * *r1qo.dl.l1 ,q1

sn:lt8oud 9N[Nnoc ]At]cnul-sNoc ufouvH .e.,



CHAPTER 4. CONSTRUCTIVE COUNTING AND 1-1 CORRESPONDENCES

them (if any) have already been signed. We also don't know if #10 has arrived yet, or if it has besr
signed.

So there are 9 rackets left that could potentially be signed after lunch. Rackets #1 through #8, iÍ
remaining to be signed, must be sígned in descending order (the opposite order in which they arrived i.
On the other hand, racket #10 might already have been signed, or might arrive any time, and thus could
be signed at any time (or not at all).

Therefore, we are trying to count the number of lists containing none, some, or all of the numbe6
1-8 and 10, where the numbers 1-8 must appear in descending order, but 10 can appear anywhere (or
nowhere).

Constructing the ways that 1 through 8 can appear is relatively easy-we only need to choose which
of the numbers are in our 1ist, since once we choose which numbers are in the list, they must be placed
in descending order. For each of these possible lists of rackets 1-8, the 10 can appear at any point in
the 1ist, or not at all. However, the number of choices for where the 10 can appear is dependent on the
number of elements already in the list. If there are k numbers in the list befo¡e adding 10, then the 10
can appear in any of the k + 1 "slots" between numbers (including the first and last slot), or may not
appear at all, for k + 2 possibilities.

So we need to sum over the different possible lengths of the listé of numbers from 1 throrghS (before
possibly adding the 10). There are (l) ways to list k numbers out of 1-8, and then k + 2 wuyr to ir1"lrd"
10 in the list (or leave it off).

Adding over the possible values of k, we see that the total number of possible orders is

We could work this sum out by hand, but is there a more clever way?

In fact, there are two clever methods!

Method 1: We can pul 2((!) + (?) *...+ §)) out, so that oursum is

'((:). .(:)).(.(:).,(?). .'(:))='".(,(:).,(?). .'(:)),

using the fact that (3) + . + (3) = Zt = 256. Now we apply a bit of algebra:

(:)=-#r= ='(- 1,)(k-1)!(8-k)!
Therefore, our sum is

u,,.'((;).(1). .(i))= 
",+8(128) 

= 1536

,(3).,(?).-(;). .,,(:) = ¡0.,,(3)

8!
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CHAPTER 4. CONSTRUCTIVE COUNTING AND ,1-1 CORRESPONDENCES

4.4 1-1 Correspondence Basics

Informally, we say that two finite sets A and B are in 1-1 correspondence if they have the same
of elements; that is, if #(á) = #(B). But this begs the question-how do we tetl if A and B have the
number of elements?

We do so by matching up the elements of A and B, such that for every element of A there :- r
corresponding element of B, and for every element of B there is a corresponding element of A. In otira
words, the elements of A and B come in matching pairs, one element of A matching with one elemd
of B.

Here's a more formal definition:

Definition: We say that the sets A and B are in 1-1 correspondence if there exists a function /,
mapping elements of A to elements of B, that satisfies both of the following properties:
(a) / is one-to-one or 1-1: tf f(x) = f (y),t}:ler.Í = y. (This also goes by the fancier name injective.)
(b) /is onto: for every ú e B, there exists a €Asuchthat/(d) = b. (This aiso goesby the fancier

name surjective.)

The function / is also sometimes called a bijection.

Think about what the two parts of the above definition mean. Part (a) means that no two distinLl
elements of ,4 can correspond to the same element of B. Part (b) means that every element of B has to
match to some element of A. When we put these togethet we see that every element of A matches tc-r

exactly one element of B, and no elements of B get "skipped" in this matching.

Don't worry about the terminology. The main thing to keep in mind is
that a 1-1 correspondence between A and B has to pair up elements of ,4
with elements of B, such that every element of A matches up with exactly
one element of B, and every element of B matches up with exactly one
element of A. Hence the name "1-1 correspondence."

Sometimes we write a <-'> f (a) to describe the 1-1 correspondence, meaning that element a in set á
matches with element /(a) in set B.

Concept:

Sidenote:

N

1-1 corespondences between infinite sets
Our formal definition above works just as well for infinite sets as for finite
sets. However, we don't "count" infinite sets, so if sets á and B are in
1-1 correspondence, it doesn't necessarily mean that they have the "same
number " of elements. For one thing, #(4) is undefined if A is an infinite set.
But even weirder things can happen. For example, can we show that the
sets {1,2,3,...} andf0,1,,2,3,...larein1-1 correspondence? Certainly: take
an element in the first set and subtract 1 to get an element in the second set.
This satisfies ou¡ definition. Yet, somehow the first set seems "sma1ler"
than the second one. More about this on page 98.
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CHAPTER 4. CONSTRUCTIVE COUNTING AND ,1-1 
CORRESPONDENCES

I

(d)

(e)

7 <-> {1,21 2 <-> l1,Zl 3 <-> 1L,41 4 <¡ 1L,5l S <_t {2,31
6 <-; 12,41 Z <_; l2,Sl 8 e {3,4} 9 <_> 13,51 10 e¡ {4,51

There are, of course, many other ways that you could have matched up the sets. It doesn,t matter
that there's no "formula" for the matching: as long as we can match eich element of one set with
exactly one element of the other set, and vice versa, we have a 1_1 correspondence.
These sets are not in 1-1 correspondence. There are 10 integers from 1-10 (inclusive), but 11 even
integers from (-10)-10 (inclusive), so no matter how we try to match them, there will arways be
one integer in the second set',left over.,'

This is also not a 1-1 correspondence. The¡e are 9.10 = 90 intege¡s ofthe form ab1¡ but only 7.g = 56
integers of the form abs. So if we lfy to match up the 90 integers in base 10 with the 56 integers in
base 8, we'll quickly run out of base 8 integers tá use.

¡
Notice in Problem 4.9 that all of our examples that were in 1-1 correspondence with the integers

1-10 (inclusive) had 10 elements. In part (a), thére are 10 integers between i3 and 32 (inclusive); in part(b) there are 10 perfect squares between 1 and 100 (inclusivJ); in part (c), there are (l) I iO ,rrora"."a
pairs of integers between 1 and 5 (inclusive). This is the basic feature oi í-r 

"o.."rpo1d".,"".

c t \\'e ca¡ list the unordered pairs from 1-5, and match them with integers 1-10, as follows:

Concepts: Two finite sets calr be p laced in I -1 correspondence iianá onJy if rhey ha ve
the same number of elements.

1-1 correspondences are sometimes used to relate two different ways of representing the same
information, as in the next example.

Problem 4.10: show that the z*tep pá*,r iiá- Ái. ¡ in ihe grid below are in i-r
with arrangements of the letters RRRRUUU.

correspondence

solution for Problem 4.10: In order to travel in 7 steps from ,4 to B, we must take 4 steps to the right and
3 steps up. Each different arrangement of these 7 iteps w r give a different path. so, given a path, we
can write it as a 7-step sequence of R's and u's, where the lettÉr R correspond', to a ste'pio the right, and

qA



L6

tr 'y Jo quatuala 096/rI arp araq+ a)uaH 096,rI = t;l
tsn[ s,+r-tuno] ol ,is¿a í S tng (g)# = (y)# aroJa¡aq+ pup 'aruapuodsarror I-I Lrr arp g puB y oS

'y 1n pro^l anbun u sn sa^r8 g rII s¡aual F D
las fra-\a pup 'g ul srallal , Jo las e o+ llanbrun spuodsaJJo) y ur proM &a^g .y ur pJoM E la8 o+ rap-D
Ierrlaqpr{dlp r.n uaql lsq +sn[ a.4r /g ur sra]lal puqsrp JnoJ du€ ua^r8 ,le^l Jaq+o aqf oB oI .B 

Jo ]uartrap
rno sp p.ro-\r aW w sra al aq+ asn lldurs a^{ /y Ln pJoM JaIaI-? E ua^r8 :aldurrs sr af,uapuod$JJoJ ar{I

'{sraual lrultslp i Jo s}as (paraproun)} = g

{lapro Ieoqaqeqdle ur pup }uaraJ}rp e arE sraDal asoqM sproM rat}al-ü} = y

las aq+ uaa.Mlaq aruapuodsa;.ror I-I arru e aleaJJ uuo ar"r 'd¡a1eunl.rog

¡ra,raro¡ flSuuraas srql a¡r1 uo oB plnom {ro^ ase,
aW ra¡al puo)as ar¡ roJ sarroqr 7¿ lpo are aJar{+ uarp /g qtl^ s}¡E}s pJo^ aql,r ,arou ar{+Jng ra1¡q
prnIt ar.Il JoJ saJroqr g¿ lluo are arar{l uaq} 'J sr ra}}aI puoJas sR{t Jr ra^aMoq ta}}al pJrq} aql roJ saJrolp
f¿ are aJaql uaql 'g sr Jallal puoJas srql Jr 1Ja++al puoJas ar{+ JoJ saJroqr gZ a.r€ aJaLI+ uaql ,V qll^^ sUuF
pro,u aqt ¡r'aldtuexa rod 'lro^raseJ d¡seu flaura:1xa ol speal (8ur¡rmo; a^q)nr+suo) Sursn ,a¡durera

roJ) rapro ¡erqaqeqdle uJ are srallal asor{¡l sprom:a1¡a1-p Su4rmoc fI})arIC :lL', ualqu¿ .to{ uorlnlx.

¿(UI/{HC sP qrns) rap.ro pcuaqeqdp Sursua:ru¡
rn s¡a¡¡al luaraJJrp t seq proM qJea leq+ rlJns urroJ e,rt u€J sprom ral+a1,7 fuuur rrr.og :II., ualqo¡J

's¡1¡ ¡o a¡durexa rrseq e s^ror{s rualqo.rd lxeu aq¡ .lunol ol JarsEa s,lEql las p
qlrm las lunoJ-ol-l1ncr¡¡p e arulda,r o1 aruapuodsa.uo, I-I E asn a.4,!. 'stualqord 8r.n1unor ur dgerauaS

.g ol y lüoJ} sql¿d g0 arP
aral{+ 'aroJaraqJ uraq} Jo gg = f) are ararll :s,n € pue s,u 7 ¡o satuanbas }uno) o} .tloq ,'!1ou,1 d1urc1.ra:
am 'sq1ed lunoJ ol ruror{ aa.otr{ f¡:essalau 1ou duru a.tr aI!.{1!r rpq sl 0I.ú uralqoJcJ ¡o lurod aq¿

tr 'acuapuodsa:ro) I-I ur aJp slas o^q aql aroJaJaqJ 'sda1s dn
g pue sda¡s lq8rry rllTm qled anbrun u og spuodsar¡o) s,n 0 pue s,U p ¡o aouanbas f.raaa ,l1as.ra,ruo3

¿¡¡¿¡¿¿ o¡ Surpuodsa.uor q¡e¿ :1 7 arngrg

V

+as aql pt.P

:.,rao1aq 1 7 arn8rg aas 'a¡durexa rog dn dals u o1 spuodsar.roc ¡ ra+lal aql

scrsvE lcNS0NodsluuoS L-t 'r'?



CHAPTER 4. CONSTRUCTIVE COUNTING AND 1-1 CORRESPONDENCES

Obviously, the examples in this section were pretty easy, and inciuded nothing that you didrr't
already know how to count. In the next couple of sections, we'Il do some more complicated examples.

1.!,'1.;jli t:..,...:,. :..i,':: :, ::',;':. 1,:{ :-'.. ..:}.

4.4.1 Which of the following pairs of sets are in 1-1 correspondence? If the pair is in 1-1 correspondence,
show the correspondence.

(a) 11,2,3,...,12]r and 166,68,70,... ,88lr

(b) f3,6,9,..., 60} and 14,e,1.4,...,1041
(c) {0,1,...,1s} ar.d?({L,2,3,4\)

(d) {ways to choose 2 items from a group of 5, where order does not matter} and {ways to choose 1

item from a group of 10)

(e) {3-digit numbers with no 2} and {3-digit numbers with no 4}

(f) {2-digit numbers with no 5} and {2-digit numbers with no 0}

4.4,2 How many 3Jetter "words" have their middle letter later in the alphabet than both of the other
two letters? (For instance, Clf and FKF are examples of such words, but RPB and \ArWL are not.)

4.4.3 Compute the number of distinct paths not passing through point (2,2,2) fhaf travel from point
(0,0,0) to point (4,4,4) ;r:.12 steps, changing a coordinate by 1 at each step. (Source: ARML)

4.4,4 lf A is in 1-1 correspondence with B, and B is in 1-1 correspondence with C, show that A is in 1-1

correspondence with C.

4.4.5 Canaf litesetAbein1-1 correspondence with a proper subset B cA? (Recali that a subset
BcáisproperifB+4.)
4.4.6*

(a) Show that the odd divisors of 42 are in 1-1 correspondence with the even divisors of 42.

(b) Show that the odd divisors of28 arc not tn 1,-1, correspondence with the even divisors of 28.

(c) For what positive integers z are the odd divisors of n in 1-1 correspondence with the even divisors
of n? Hints:224,1,83

Sidenote: More about 1-1 correspondences and infinite sets

§ As we saw on page 94, some strange things canhappen when we look at 1-1
' correspondences between infinite sets. In particular, Exercise 4.4.5 above is

not necessarily true if the set A is infinite; for example, the sets {0, 1 ,2,3, . . .l
and 11,,2,3, . . .l are in 1-1 correspondence even though the latter is a proper
subset of the former. Any infinite set that is in 1-1 correspondence with the
set of positive integers is called countable. However, not every infinite set
is countable. It tums out that Q (the set of rational numbers) is countable
but that lR (the set of real numbers) is uncountable.

More about this on page 104.
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CHAPTER 4. CONSTRUCTIVE COUNTING AND 1-1 CORRESPONDENCES

quadrilaterals, arrd pentagons yourself; Figure 4.2 below shows a hexagon with 15 intersection points
and a heptagon with 35 intersection points:

Figure 4.2: Convex hexagon and heptagon with diagonals

From our examples, we have the following chart:

It's probably going to be pretty messy to draw an octagon! And maybe it's hard to see a pattern in the
above numbers. But where do we often look for counting numbers? Pascal's Triangle, of course!

Look inside Pascal's Triangle to {ind counting numbers.

So 1et's go ahead and draw Pascal's Triangle, and we'll highlight the numbers that we found:

E]

EE
Aha, now a clear pattern emerges! The boxed numbers on the left sides of each row *" (i), O, (t,

(l), etc. nut tfre lsame) boxed numbers on the right side are even easier to write as binomial coefficients:
(f), 0, 0, (), etc. Now we can see pretty clearly that the answer looks like (i). So now that we think
that we know what the answer is, how can we prove it?

We know one "obvious" set with (i) elements' the possible choices of sets of 4 vertices out of the
tr total vertices. Perhaps we can show that this set is in 1-1 correspondence with intersection points of
diagonals inside the ,7-gon.

\Alhen you suspect that a set that you're trying to count has the same num-
ber of elements as a set that's easy to count, look for a 1-1 correspondence
between the set you have and the "easy" set.

Concept:

tr
1010E

Concept:

314 5 617
Points ll 011 5 15 135
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CHAPTER 4. CONSTRUCTIVE COUNTING AND 1-1 CORRESPONDENCES

hors to cou¡t. Is there an "obvious" set that is in 1-1 correspondence to the set of divisors of z2 less tha¡
'¡? Remember: a 1-1 correspondence is essentially a pairing between elements of two sets, so is there
alvthing that we can pair a divisor of lr2 less than n to?

1-1 correspondences are essentially pairings. So look for a set of if,i.g; tá
pair elements of your set to.

Indeed, divisors of lz2 come in pairs: if n2 = xy lor some integers x and, y, then either x = y = n, or
¡ < n and y > n, or¡ > r and y < n. rnparticular, a divisor x < n ofn2 is naturally paired with the
dlvlsor 1 > l1_

Th".lfo.", *" huve a 1-1 correspondence between the sets

{divisors of n2 less than n } t-r {divisors of z2 greater than n}.

Since these sets are of equal size, and together they total 5524 elements (since they contains all of the
divisors of n 

2 except for n), we conciude that they each have 5524/ 2 = 2762 elementi. Hence the answer
to our problem is 2762. a

The last step of the previous problem indicates another important way in which we can use 1-1
correspondences.

Concept:

Important: If you can partition a finite set A into two non-overlapping subsets B
(? and C (meaning that BuC = Aand BñC =A),andyou.ui find r l-1v correspondence between B ¿nd C, then B and C are each exactly one-half

the size of A.

A slight variation of this is in the next problem.

Problem 4|l'4: Let k be an odd number. Show that there are fewer odd divisors of 4k than even
divisors of 4k.

solution for Problem 4.14: Let's try a simple example to get a feel for things. suppose k =s,so4k=20.
The odd divisors of 20 are 1 and 5. The even divisors of 20 are 2,4,10, and 20. Indeed, we see that there
are only two odd divisors whereas there are four even divisors.

Let's look at another example. suppose k = 15, so 4k = 60. The odd divisors of 60 are 1.,3,5, and
15. The even divisors of 60 are2,4,6,1,0,12,20,30, and 60. we see that there are four odd divisors and
eight even divisors.

A pattern seems to have emerged. In both examples, there are exactly twice as many even divisors
as odd divisors. This might suggest trying to split the divisors of 4k into three groups, one of which
is the odd divisors, and showing a "1-to-1,-to-1," correspondence between the three groups. Then each
group will be equal size, and the odd divisors will be exactly one-third of all the divisors, whereas the
even divisors, which make up the other two groups, will be the other two-thirds of the divisors.

A little experimentation will indicate how we should form the three groups. We notice that every
divisor of4k contains either 0, l,or2powersof 2asafactor(since4k-22.k,andkisodd). so those are
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CHAPTER 4. CONSTRUCTIVE COUNTING AND 1.1 CORRESPONDENCES

or rye can write out the definitions of the binomial coefficients:

100! 100

11!89! 1.1. 10!89!

However, the 1-1 correspondence solution has the slight advantage that we perhaps see more clearly

¡rhy the statement is true. f]

4.5.1 Annie the Ant starts at the lattice point (0, 0) and each minute moves 1 space up or 1 space to the

right (with equal probability). Benny the Beetle starts at (5,7) and each rninute moves 1 space down or

1 ipace to the left (wiih equal probability). What is the probability that they meet? (Soutce: AMC)

2 ¡1Ao

4.s.2 compute L I I I I L. (source: HMMI)
u60=0 1t5e=0 ,r2=0 t1r=0 ,ro=0

4.5.3 I roll 101 fair 6-sided dice.

(a) \44:rat is the probability that an even number of them come up even?

(b) Find the smallest integer s such that the probabiiity that the sum is greater than s is less than 2.

4.5.4* Suppose,x points are selected on the circumference of a circle and all (!) chords connecting a

pair of these points are drawn. Given that no three chords pass through the same point inside the circle,

find the number of triangles that are formed by portions of the chords inside the circle and do not have

any of the n points as vertices. Hints: 73

Sidenote: More about 1-1 correspondences between infinite sets

I Given ar-ry set S, finite or infinite, we can show that S is not in 1-1 correspon-
' dence with its power setP(S). The proof uses a very clever argument called

the Cantor diagonalization argument, due to the German mathematician
Georg Cantor.

Suppose on the contrary that there is a rnap f : S --; P(S) establishing the

1-1 correspondence. Define the set

Á={s€SlsÉ/(s)}.

In words, á contains each element s that is not contained in its corre-

sponding subset /(s) in P(S). The question then is: what element a e S

corresponds to A e P(S)? In other words, what element 4 € S has f (a) = A7

There must be such an element if / gives a 1-1 correspondence. But this
leads to a paradox: if a e A, then by definition a 4 f(a) = A, and if
aeA= f (a), then again by definition a e A.

In other words, the set P(S) is always "bigger" than the set S, even if S is

infinite. We'll continue this discussion in Challenge Problem 4.47 on page
Lt7.

=#(fi)'(il)991
(1T)

L.
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CHAPTER 4, CONSTRUCTIVE COUNTING AND '1-1 CORRESPONDENCES

Problem 4.20:
(a) steve flips 1 coin and Marissa flips 2 coins. \A{hat is the probability that Marissa flips more

than Steve does?

@) Steve flips 2 coins and Marissa flips 3 coins. \ rhat is the probability that Marissa flips more

than Steve does?

(c) Steve flips 499 coins and Marissa flips 500 coins. \ÁIhat is ihe probability that Marissa flips
heads tha¡ Steve does?

Problem 4.16: The game chomp is played as follows: we start with a 5 x7 artay of cookies, as

in the picture be1ow. The players alternate tums, and on each tum, the player chooses any cookie

remaining on the board and removes (or "chomps") that cookie along with all the cookies above

and/or to the right of the selected cookie. For example, a possible first move is:

&&&§(&&&
&&&&
oeoG ..+ &&&&
&&&& &&&&
&&&& &&&&

The cookie in the lower-left corner of the board is poison: the player who is forced to chomp it 1oses.

How many possible positions of the board are possible in the game?

Solution for Problem 4.16: Constructive counting might get complicated, because the legal positiors
are a bit hard to describe. In particular, if we start to focus on possible mores, as opposed to possiblt

positions, we get into rea11y nasty casework, and we also have the problem that the same positlon ca:.

often be reached by a variety of different sequences of moves.

So not rea11y knowing what else to do, Iet's focus on a particular 1ega1 position to try to get a handle

on the problem.

Conceph \Atten unsure how to proceed, look at some examples and see if yo" iin

a= fndaPattem,

For example, the following might be the position after each player has moved twice:

Extra! C is t'or cookie, thnt's good enough for ma - Cookie Monster
ll'+14n*¡+

&
&
&
&

§»
&
@
&

&
&
@
@

&
&
@
&
&

&
&
&
&
&

&
&
&
&
ci,
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CHAPTER 4. CONSTRUCTIVE COUNTING AND 1-1 CORRESPONDENCES

Sidenote: So how do I win?

I We're iust counted the number of lega1 positions in a Chomp Same on a
' 5 x7 grid. But we didn't rea11y discuss the game itself-in particular, if both

players play intelligently, which player has a winning strategy? Chomp is
a very interesting game, in that it turns out that the first player always has

a winning strategy (except on the trivial 1 x 1 board), but except for certain
board sizes, nobody knows what that strategy is! We'l1 discuss this more

in Chapter 13.

For the next few problems, we'1l introduce the notion of a pattition. This comes up quite often --
counting and number theory problems.

For example, the partitions of3 are 3,2 + 1, and 1+ 1+ 1. Note that 1+ 2 and 2+l are conside¡e:

the same partition, since we don't care about the order of the integers in the sum.

Problem 4.17: List all of the partitions of 4, 5, and 6.

sotution for Problem 4.17: Thepartitions of 4 are 4,3 + 1.,2 + 2,2 + "l + 1, and 1+ 1+ 1+ 1. There are i
different partitions of 4.

Thepartitionsof5are5,4+1-,3+2,3+7+L,2+2+1',2+1+1+1,and1+1+1+1+1-Therea¡:
7 different partitions of 5.

The partitions of 6 are6,5 +1,4+2,4+ 1+ 1,3 + 3,3 +2+ 1,3 + 1+ 1, +1,2+2+2,2+2+1+ --

2 + 1 + 1 + 1 + 1, and 1 + 1 + 1 + L + 1 + 1. There are 11 different partitions of 6. ¡

of cookies in nondecreasing numbers: aS we move along a row, we're moving right, and as we go do;.:.,

lrom one row to the next, we're moving down. We know that we never have to move left or up sr,=
the rows are nondecreasing.

Therefore, we have the following 1-1 correspondences:

I Lesar Ch om p posi ti o n s ) .- 
{ lT[*"Til:"::#:1[ ff #,Tnl ;'J-"u'* 

i n eac h 

1

l Paths from the top-left corner to the bottom-right corner¡
." {of a 5 z 7 gríd, where all the steps are dor.t n or to the }

lright - 
I

Fortunately, this last set is easy to count! We need to take 12 steps total, and must choose 5 of th€:

to be down,50 the number of paths it(l!\ = zrz.' \5/
Thus there are 792 legal Chomp positions, inciuding the start of the game (where all 35 cookies ¿=

present) and the end of the game (where all the cookies are gone and one player is poisoned). n

Definition: A partition of a positive integer z is a decomposition of ¿ into a sum of positive

integers (not necessarily distinct), where we don't care about the order of the integers in ihe sum.
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CHAPTER 4. CONSTRUCTIVE COUNTING AND 1.1 CORRESPONDENCES

So our general coniecture is that given a partition of n with 3 parts, we can subtract each part
to get a partition of 2n with 3 parts all less than n, and vice versa. Now we have to prove it.

Suppose thatn = a+ b + c is a partition of n. Then

(n - a) + (n - b) + (n - c) = 3n - (a + b + c¡ = 3¡ - n = 2n,

so (n-a) + (n -b) + (n - c) is a partiflon of 2n. Furthermore, sin ce a,b, and c are all positive integers stricir
between0andz,soaren*atn-b,andn-c.Therefore,eachpartitionofnwith3partscorrespondsb
a partition of 2n with 3 parts, each less than n.

But we're not done! We need to show that the correspondence works in the other direction as lr-ell-

When proving a 1-1 correspondence, you need to demonstrate that the
correspondence is indeed 1-1, meaning that it must be reversible: you
need to be able to go back and forth between the two sets. If you only
show one direction, you're not done yet! 

I

Conversely, suppose that 2n = d+e+ f is apartition of 2n,with each of d, e, and / less than n. Tho

(n - d) + (n - e) + (n - f) = 3n - (d + e + f) = 3n - 2n -- n,

so(n-d)+(n-e)+(n- f) is a partition of n. Furthermore, since d,e,and f are all positive integers
strictly between 0 and n, so are n - d, n - e, and n - /. Therefore each partition of 2n with 3 parts all less
than n corresponds to a partition of rz with 3 parts.

Thus we have established a 1-1 correspondence between the sets

{Partitions of n with 3 parts} <-+ {Partitions of 2n with 3 parts all less than zt },

and hence these sets have an equal number of elements. tr

Problem 4.19: Prove that the number of partiti"* 
"f 

, -t.--*tty i piiti ii 
"q"iiio-the 

number of
partitions of n in which the largest term is r, for all positive integers 1 < r 3 n.

Solution for Problem 4.19: Intl;tis problem, it's a bit trickier to list exampies, since we have to pick values
for both n and r. So let's iust pick one pair of values for n and r; our goai is to pick values small enough
so that they're easy to work with, but big enough so that any pattem (if it exists) will hopefully emerge

Let's pick n = 8 and r = 3, and list the partitions in each set.

Partitions of 8 into 3 Partitions of 8 with term 3

Important:

V

6+1+1
5+2+1
4+3+1
4+2+2
3+3+2

3+3+2
3+3+1+1
3+2+2+1.
3+2+1+1+1
3+1+1+1+1+'l

It's a little more difficult to see a pattern here than it was in the last problem.
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CHAPTER 4. CONSTRUCTIVE COUNTING AND 1-1 CORRESPONDENCES

Concept:

\-/:
Often, we can better understand complicated concepts by using a suitable

diagram.

We can represent a partition with ,, patts as / rows of dots, in which each row contains a number o{

dots equal to the number in the partition. Similarly, we can represent a partition_whoselargest element

is r as i rows of dots, in which each columnhas a ¡ttmber of dots equal to a number in the Partition.

4--+ooco
l-->oooJ
l---rro'f1

112
JJ

Thus, we have 1-1 correspondences

[partitions of n wirh r partsl 
Read as rows 

lFerrers diagrams with r rows] 
Re¿d ascorumn' 

{lar'rli:T:* }' 
l"tement ií 1

Hence the numbers of partitions in each set are equa1. tr

We will explore partitions further in Chapter 14.

Solution for Problem 4.20: As usual, we can look at some small examples to try to get a feel for the

problem.

If Steve has 1 coin and Marissa has 2 coins, then since there are 3 fliPS total, there are 23 = 8 possible

outcomes. We can easily list the outcomes in which Marissa "wins" by flipping more heads than Steve:

(r,Hr), (T,rH), (r,HH), (H,HH).

kr each pair, the fust entry is Steve's flip and the second entry is Marissa's two flips. Since Marissa wins

4 out of 8 times, the probability of her wiming is ; = á.

If Steve has 2 coins and Marissa has 3 coins, there are now 25 = 32 possible outcomes. We could try

to list them all out, but instead we can do a bit of casework.

If Steve flips 0 heads (which he can do in 1 way), then Marissa wins as long as she avoids TTT. This

gives her 7 ways to win.

If Steve flips t head (which he can do in 2 ways), then Marissa wins if she flips 2 or 3 heads, which

she can do in 4 ways. This gives her 8 ways to win.

If Steve flips 2 heads (which he can do in 1 way), then Marissa must flip HHH to win. This gives

her 1 way to win.

SoMarissahas7+8+1=16successfuloutcomes,andtheprobabilityofherwi¡ningisS=].

problem 4.20: Steve flips 499 coins and Marissa flips 500 coins. What is the probability that Marissa

flips more heads than Steve does?
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CHAPTER 4. CONSTRUCTIVE COUNTING AND 1-1 CORRESPONDENCES

4.6.6 Are there more partitions of 2006 into only even parts or into only odd parts?

4.6.7* Let S be the set 11,,2,...,n1. Let k be the number of subsets T of S such that the elements of i
have an integer average. Prove that r + k is even. (Source: Putnam) Hints: 112, 340

4.7 Summary

The basic idea of constructive counting is to think about how you would construct the items that
you're trying to count, while keeping track of the number of possibilities at each stage of the
construction.

Often, a big part of the problem is simply figuring out if a construction exists or not.

Whenever we can match every element in set A to exactly one element in set B and vice versa, rr'e
have a 1-1 correspondence.

Two finite sets can be placed into 1-1 correspondence if and only if they have the same number oi
elements.

We generally use 1-1 correspondences to count a hard-to-count set, by placing the set in 1-

1 correspondence with an easy-to-count set, which then necessarily has the same number of
elements as our original set.

To prove that two sets ,4 and B are in 1-1 correspondence, we have to show that every element oi
á corresponds to exactly one eiement of B, and that every element of B corresponds to exactly one
element of ,4. Showing the correspondence in only one direction is not sufficient.

I4rhen you suspeci that a set that you're hying to count has the same nurnber of elements as a set
that's easy to coun! look for a 1-1 correspondence between the set you have and the "easy" set.

A partition of a positive integer n is a decomposition of n into a sum of positive integers (not
necessarily distinct), where we don't care about the order of the integers in the sum. Many
problems involving partitions can be solved using Ferrers diagrams.

Here are some general problem-solving strategies that are applicable to constructive counting:

If doing the entire problem at once seems too complicated to handle, try
breaking it up into manageable parts.

Concept:

Concept:
/1-t-¡=E

Sometimes, it's easier to think about how you
that you don't want to count and subtract the
the total.

would construct the items
count of these items from

Concept:

\_.r===ñ

When stuck on a ;'find a general formula"-§pe problem, experiment with
some small values, and look for a pattern.
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CHAPTER 4. CONSTRUCTIVE COUNTING AND 1-1 CORRESPONDENCES

i1.30 Show that the number of partitions of an integer ll into at most / parts is equal to the number oj
partitions of n into parts of at most r.

4.31 Lef f(n,k) denote the number of partitions of n into k parts. Prove that

f(n,k) = f(n - 1.,k - 1) + f(n-k,k).

4.32 On the Cartesian plane, Johnny wants to travel from (0, 0) to (5, 1), and he wants to pass through
al1 twelve lattice points (.r, y) such that 0 <x < 5and0 < y< 1. On each step, Johnny can go from one
point to any other point via the straight line segment connecting the two points. How many paths are

there from (0,0) to (5, 1), passing through a1l 12 points, such that the path never crosses itself? One such
path is shown below. (Source: HMMT)

(s,1)

(0,0)

4.33 Eight knights are randomly placed on a chessboard (not necessarily on distinct squares). A knight
on a given square attacks al1 the squares that can be reached by moving either (1) two squares up or
down followed by one square left or right, or (2) two squares left or right followed by one square up
or down. Find the probability that every square, occupied or not, is attacked by some knight. (Source;
HMMT) Hints: 331

4.34 A true-false test has 10 questions. Suppose that ifyou answer any five questions "true" and the
remaining five questions "false," then your score is guaranteed to be at least four. How many answer
keys are there for which this is fire? (Source: HMMT) Hints:34, L76

4.35 In how many ways can 4 purple balls and 4 green ba11s be placed into a 4 x 4 grid such that even-
row and column contains one purple ball and one green ball? Only one ball may be placed in each
box, and rotations and reflections of a single configuration are considered different. (Source: HMMT)
Hints: 109, 198

4.36 How many 4 x 4 matrices whose entries are each 1 or -1 are such that the sum of the entries in
each row is 0 and the sum of the entries in each column is 0? (Source; AIME) Hinfs:94,24

4.37 A lattice point is a poi¡t (:r, y) such that ¡ and y are both integers. Suppose we color each of the
lattice points within the square 0 < x,! < 10 either black or white. Find the number of colorings in
which each of the 100 unit squares (bounded by the colored lattice points) has exactly two white vertices.
Hints:107

4.38 10 points in the plane are given, with no 3 coilinear. 4 distinct segments joining pairs of these
points are chosen at random, all such segments being equally likely. Find the probability that some 3 of
the segments form a triangle whose vertices are among the 10 given points. (Source: AIME)
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CHAPTER 5. THE PIGEONHOLE PRINCIPLE

CHAPTER 5
The Pigeonhole Principle

5.1 Introduction

Once again, we have a simple concept with a fancy name: the Pigeonhole Principle. It actually has a

fancier name, the Dirichlet Principle, after the German mathematician Johann Peter Gustav Lejeune

Dirichlet, and an even fancier name, the Dirichlet Box Principle, but it is usually referred to (in the

United States) as the Pigeonhole Principle.

Imagine a mailroom with a bunch of small mailboxes (sometimes called pigeonholes). If we have,

say, 100 mailboxes in the room, and 101 letters arrived today, then we know that at least 2 of the letters

must go in the same pigeonhole. More generally, if there are more letters than pigeonholes, then some

pigeonhole must get more than one letter. That's really all there is to itl

Although the Pigeonhole Principle may seem "obvious," it is extremely useful in solving a wide
variety of counting problems.

5.2 lt's Just Common Sense!

,,

Problem 5.1: Suppose that I have 5 balls and 4 boxes.
boxes, at least one box must contain more than 1 ba1l.

The Pigeonhole Principle couldn't be more simple. It merely states that if we have more objects than

slots to place them in, then at least one slot must contain more than one object.
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CHAPTEB 5. THE PIGEONHOLE PRINCIPLE

Problem 5.3: We wish to prove that given any 6 integers, there are 2 of them whose differenc¿ s
divisible by 5.

(a) Since we want to prove that at least 2 of 6 items share a property, how many "boxes" will -...:

need in order to apply the Pigeonhole Principle?

(b) Given that we are considering di\.isibitity by 5, what would be a natural choice for our boxesl
(c) Finish the problem.

Problem 5.4: Given a unit square and 5 points in the square, we wish to prove that there must exist :
pair of these points that are at most 1A/2 distance apart.
(a) we have 5 points and we wish to show that a pair oI them har.e some property. How manr

"boxes" will we need io apply the Pigeonhole Principle?

How can we choose our boxes?

How does our choice of boxes in (b) force two points in the same box to be at most lE/2 distance
apart?

(b)

(c)

Problem 5.5: A group of 25 people are at a party.
shake hands with each other. Prove that, at the
shaken hands with the same number o{ people.

Over the course of the parry some of the attendees
end of the party, there exist two guests that have

Remember, the general idea of the Pigeonhole Principle is that we har.e more balls than boxes, sc
some box must contain more than one ball. Often the main difficultv is trying to decide what the "balls
and the "boxes" are.

Problem 5.2: I have a drawer with a large number of white, brow,n, and black socks. How many
socks do I have to pul1 out of the drawer in order to ensure that I get a matching pair?

Solutionfor Probler¿ 5.2: Since we want two socks of the same color, it makes sense to think of "colors" as
our "boxes" for this problem. For example, we can imagine having 3 boxes labeled ',White,,, ,,Brown,'

and "Black," and as we pull socks out of the drawer, we put them into the appropriate box.

White Brown ttuL
Since we have 3 colors-white, brown, and black-we need 4 "balls," or socks, to put into these

boxes in order to ensure that one box has at least two. For example, if we only pull out 3 socks, we
might pu11 out one of each color (as shown above), and thus r,r,ould have 1 sock in each box. If we puli
out a 4ih sock, it will have to go into one of the boxes, and then that box will have 2 socks (a matching
pair). Therefore, we need to pu114 socks out of the drawer. !
Problem 5.3: Prove that given any 6 integers, there are 2 of them whose difference is divisible by 5.

Black
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CHAPTER 5. THE PIGEONHOLE PRINCIPLE

Concept: Sometimes, before applying the Pigeonhole Principle, we have to do a 
I

Iittle work to reduce the number of boxes. i

5.3.1

5.3.2

(u)

(b)*

Prove that given any 1L integers, there wi11be at least two with the same units digit.

What is the maximum number of rooks that can be placed on an 8 x 8 chessboard such that ea&

row and column contains no more than 1 rook?

\Alhat is the maximum number of bishops that can be placed on an 8 x 8 chessboard such that ea&

diagonal contains no more than 1 bishop? Hints: 265

5,3.3 Prove that among any I positive integers that sum to 20, there must be a group of them that sum§

to 4.

,5.3.4 What is the size of the largest subset S of 11,2,3,...,501such that no pair of disti¡ct elements ct

S has a sum divisible by 7? (Source: AMC)

, 5.3.5 Prove the general version of Problem 5.3: given any Positive integer rl, and any set of n * 1

integers, there are 2 of them whose difference is divisible by n.

5.3.6 A subset B of the set of integers from 1 to 100, inclusive, has the property that no two elements ct

B sum to 125. \Arhat is the maximum possible number of elements in B? (Source: AMC) Hints: 115,2i{

5.4 More Advanced Pigeonhole Problems

Problem 5.6: Suppose that I place 25 bal1s into 6 boxes. Prove that one of the boxes must contain at'

least 5 balis.

P¡oblem 5.8: There are 20 children in a small mountain town.
grand{ather, and each child has two distinct grandfathers.

(a) How many grandfathers can there be in the town?

Any

ft) Prove that there are 14 children who have a common grandfather.

(Source: ToT)
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CHAPTER 5. THE PIGEONHOLE PRINCIPLE

seems reasonable, and it works with n = 25 andk = 6 as in Problem 5.6. So why is this not quiE

corIect?

The problem is that f might not be an integer' The best we can do in our initial step is to Pr:

I 
, - 1 

I uum in each box, where lxl is the ,,floor,, function, meaning the greatest integer less than o:
Lkl
equal to x. Then our leftover ball(s) ensure that at least one box will have l' i 

1 

] 
+ r uar''

This is the best that we can do, as follows: Suppose thar n > k' and write n - ,';:li 
r' where 4 is :

positive integer and 0 < r < k is the remainder of (n-l)lk' Then we can place l-O ]-l balls in th¿

tn_1t tn-'ll
first r+ 1 boxesand lf lUrfftil 

the remaining k - (r+ 1)boxes' Noting that L-o I = 4' wesee th¿:

this account for ai1 n balls:

(r+1)(4+1)+(k- (r +1))q= (r +1+k- (r+ 1))q + (r+ 1)

=kq+r+1'
=(n-1)+1=n.

Finaily, if n < k, then there's nothing to prove: we can only guarantee at least l box in some box E

The generalized Pigeon}ole Principle: If we place n balli into kboxes'

then at least one box must contain ,t l*tt L+] + I balls'

Don't memorize this formula! It's better to use your common sense when

applying the Pigeonhole Principle than to memorize a somewhat obscure

formula.

problem 5.8: rhere are 20 children in a small mountain town. Any two of them ha.ve a common

gr""dir,h"r, , a each child has two distinct grandfathe¡s. Prove that there are L4 children who have

Important:

V
Concept:

t_¡=€

á common grandfather- (Source: ToT)

solution for problem 5.g: since we'te tfying to prove that a group of things all share some ProPefty in

common-specifically, that 14 children have a co*rr.,o.r g.unáfuth"r-this problem is a good candidate

io, ,n" nig"Jnhole principle. But how can we use it? It seems clear that the children are our "balls" and

ih" g.ur,a"futt 
"r, 

are our 
-,,boxes,,, 

but we only have 20 children. How are we going to be able to get 11

of them in the same "box"?

The first thing to observe is that we actually have 40 "ba11s," since each child has two distinct

g;;á;h;. In áther words, each child is going to be placed into two boxes, one per grandfather. so

we need to be able to use Pigeonhole in a wáy sich thai piacing 40 balls into the boxes will result in at

least 14 balls in one box.

Now we look at the numbers. we might notice that if we only had 39 balls, we c-ould. get exactly 13

bails in each of 3 boxes. We could also iáok at our formula from above: placing 40 balls into k boxes
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CHAPTER 5. THE PIGEONHOLE PRINCIPLE

A set with 10 elements has 210 = 1024 subsets, since each of the 10 elements can either be in or n-'t
in any particular subset. However, we can exclude the empty set (since it has sum 0) and the sub.er
consisting of the entire set (since there cannot be another subset disjoint to this). Therefore we rea--r

have only 1,024 - 2 = 1022 subsets to consider.

Now we count the number of possible sums. The smallest possible sum is 10, coming from ir:
subset {10}, and the largest possible sum is

91. +92+...+99 = 9(95) = 355,

coming from the subset {91,92,...,99}. Therefore, there are 855 - 10 + 1 = 846 possible sums of subse=
consisting of between 1 and 9 elements of the set.

Since 1022 > 846, we are guaranteed @y the Pigeonhole Principle) that at least 2 different subse=
have the same sum. But how do we know that these subsets are disjoint?

We don't know that they're disjoint, but it's not a problem! Simply remove any elements that th*
two subsets have in common. Since we're removing the same elements, and the subsets originally ha;
the same sum, they will still have the same sum after we remove the (same) elements from each. tr

Note that 10 elements is the minimum value for which this argument works. If we had starte¿
with only 9 elements, then we would have 2e -2 = 510 subsets, but the sums could range from 10 tc

92+...+99=8(95.5)=764,sotherewouidbe764-10+1=T55possiblesums.Hence,sínce510<755
we couldn't apply the Pigeonhole Principle. (This doesn't mean that the result is not true for 9 elements.
it iust means that our proof wouldn't work.)

Problem 5.10: Aimee plays at least one game of chess a day for eight weeks, but she plays no more
than 11 games in any 7-day period. Show that there is some period of consecutive days in which she
plays exactly 23 games.

Solution for Problem 5.10: It's not immediately clear how to apply the Pigeonhole Principle to th.L.

problem. For one thing, we want to show that there's a period in which Aimee plays era ctly 23 games
but the Pigeonhole Principle, as we typically use it, only guarantees at least sotne arnount of something.
Is there another way that we can think about thls problem so that it is equivalent to showing that there
are at least 2 of something?

Suppose that we keep a running total of the number of games that Aimee plays through the first ;

days, where 0 < i < 56. Specifically, let gi be the total number of games that she plays starting at Day 1

and going through Day l; note that 96 = 0 since she plays 0 games in the first 0 days. The statement that
we want to prove-that Aimee played exactly 23 games during some period-is equivalent to showing
that there must exist integers 0 <i < j< 56suchthatg;-g¡ = 23. This should remind you a bit oi
Problem 5.3, so we'll try to use a similar approach.

Consider the remainders when each g, is divided by 23. The possible values of these remainders are
the first 23 nonnegative integers: {0,1,. .. ,22]¡. Eight weeks is 56 days, thus by the Pigeonhole Principle,
there mustbe some remainder r which occurs on three different days. Againby the Pigeonhole Principle,
two of these days must be at most 4 weeks apart: if there were more than 4 weeks between the first and
second days and the second and third days, then there would be more than 8 weeks between the first
and third, which is too long. So we know that there exist integers 0 <i. j< 56, with j-l < 28, such
that 8i - g¡ is a multiple of 23. But we need to show that itis exactly 23.
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CHAPTER 5. THE PIGEONHOLE PRINCIPLE

L Don't memo rize a "forrnrtla" for the Pigeonhole lormula (like the one above). Instead, use

common sense when applying it.

} \A4:renever we have to show that "a pair" of objects or "at least 2" üecfs share some propert-r,

that,s our cue to think about the Pigeonhole Principle. More generally, it can often be used io
show "at least n " objects share some property, or in problems that ask you to find the maximr¡n
number of objects satisfying some property.

) Sometimes, before applying the Pigeonhoie Principle, we have to do a little work to reduce tlp
number of boxes.

) Usua1ly, the tricky part of applying the Pigeonhole Principle to a problem is identifying what a-rt

the "boxes" and the "balls."

5.11 My sock drawer has lots of socks of four different colors (white, black, brown, and blue). How
many socks do I have to pu1l out to ensute:

(a) at least one matching pair?

(b) at least two matching pairs?

5.12 The Aopslandia Grand Championship lacrosse tournament has 38 teams and lasts for severa]

weeks. Each team will play each other team exactly once over the course of the tournament. Pror-e

that, at any point in the tournament, there must be two teams who have completed the same numbs'
of games.

5,L3 Prove that for any set of five positive integers, there are three of them whose sum is divisible t'r-

J.

5.14 10 students took a 3s-question history test. The test was very hard: each question was solved br
exactly 1 student. If we know that at least one student got exactly 1 question right, at least one student

got exactly 2 questions right, and at least one student got exactiy 3 questions right, show that there mu<t

be a student that got at least 5 questions right.

5.15 The farmer's market down the street from my house has 7 different kinds of apples: Golden

Delicious, Fuji, Granny Smith, Gala, Mclntosh, Cortiand, and Braeburn. I want to bake a pie, for which
I need 5 apples of the same t)?e (because a pie with more than one §pe of apple, wel1, that wouid be

disgusting).

(a) If I randomly select apples, how many do I need to buy to guarantee that I will be able to bake mr
pie?

(b) If I want to bake 3 pies, now how many randomly-selected apples do I have to buy?

5.16 Prove that for any set of 11 positive integers, there is some nonempty subset of them whose sum

is divisible by 11.
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CHAPTER 6. CONSTRUCTIVE EXPECTATION

CHAPTER 6

Constructive Expectation

6.1 Introduction

Recall that expected value is essentially a_ weighted average, where the values of different outcomes o:an event are weighted based on their,probability. If every"outcome is equally likely, then the expecteúvalue is just the average of the possible outcomés.

In many situations, we can just use our basic definition of expected value:

r(x) = Iprxlv«x»,
i

where P(X¡) is the probability of event & occurring, and v(X¡) is the value of outcome X¡.

,H?Y:Y"" often it is quite difficult to list all of the possible outcomes directly, determine thei¡probabilities and values, and compute the expectation in th'e usual manner. Instead, fá many problems.we can take a more constructive approach to computing expectation.
The key fact that we will use is that we can sum expected values across different events. lzvhat u,emean by this is that if we have a series of events that áccur in succession, then the 

"*p""ted 
value oithe sum of the outcomes of the events is equal to the sum of the expected values of the outcomes ofthe individual events. This is frue even if ihe events are not independent of one another. This is apowerful tool that lets us find expected values of complicated events by breakingit 

"; áo*.lrrto -o."manageabie sub-events.

This is a bit hard to desc¡ibe in words, but hopefuny a few probrems w r make the concept crear.

Extraf
ir+nür*r+
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However, we could have done this more simply by 199king at each coin seParateiy The penny hr'

,,, i#ü';;j;;; iói.lañ = !. ái-ir-ry, *,á;ir"r has áxpected value l, the dime has expectd

value * = 5, and tt 
" 

q.,urt", t l, "ip".i"á-"íí"" 3 Therefore, ihe expected value when we flip them

arl is jii+r+f =+--20.s.a

Concept: The expected value of a sum of events is the sum of the expected values

, O-a ofthernlwidual1""lb

CHAPTER 6. CONSTRUCTIVE EXPECTATION

sotution fot Probtem 6 .2: Rathet than list all 36 poslibl" ":t::T": 1": '::'P:tl t* tf :#:""."r",.1':"*.1§
i;':';#'{;:tr:K;ft #;ii;ffi;;':l; iit izit l1i,'.I^'l^-lj;,H",'""""'l:'.t"'iT::l{
*il:x"r:i::ffiJ,ffiffi;?;i=?1,"á,r,"*pectedvarueof thetotalof 10diceis10(3.s) =35 -
pro¡rem o.á' lntr''á stá*"ár" dlo*áá*" ot'ir'á ilil;áv f^'¡úl rY 8:T:-:1":Y:^':^'X,::
l'ü,?iT"":';""1'"ffiffi";,-;;"ü,rh:*;:*"s:1'r9?l:li::':,*::H"'1fl il,*l1
fr1T;i',',i!Ü'.T:il:"##;""#il;"'$'ó,oog'"9"i"9.*3i::1".*,TT:^T":uiT:":1
;i:.i8:3#:r,-#;"":ffi;;'#ft;;;iil-ñ; or spr,-r"g 91. what is the expected value of

the contestant's winnings?

Solution t'or Problem 6'3: Thete are four possible outcomes:

q

. The contestant wins nothing with probability 
1O'

L17 17
o The contestant wins $1,000 with probability 

10 
' 
20 = 200

l',Ll.
¡ The contestant wins $6,000 with probability 10 

' 
10 

= 100'

o The contestant wins $11,000 with probabiiity * * =

Therefore, the expected value of her win is:

ftt*ol 
* 

ffitsrooo¡ 
* frtsuoool 

* fits"ooo) =

1

200'

17($1000) + 2(q6j00) + $11000 
= 

$ni%ofo 
= Sroo.

We can do this more simply by calculating the exp":91 "*::f S" i"C"1']:LT:::iy::#:,:l:
,"r}ilüi"^:I:ffi ;#lit;:;ñ¡;"T"+(6tooor=$rooT:"'::::,ll::,:T:T::1J3:T
it;rffi','; 

'iffiffi="t;óó, uri*" r'""" to ráirember that the contestant onlv sets the bonus spin

1 - -.
ivith probability rt. Therefore, the overall expected value is $100 * f;tsroooi = $100 + $100 = $200' ¡
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CHAPTER 6, CONSTRUCTIVE EXPECTATION

We can isolate the r terms in each row. For example, in the first row of the above equation f.-r

E(X + Y), we have
p1q1\ + pú2x1 + "' + plqn\ = p$t(q + "' + qn) = p§|'

since 41 * ... + q|1 = 1. Similarly' the f terms in the second row sum lo p2x2' artd so on. Thus all the :
terms, summed over all rows, give

P$t + Pzxz + " + P,"x^ = E(X).

We can also isolate the y terms, but this time by column. For example, in the first column of tlt
above equation for E(X + Y), we have

Pt4'tAt +PzTth+ "' + pmq1y1 = qtyúfi + "' + pn) = q1.y1,

since p1 * ... + pm = 1. Similarly, the y terms in the second column sum to 4zyz, and so on Thus a1l tlx
y terms, summed over all columns, Sive

q'ty1 + qzYz + "' + q"Y, = E(Y).

This shows thai E(X + Y) = E(X) + E(Y). ¡

Don't worry if you didn't fo11ow all of the details in the above proof-the
algebra used is somewhat complicated. It's vastly more important that

you understand the concePt: we can sum exPectations across seParate

events to get the exPectation of the combined event.

In fact, the result E(X + Y) = E(X) + E(Y) is still true even if X and Y are dependent events, as we sa\
as example of in Problem 6.3. It is a lot more difficult to prove, however: the algebra is a lot messier.

and we'd need to int¡oduce notation that we haven't yet developed. So we're not going to try to pror e

this here, but you can accept it as true from now on.

This is not limited to just 2 events: we can sum any number of events in the same fashion. To

summarize:

E(Xt + Xz + ... + &) = E(Xi) + E(X2) + " + E(X¡).

..|1..j#1,:.;i.líi:;:::,3í.ééfl,:;

6,2,-1. I flip 20 coins. I then discard the coins that come up heads, and re-fliP those that come up tails.

What is the expected number of coins that again come up tails?

6.2.2

(a) If I roll one green die and two blue dice, what is the expected value of the sum of the vaiues of the

blue dice minus the value of the green die?

Concept:
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CHAPTER 6. CONSTRUCTIVE EXPECTATION

Problem 6.8: There are 650 special points inside a circle of radius 16. You have a flat washer in the
shape of an armulus (the region between two concentric circles), which has an inside radius of 2 and
a¡r outside radius o{ 3. Our goal is to show that it is always possible to place the washer so that it
covers up at least 10 of the special points.
(a) Suppose we can show that the expected number of points covered by a randomly-placed washer

is at least 9. Explain why this wouid prove our result that it is possible to choose a placement of
the washer that covers at least 10 points.

(b) Let G be one of the special points. Determine the probability that G is covered by a randomly-
placed washer.

(c) Compute the expected number of points covered by a randomly-placed washer, a¡d finish the
problem.

(Sowce: PSS)

Just as we can often count items by consbucting them and keeping track of the number of choices
along the way, we can also often compute expectations using a similar constructive method. As we sar.r-
in Problem 6.4, we have a very powe¡ful tool: we can sum expectations, even across dependent events.

This first problem of this section shows the power of this idea.

Solution for Problem 6.5: There are several tactics that we might think about. For instance, we might tn
to count the number of sequences with 1 pair of heads, with 2 pairs of heads, and so on, but this quickly
devolves into a really messy PIE calculation. (If you don't believe this, try it and see.)

We might also try a straightforward constructive counting argument, but the problem with this
approach is that the probabilities of the existence of pairs of heads in consecutive locations are not
independent. For example, if the first two flips are HH, then there's a j chance of a second pair of heads
in the next slot (in other words, of the first three flips being HHH), but if the first two flipJ are T! then
there's 0 chance of a pair of heads in the next slot (since the first three flips will be eithe; TTH or TTT).
This makes it hard to construct the sequences without a 1ot of messy casáwork.

Fortunately, we don't have to do that!

Any particular pai¡ of consecutive flips is HH with probability ]. Therefore, each pair of consecutive
flips contributes ] to the overall expected va1ue. Since there are 9 p-ossible pairs of consecutive flips that
could be HH, the expected number of pairs of consecutive flips of heads is 9(]) = ,9.

If_ you don't quite buy this explanation, there's another way to think about it. We know that there
are 210 = 1024 possible sequences of ten coin flips (and they'ré ai1 equally likely). We also know that
28 = 256 of them begin with HH (since we have 2ihoices for Lach of the reÁaining 8 flips). Similarly, for
anv particular choice of consecutive flips, we know that 256 of the sequences have HH in that position
(for example, there are 256 sequences of the form ???lHlH?????, where ? can be anything), since we have
2 choices for each of the other 8 positions.

Problem 6.5: I flip a coin 10 times. 144rat is the expected number of pairs of consecutive tosses that
come up heads? (For example, the sequence THHTHHHTHH has 4 pairs of consecutive HH's.)

iJb
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CHAPTER 6. CONSTRUCTIVE EXPECTATION

Now we have to determine how many interior points there are. We can see that there is 1 interir:r
point near the top (at the bottom of the 2"d row o{ triangles), then 2 interior points in the next row, ar¡i
so on, down to n - 2 points in the bottom interior row. Íherefore there are

1+...+(n-2)= (n-2)(n-1)

interior points. Since each of these points contributes fr to the expected number of circles, we get ¿
final answer of

(n-2)(n-1,)

Li 1458

One very powerful application of expected value is in geometric optimization problems, as in the
next example.

Extra! One of the common denominators I haz:e found is that expectations rise aboae that which is4+4:,+ expected. - George W. Bush

Problem 6.8: There are 650 special points insiáe a circle of radius 16. You have a flat w¿sher in the
shape ofan annulus (the region between two concentric circles), which has an inside radius of 2 a¡rd
an outside radius of 3. Show that itjs.always possible to place the washer so that it covers up at least
10 of the special points. (Source: pSS)

Solution for Ptoblem 6.8: Tlis is an existence problem. We wish to show that there exists some positior.
at which we can place the washer so that it covers at least 10 points. But why is this related to eipectec
value?

suppose that we could compute the expected number of poiats covered by a randomiy-placec
washer, and that this value was Sreater than 9. \ /hat could we 

-conclude 
? lf t}re áaerage washer covers

more than 9 points, then there must exist som¿ washer that covers 10 or more points. 
"Because, 

if even-
washer covered 9 or fewer, how could the average possibly be greater than 9?

So our goal is to show that the expected value of the number of points covered by a washer placei
at-random is greater than 9. If we can show this, then we can conclude that there must be some place
where we can put the washer to cover 10 or more points. Note that this is essentially a geometric version
of the Pigeonhole Principle.

. -.Calculating 
this expected value, however, doesn't appear to be so simpre. For starters, there a¡e

infinitely many possible places to put the washer! Evaluiting each possible position of the washer will
literally take forever, since there are an infinite number of prices wé ca., put rt.

. However, there are only 650 points in the circle we have to consider. Therefore, we can take a¡
:t"Ti"l!,y*]"-:nt approach, sim ar to what we did in problem 6.s. Recali in that problem, we noted
that i of the total sequences of flips had a pair of consecutive heads in any particulár position, and u.e
could sum this over each possible-position to get a total expected vulue of ! co.,secuti'u'e pairs of heads.
We'll do the same thing here: we'll calculate, ior each posiible special poiit, the portion'of the washer
placements in which that special point is covered.

138



681

¿{IeM .,{ur SurJnp q8nel I }ErIt sauru Jo raqrunu aq+ Jo anp^ papadxa aql $ l¿qr\ .{lp,\4. .ir-u ,§t
au4] 'rar{lo ,iue 1e q8nel 1,uop I (daurno[ fru qsrin¡ I uar{,vr passpd 1 asnoq snor,rard aq+ o¡ a,sr}rr{
8ur¡edu¡o: pup 'aurur ol ñs I asnor{ }srrJ aql Srrredu¡oJ sapnlJur srqJ) .q8npl 

I 
,asnoq mor,ra:d

¡olor aurps aql R 1eq¡ asnoq e ssed I aunt qJeE .aI¿I alB punorp ¡1u.r,r pue (6¿ aqr ¡o auo) asnoq .iu
I 'lrlopr.rpr tp sloloJ rnoJ Jo auo palurud sr q)Eg .a{q e Jo aJoqs aqt Buop sasnoq 0Z aJe arar{l

tr s¡urod pnads 0I +seal lp
lPr.rl laqsp-\r arl+ Jo luautareld aruos aq }sn1Ü aJaq+ '6 ueql .ra¡ea,r3 sr aIJrrJ Jno Jo uor¡rod aruos sr
lpqt laqsp-\r pare¡d dpropue.r u fq pa.ra,roc s¡urod lenads Jo raqrunu aql Jo anlu^ pa¡radxa ar¡

r 9f. '€00 6 e -:-:- 
'n'sl

pa:e1d Í¡uopuer e lq paraaot slurod prcads Jo raqumu aqt Jo anIE^ pa¡radxa IE+ol aql /oS

pa:e¡d ,{¡uopue.r u fq pa;aaot s¡urod prcads ¡o raqumu arI+ Jo anpa papadxa aq} of I9€/g saf
¡urod ¡ercads qrea /aroJarar{J .I9€/g sI lqod +eql sra^o) rar{se^/r pateld f¡uropuu, , ¡r.[ .6,
aq1 's¡urod ¡enads 699 aq1 ¡o Lpua ¡oC .paunu¿xa a.ry\ d aql lnoqe prcads Burqlou s,a.raq1 ta^a.§oH

'I9el9 = @tSdl@O sr.raqse,l,r pareld f¡uropuu.r e lq pa:a,roc sr ¿ f1r
ar{+ 'aroJaJaqr '¿ Ja^oJ o+ paJeld aq ueo ¡r qorqrvr ur EaJ¿ 49 E sr aJaro tar{spM rno Jo :a1uar aq1 a:qd
a^ r{rl{ 

^ 
ln earp ulgc = ur6l a!|¡o 1n6 .¡urod pDads uaatS e sra^oJ

ruoplreJ +p paJeld raqser* e leql ltrlrquqo,rd aq1 alenlu^a uEf, a-^4. ,^roN

rIrI.* al)r' e sr 'qurod 1e,ads ¡a¡o¡ rarlse* alo a^eq #J;H fjr}Y"'; ueJ Jarlse-^4. Jno Jo Jalual aql r{Jtqm ur ,uor8a¡ 
,,a1qrssod,, aql leql a}ou

am'(ga1¡e ua,roqs sr qrrq.r.r ¡o a¡du.rexa ue) a¡rrtr aq1 aprsur slurod ¡enads
3ur.ra,ro¡ alJJn arp apTslno paJalual .rar{sp^ E Jo &mqrssod arü +unoJJe
o+ut a{u} oJ 'Ual +e u^{orls s¿ ,aIJrrJ aq} Jo aJuaraJurnJJrJ arI+ reau qurod
¡eoads Suuaaor 114s ]nq 'alJrr) Ieurur rno aprslno 1sn[ sr JaqsEM arll Jo
ralual aql qJrqm ur saser asoql apnlJur o1 InJaJeJ aq lsnu aM .aq 

lr{Bru¡
Jar{se.^a aq+ Jo ralual aql araqm uor8ar IIeJa^o aql JaprsuoJ a.rr .troN

'ug = uzz - u¿g sI earE s+r os 'Z snrpE¡ Jo alurJ p pue € snrp¿r Jo alJJrJ E uaaMlaq af,uaJaglp ¡l
sr uor9a: aq¡ .uor8a.r 

,,ssatlns,, aql Jo Ea¡E aql ¡snf sr ¿ .razrot o1 JapJo rn + uor5auSSaJ)nS,--,;.-,,-_^. lsnur JaTISEM aq+ Jo Jalual aLIl r{Jrq.u ur uor8a.r aql Jo eaJe aq+ ,aroJaraql

'uor8ar ,,ssaorns,, aql rn Jalual slr a^€q Ilr,lr d lurod s,ra.rloc 1eq¡ .raqse-rr jc
'flas.raauoc pue '¿ lurod ra,roc ¡r,n uor8a¡ ,,ssaJJns,, aq+ ln sr Jalual asü¡a
raqse.u .{uy '¿ ¡urod rno s.raaoJ JaqsEM aLIl os ,uor8ar 

,,ssao:ns,, aqt apr-
M ralual qlrm umorls sr raqsem u ,1q8r.r 

¡e arnprd aql ur ,aldurexa .ro1

'lq8u aLD ol uru¡8erp aql rn sal)r1r paqsep faeaq 4
uaarr,rlaq uor8ar aql sr lr pue 'uor8al ,,ssaJf,ns,, lno ¡er graa arvr (¿ urog -ie-:
slrun € pue ¿ uaa,r,r¡aq uor8ar aql) uorgal srq¿ de.ue q¡un € uul¡1 aJorn c
lnq'1urod aql ru ot¡ Áetre slrun ¿ lseal lE sr raqsem aq+ Jo ra¡uar aql ¡ .i¡ll
pup Jr Jaqspl/r aql fq pa.raaor sr ¿ 

.slurod pnads rno Jo auo aq cJ lal raqsP-\{

A]f^Llcnu-LsNoc sNotlvlcldxf cNIt/!r!ns 'e 9



CHAPTER 6. CONSTRUCTIVE EXPECTATION

6.3.2 George has six ropes. He chooses two of the twelve loose ends at random (possibly fror:
same rope), and ties them together, leaving ten loose ends. He again chooses two loose ends at rar.irt
and ioins them, and so on, until there a¡e no loose ends. Find, with proof, the expected value t : tr'
number of loops George ends up with. (Source: USAMTS)

6.3.3 One fair 6-sided die is rolled; 1et ¿ denote the numbe¡ that comes up. We then roll n dic¿ s
the sum of the resulting a numbers be b. Finally, we roll ú dice, and let c be the sum of the result:-: t
numbers. Find the expected value of c. (Source: HMMT)

6.3.4* Sl points are inside a square of side length 1. Prove that we can cover some three of them':-¡ ¿
circle with radiu s 

+ 
. Hints; 67 , 123

6.3.5* For any subset S e \L,2,...,15), call a number n an anchor for S tf n and n +#(S) are b:'=
members of S, where #(S) denotes the number of members of S. Find the average number of arc:.:e
over all possible subsets S e 11,2,...,15). (Source: HMMT) Hints: 235

6.4* A Coat With Many Patches (Reprise)

Problem 6.9: Recall Problem 3.24:

I have a coat with area 5. The coat has 5 patches on it. Each patch has area at least 2.5.
Prove that 2 patches exist with common area of at least 1. (Source: PSS)

Our goal is to prove it directly using expected value, wiihout using PIE.

(a) Define a function / such that /(p) is the number of patches containing point p. It p is chosen at
random, compute a lower bound for E(f (p)).

(b) Sn"* *" (l) > 2ft - 3 for any integer k such that 0 < /< < 5.

use parts (a) and tuj to show that E (fy)) = 
,

Use part (c) to show that some pair of patches must have common area at least 1.

(c)

(d)

Let's revisit the coat-and-patches problem from Chapter 3. You may recal1 that when we considerec
this problem earlier, we solved it using a series of PIE computations. Now let's find a compietel-,
different solution, using expected va1ue.

Problem 6.9: Recall Problem 3.24:

I have a coat with area 5. The coat has 5 patches on it. Each patch has area at least 2.5.
Prove that 2 patches exist with common area of at least 1. (Source: PSS)

Prove it directly using expected value, without usrng PIE,

¡

t
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CHAPTER 6. CONSTRUCTIVE EXPECTATION

Now we can compute our bound ,.' . (fy')),

= 2E( f (p\t - 3 > 2\2.s) - 3 = 2.

Therefore, the expected value of the number of pairs of patches that contain a randomly chosen point t
at least 2, and as described at the beginning of óur solution, this means that some pair of patches mr-r't

overlap with an area of at least 1. tr

6.5 Summary

To compute the expected value of a complicated event, think about breaking uP the event iniL-\

easier-tá-manage components. If the value of an event is the sum of values of several intermediate

components, tli"., *"iu.t compute the expected value of each component and sum them to get

the expected value of the overal'l event.

More precisely, rf Xt, X2,. . ., X, are events, then

E(Xt+Xz+" +x,,) = E(Xr)+E(X2)+" + E(X,,)'

This works even if the events are not independent: the expected value of a sum of events is alwavs

the sum of the expected values of the individual events'

Expected value can also be used in geometric optimization problems'

6.10 I have mn identical game pieces. Each one is a square with side length 2 inches. Each piece has

a quarter circle drawn or-r lt *itñ its center at one of the corners and with radius 1. If I put the game

pieces in an m x n grid, what is the expected value of the number of full circles I form?

6.11 A 10-digit binary number with four 1's is chosen at random. what is its expected value?

6.12 Five ba11s numbered 1 through 5 are in a bin. You draw them out one at a time, without

replacement. Every time the numbár on the drawn ball matches the number of the draw, you win a

dollar. For e*ampl", if you draw ball #2 on the second draw, you win a dol1ar for that draw. lAhat is

the expected amount of your winnings?

6.13 The Happy Animais Kennel has 18 cages in a row. It will allocate 6 to dogs and 12 to cats. Let A

be the numbei oi times in the row of cages that a dog cage and a cat cage are adjacent. For example, in

the arrangemen f cdcdddcdccccccdccc, we have A = 8 . Given that the kennel will choose an arlangement

at randori from among all the possible arrangements, find the expected value of á.

'(fY')) 
>Eere\-3\
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6.19* There are several circles inside a square with side length 1. The sum of the circumferences

the circles is 10. Prove that thete exfuts a line that intersects at least 4 of the circles. Hints: 43, 17

6.20* Astandard 52-card deck is shuffled, and cards are turned over one-at-a-time starting with
top card. \ trhat is the expected number of cards that will be turned over before we see the first
(Recall that there are 4 Aces in the deck). Hints:325,52

6.21* In a competition, there are a contestants and b judges, where b > 3 is an odd integer. Each i
rates each contestant as either "pa ss" ot " fa1l." Suppose that k isflt-b", .""n ,1. t:l-r", *o
their ratings coincide for at most k contestants. Prove that ; a - 

* (Source: IMO) Hints: 202
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SiIAPTER 7, DISTRIBUTIONS

7.2 Basic Distributions

Problem 7.1: A working crew of 4 people just finished wo:k on your yard. You pay the crers

$200. using ten $20 bills. In how many ways can the four crew members divide the 10 bills among
themselves if each member must get at least one bill? Assume the crew members are distinct, but the
$20 bills are not.

Problem 7.4: How many quadruples (a,b, c, d) of posifive integers are solutions to a + b + c + d = 17?

The basic idea of a dist¡ibution is simple. We have a bunch of indistinguishable objects that we n'ar:
to distribute into distinguishable pi1es. We don't care which specific objects end up in each pile, ju-.:
how many of them end up in each pi1e.

Here's a basic example:

Problem 7.1: A working crew of 4 people just finished work on your yard. You pay the cre$, i
$200, using ien $20 bi1ls. In how many ways can the four crew members divide the 10 bills among I

themselves if each member must get at least one bill? Assume the crew members are distinct, but l
the $20 bills are not. 

s

Solution for Problem 7.1: T}ris is a distribution problem because we don't care which specific $20 bills go
to which people; we only care abouthow many S20 bills each person gets. The bills are indistinguishable,
but the people are distinguishable.

It is possible to solve this problem through a lengthy casework process. This is somewhat tedious,
but leads to the interesting Hockey Stick identity. (See Chapter 13 of lntroduction to Counting ü Probabilitu
if you'd like to see this method.) Here, we will show only the faster, more clever solution.

Imagine that we arrange the ten $20 bills in a row, where each "$" denotes a bill:

$s$$$$$$$$

We don't care which specific bi11s each person receives, since the bills are indistinguishable. We onl,v
care how many bi11s each person receives. So we can assume that the first person takes some number
of bil1s from the left side of the row, then the next person takes some bil1s from those remaining at the
left side of the row, and so on. For exampie, if person #1 gets $80, person #2 gets $40, person #3 gets

Problem 7.2: In how many ways can I pass out 11 identical lollipops to 6 kids, if each kid must receile
at leasi one iollipop?

Problem 7.3: ln how many ways can we distribute r indistinguishable items into k distinguishable
boxes, if each box must contain at least one item?
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CHAPTER 7. DISTRIBUTIONS

/n-l\
Since there are l, , lwaysto choosek- l of then - 1slots to receive dividers, we conclude;

vr - r/
the 1-1 correspondence described above that the* .." (; - ,') -rys to distribute the items. rl

We can summarize our results as follows:

The number of ways to distribute z indistinguishable items into k dis-
tinguishable boxes, where each box must receive at least one item, is

Distributions often turn up in counting the number of solutions to certain Diophantine equatiorx.
(A Diophantine equation is an equation in which we are looking for integer solutions.) Let's see ao
example.

Problem 7.4: Howmanyquadrupleslo,b,,r,i¡"ipo-iaiiittegá.sar"rolutionstoa+b+c+d=w.l
4.*@§efñ8&rt&Érrtt¡:;¡;,&na¿i.

Solution for Problem 7.4: This is exactly the same as distributing 17 indistinguishable items into {
distinguishable boxes, with the condition that each box must get at least one item. The "items" are
copies of the number 1, and the "boxes" are a, b, c, and d. For example, setting a = 6 means that rre
are placing six of the "L" "items" into the "box" labeled "a." The fact that we are looking for posiüse
integer solutions means that each "box" must receive at least one 1.

More formally, we have the correspondences

!Positive integer solutions to (1 +b+c+d = 171 ,- {ways 
to distribute l7 1's inio four variables' 

¡' lsuch that e¿ch variable receives at least one 1J

e [Ways to insert 3 dividers into 16 slots]

Therefore there *" (T) = 560 solutions. ¡

Important:v
(;-i)

Concept: As we often say, don't memorize the aüá"" ?oi-"luf l¡stead, understand

C=É the concept that leads to the formula. That is, when presented with a
distribution problem, your thought process should be to think of dividers
and s1ots, not to try to recall the above formula from memory.

liffii!}W&''
7.2,7 ln how many ways can 10 kindergarten children eat 30 cookies, if each child must eat at least
one cookie?

7.2.2 Suppose the head of my 4-person work crew insists that she get at least 3 of the 10 $20 bills that
n'ill be distributed to the crew. Each of the other members will get at least one. In how many ways can
the bills be distributed?
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CHAPTER 7, DISTRIBUTIONS

ln the last section, we discussed the basic distribution problem of counting the nurnber of n'ar-s
distribute z indistinguishable items into k distinguishable boxes, such that each box has at leasi ¡
item. However, many distribution problems will have different conditions on the types of allorr
distributions. The most common of these is eliminating the condition that every box must conta-ir
least one item. Let's see an example of this:

Problem 7.5: How many solutions does the equation z + w+x+y +z = 21, have, where a,wtr,y,:
are all nonnegative integers?

Solution for Problem 7.5: We can' t use our straightforward "dividers and slots" approach here, beca:cr
we have to ailow for the fact that some of the variables might be 0. But can we convet it to one oi cq'
earlier distributions?

Concept:
l.\-
\J,:

14/hen faced with a problem that you don't initially know how to do, try
to conved it into a problem that you do know how to do.

I4¡hat if we force the variables to be positive?

Letzt'=z:+1,w'=w+ 1, and so on. If r¡,w,... arenonnegative,tirLena',w',... are positive, and ricr
versa. Then

a'+w'+x'+y'+z'= (o+ 1) + (w+1)+ (x+1)+(y+1) + (z+1)=(u+w+x+y+z)+S=26.

Aha-now we want to count the poslúiue solutions to u' + w' + x' + y' + z' = 26. We know how to do thaf

As usual, we could write this as a correspondence:

{Nonnegative solutions to z, + u+x+y+z=21]t <-> {Positive solutions to r¡, +w,+x,+y,+2, = ?.6

e {Ways to insert 4 dividers into 25 slots}

lzs\
50 rhere rr" (o J 

= 12650 solutions. ¡

We can use our insight from Problem 7.5 to solve the general form of this distribution probiem.

Solution for Problem 7.6: Herc's thte general idea:

1. Add k balls to our gtoup of ba11s, so that we have n + k balls total.

2. Distribute the n + k bails into the k boxes, leaving no box empty.

3. Remove 1bai1 from each box.

Problem 7.6: In how many ways can we distribute n indistinguishable balls into k distinguishable
boxes, if some box(es) may remain empty?
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CHAPTER 7. DISTRIBUTIONS

So the number of possible distributions is

(7) . (T) . (T) . (T) . (?) . 6 . (?) = ** +'\36s + 715 + 330 + 126 + 35 + 5 = 4e56

There doesn't seem to be any good way to simplify this answer to a nicer expression, so there prob--.-'r

vr'asn't a simpler method that we could have used. ¡

Solution for Problem 7.8: It rnigtit be temPting to use this quick "shortcut":

If you get a "nice" answer, then there's often a relatively simp le combinato-

rial explanation for the simpler answer, and a reiatively simple method of
obtairing it. However, if you get an "ug1y" answer, then there's probably

not a simple method for getting it.

The number of ways to distribute 15 candies to 4 kids is (';) = 364.

But only ] of these have the oldest kid with the most candy (by

symmetry), so the number of distributions satisfying the condition
of the problem is 36414 = 9"1.

Concept:

i

i

i

I

I

Bogus Solution:

¡ossible distributions.

This doesn't work since not every distribution will have a unique kid with the most candy-the::
might be a tie. For example, if I gave 5 to each of the first two kids, 3 to the third kid, and 2 to th.:

tast kid, then there's no kid with more pieces than any other kid. This isn't allowed: the oldest kii
must have more pieces than any other kid. If we could somehow compute the number of distributiorr'

that have a unique kid with thl most candy, then it would be valid to take ] of that number to get ou:

answer. Unfortunately, there's no easy way to comPute that.

so instead, once again, we appeal to casework. This time, our cases will be determined by the

number of candies that we give to the oldest (greedy) kid

We can give the oldest kid any amount of candies between 5 and 12 inclusive. If we give him more

than 12, thá we don't have enough candy left so that each of the other 3 kids gets at least one piece.

On the other hand, if we give him 4 or fewer, then there are at least 11 pieces left, so by the Pigeonhole

Principle at least one of the other 3 kids must receive at least 4 pieces, which is not allowed.

If we give the olclest kid between 7 and 12 pieces (inclusive), then we can distribute the rest of the

candy to ihe other 3 kids however we want, since there's no way to give one of these kids as many as

the oldest. (Remember that each kid must get at least 1 piece.) So these cases give

(;).(;) . .l;)= 1+3+6+10+15+21.=56

az
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CHAPTER 7. DISTRIBUTIONS

7.3.1 Find the number of nonnegative integer solutions to the equation 7l + a + u + x + y = ZZ.

7.3.2

(a) Pat wants to buy four donuts from an ample supply of three tlpes of donuts: glazed, chocolae-
and powdered. How many different selections are possible?

(b) Pat is to select six cookies from a tray containing only chocolate chip, oatmeal, and peanut but'ir
cookies. There are at least six of each of these three kinds of cookies on the tray. How many differat
assortments of six cookies can be selected?

(Source: AMC)

7.3.3 Compute the number of distinct ways in which 77 one-dollar bills can be distributed to 7 people
so that no person receives less than $10. (Source: ARML)

7.3,4 Find the number of integer solutions to the equation r +y +z=lOif x,y,andzate all less th¿:
20.

7.3.5* Find the number of positive integer solutions to z¿, + x + y + z <25. Hints: 39, 12

7.3.6* Andrew has 10 candy bars, 10 packages of je11y beans, 10 lollipops, and 10 packs of chet'in:
gum, and Andrew has two sisters. In how many ways can Andrew distribute the candies between hi.
sisters, so that each sister gets 20 items total? Hints: 256

7.4 More Complicated Distribution Problems

liws-

Problem 7.11: How many cubic pollnomials /(r) with posi§ve integer coefficients a¡e there such that

f(1) = e?

Problem 7.10: A triomino game piece has three numbers on it from 1 to 9. Two pieces are considered
different if they have different numbers; in other wo¡ds, the order of the numbers on the piece doesn't
matter. For example, the two triominos shown below are considered the same. A piece may have a
number repeated, or have the same numbe¡ in all three positions. How many distinct triomino Pieces
are there?

Problem 7.12: How many 15-digit base 4 numbers are there with eight 0's that appear in 3 groups?
(For example, 230001330210000 is one such number; the 3 groups are 000, 0, and 0000')
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CHAPTER 7, DISTRIBUTIONS

through 9 on them), the casework would be really messy, but the distribution-based solution would i
quick. (You can see for yourself in the Exercises.)

Distributions can sometimes show up in unusual places, as we see in the next problem.

Problem 7.11: How many cubic polyrromials /(x) with positive integer coefficients are there such
thatf(\=al

Solution for Problem 7.L1.: We car. write a such a cubic polynomial as /(x) = ax3 + bx2 + cr. + d. Pluggr:g
in¡ = l gives us 9 = a+b +c+d. So it's justa distribution problem! More formally, we have a 1-l
correspondence:

J Polynomials f (r) = ax1 , bxz + cx - d with\ ..
ipositive integer coefficients such that/( I ) = 9J fPositive integer solutions to 9 = s+b+c+dl

fWays to insert 3 dividers into 8 slots]

Thus there are (!) = 56 suc| cuUic polynomials. I
Problem 7.12: How many 15-digit base 4 numbers are there with eight 0's that appear in 3
(For example, 230001330210000 is one such number; the 3 groups are 000, 0, and 0000.)

Solution for Problem 7.12: We think about this problem constructively: how would we build such :
number? There are basically three steps:

Decide how to break up the 0's into 3 groups;

Decide where to place the groups of 0's within the 15-digit number;

Choose the remaining non-O digits.

We can count the number of choices for each step, then multiply (since the steps are independent) tc
get the total number of such numbers.

Firs! we break up the 0's into 3 groups. If the sizes of the grorps are a,b, c, then we must have n,b, :
all positive anda+b+c = 8, the total number of 0's. This is abasic distribution problem: it's the same

as inserting 2 dividers into 7 possible slots, so there are (l) = 21ways that we can break up the 0's intc
3 groups.

Second, we have to place these groups into the 15-digit number. If 8 of the digits are 0, then the other
7 digits are non-O. We can think of ihe 3 groups of 0's as dividers that divide the non-0 digits apart. The
slightly hicky thing to be aware of is that we cannot place a group of 0's at the beginning, but we car.

place it at the end. So there are 7 possible slots for our 3 groups (6 in the middle and 1 at the right end ),

hence there are (1) = 35 -ays tfrat we can insert the digits.

Fina11y, there are 7 non-O digits, and each can be !,2, or 3. So there are 37 = 2187 choices for the
non-O digits.

Combining our counts, we see that there are (21)(35)(21,87) = 1,,607,445 such numbers. tr
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CHAPTER 7. DISTBIBUTIONS

7.5 Summary

Distributions are problems involving placing indistinguishable items into distinguishable boxe

If each box must contain a positive number of items, we can think of arranging the items in r
row, and placing dividers between the items to divide them into the requisite number of bores-

Thinking of the problem in this way, we see that if there are fl items to divide into k boxes, tla
we must piace k - 1 dividers among n - 1 slots, and thus the¡e a* (i - l) ,*rrble distributior¡r

\k - 1/'

If some of the boxes may be empty, then add L extra item to each box, and take advantage of tl:
1-L correspondences:

f Distributions of n items to k boxes,¡ f Distributions of n+kitems tokboxes,l
lwithsomebox(es)possiblyemptyf-lwithnoboxesemptyI

r+ {Insertionof k - 1 dividers into n + k - 1 slots}.

Don't memorize the formulas. Understand where they come from. That is to say: when presenteil
with a distribution problem, your thought process should be to think of dividers and slots, not b
try to recall a formula from memory.

Distribution problems with extra conditions may require casework or some other clever manipu-
lation to convefi it to a distribution problem that we know how to do.

Many problems are distribution problems in disguise.

Here are some general problem-solving concepts that we saw in this chapter:

Concepl When faced with a problem that you don't initia§ know how to do, try i

I@ 9T'":1111*1" jl9ti1h',ll.,1d'§:."Pyl"9' - l

If you get a "nice" answer, then there's often a relatively simple combinato-
rial explanation for the simpler answer, and a relatively simple method of
obtaining it. However, if you get an "rtgly" answer, then there's probably
not a simple method for getting it.

Concept:

Concept: I/y'hen dealing with restrictions, it usually is best to deal with
A-É rest¡ictive condition fi¡st.

the most 
I

,. )

Solving a problem via two different methods is a good way to check your
answer.
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CHAPTERT. OISTRIBUTIONS

Hints: 305

7.2j Amy flipped a coin 20 times, and got the sequence THHTTTHTTHHTHTTTTTHH' She I

that3timásaheadsfollowedaheads,T-timesatailsfollowedatails,4timesatailsfolloweda
and 5 times a heads followed a tails. How many such sequences are possible? rlints:.326,261

7.24*Abi¡hasl0redballsand8blueballs.Werandomlydrawout6balls,oneata.time,rrit
."ju.e.rr".,t. V[hat is the probability that, at some point, we choose two consecutive balls that are

7.25* lf a certain lotery, T balls are drawn at random from r¡ balls numbered 1 through tz lt
probability that no pair oíconsecutive numbers is drawn equals the probability of drawing exactlr

pair of coÁsecutive numbers, fin d n. (Source: Mandelbrot) Hints: 61
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ST.APTER 8. MATHEMATICAL INDUCTION

This is the basis of mathematical induction. Suppose that we wish to prove some mathematica
statement that involves a positive integer n. Each "domino" represents theitatement for a particuk:
value of l1: the first domino is the statement where n = 1, the second domino is the statement whe=
tt = 2, and so on. If we can prove that the first statement (where n = 1) is true, and that each stateme=
irrLplies the next one, then we can knock all the dominos down, and thus prove that the statement !
true for all pos¡tive integers n.

In this chapter we'1l formally state the principle of mathematical induction, and use it in sever¿
examples. Mathematical induction is one of the most common proof techniques that we use in counti¡s
problems, and you should master it until it becomes almost second nature.

Let's begin with a simple example:

Problem 8.1: Prove, using mathematical induction, that for any positive integer,l, the sum of thpositive integer n, the sum of the

first n positive integers equah 411!
2

Solution for Problem 8.1: TLris proof, as with every proof that uses mathematical induction, consists cr
two parts.

A base case (this is analogous to "knocking over the first domino,,)

An inductive step (this is analogous to "proving that each domino knocks over the next one,,)

So let's do these two steps.

Bas,e case'. We need to prove the statement f or n = L. The sum of the first 1 positive integers is just 1, ar.;
indeed, this equals

1(1 + 1)

2

lnductitte step: We assume that the statement is true for some positive integer k; that is, we assume the:
the sum of the {irst t positive integers t $. fnis assumption is called the inductive hypothesis
Now we wish to show that the statement is allso true for k + i, ,o *" 

"o^pute 
the sum of the first k - -

positive integers. Since we will want to use our inductive hypothesis, we break up the sum of the firs:
k + 1 positive integers into the sum of the first k positive integers plus k + 1:

1 +2 +... + k + (k + 1) = (1 + 2+... + k) + (k + 1).

Now we can use our inductive hypothesis. We have assumed that the sum of the first k positive integen
is $, so we can substitute it into the previous equation:

L + 2 + - -.+ (k + 1) = Y!*+ (k + 1).

The rest is just aigebra:

1 + z +...+ (k + 1) = \!;!+ (k+ 1) =

2=r=1'

k(k+1)+2(k+1) (k+1)(k+2) (k+1)((k+1)+1)
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CHAPTER 8. MATHEMATICAL INDUCTION

Problem 8.2: Prove that for any positive integer z,

13 +23 +...+n3 = (-J.+2+...+n)2.

Solution for Problem 8.2: Once again, we have a statement that is claimed for a1l positive integers n.
is your cue to think about using induction.

Concept:

L.rc
IÁ[henever you have a
consider mathematical
statement.

statement that depends
induction as a possible

on a positive tnteger n,
method of proving the

Let's prove the problem statement using induction.

Base case: We see immediately that 13 = (1)2.

lnductioe step: Assume that 13 + 23 +-.-+lé = (l +2+..' + k)2 (recall that this is called the ind
hypothesis). We now evaluate13 +23 +...+lé + (k + 1)3. Since we want to use the inductive
we should try to rewrite this expression in terms of an expression present in the inductive

13 +23 +...+ É + (k + 1)3 = (13+23+...+/é)+(k+1)3.

Now we can apply the inductive hypothesis to replace (13 + 23 + . . . + /é):

(13+23+...+É)+(k+1)3= (1 +2+... +k)2 + (k+ 1)3.

We need to simplify the right side, so we apply the result from Problem 8.1 and a bit of algebra:

(1 +2+...+k)z+(k+1)3=lk(k-+1)f +(k+1)3 -k2(k+1)2+4(k+1)3 -t4+6té+.1té+L2k+I\21 44
It would be nice if that numerator factored. Usually, factoring a degree 4 polynomial is a bit of a chorc-
However, here we have a huge clue. Remember that at the end of the day, we want the right side b
equal (1 + 2 + ... + (k + 1))2, and ihat this is equal to ((*+t\t<+z¡¡2. So we hope that the numerator factoE;

as (k + 1)2(k + 2)2. Indeed, it does:

ka + 6lé + l3l¿ +12k+4 (lé + 2k + 1)(k2 + 4k + 4) I
--+\

Finally, we use Problem 8.1 again to finish:

L3 + 23 +... +/á + tr+ r)3 = ( =(1 +2+...+k+(k+1))2.

We have proven our base case and our inducüve step, so the result is true for all positive integers a,
l

Induction can be used in geometric problems too! Anything that depends on a positive integer r is
potentially a candidate for mathematical induction.

(k+2(k+1)
2

¡)

+2))(k
2

(k+1
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CHAPTER 8. MATHEMATICAL INDUCTION

Problem 8,4: Let n be a positive integer. One square of a2n x2n chessboard is removed-
Prove that the remaining chessboard can be tiied with 3-square L-shaped tiles like the one

shown at right.

Solution for Problem 8.4: Aswe've seen before, we have a statement that we must Prove to be true i¡r
positive integers. This makes it a good candidate for induction.

Base case: If we take a21 x21 chessboard-that is, a 2 x 2 chessboard-and remove a square, 1\

left wiII be exactly the same shape as an L-shaped tile (although perhaps rotated). So we can

place a single tile to cover the board, and we're done.

lnductiae step: Assume that we can tile any 2k x 2ft chessboard with any square removed, where i: ¿
is a positive integer. We'Il consider a2k+1 x 2k+L chessboa¡d with a square removed, and see if u-e

tile it.

We need to reduce the 2k*1 x 2k*1 problem down to tine 2! x 2k problem, which we assume @r
inductive hypothesis) that we can solve. \iVhat's the easiest way to do that? It seems like the e¿-ral
way is to divide our 2&*1 x 2k*1 board into 4 boards of size 2k x2k by slicing it horizontally and vertie-:1r
through the middle:

But only one of our four 2l x 2k boards is going to have a square missing; the other three will ix
complete. We can use the inductive hypothesis to tile whichever quadrant contains the missing squart
but what do we do about the other three? If only each of them had a square missing.... Is there =

systematic way we can remove a square from each of the three complete 2k x 2ft boards?

Yes! "Remove" the squares closest to the center of the original 2t+1 x 2l*1 board
by covering them with a tile, as shown in the picture to the right. Now we're
set! We place that tile in the center, and what's left is four boards of size 2k x2k,
each with a square missing. We can tile them, using the inductive hypothesis, and
when we do so the result is a tiling of the original 2r*1 x 2e+1 board.

Therefore, by induction, for all positive integers n, we can tile a2" x2" boatd
with any square removed. tr

Sometimes the result for k is not enough io prove the result for k + 1. We say that we are using
strong induction when we must assume the result for all 1 < i < k in order to prove the result for k + 1.

The info¡mal way to think of strong induction is that it takes the combined strength of all of the first i
dominos in order to knock over the (k + 1)"t domino. Strong inducüon is not that common, but as lve
rvill see in the next problem, it is occasionally necessary.

tbr,
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CHAPTER 8. MATHEMATICAL INDUCTION

Consider all of the numbers that we write on the board as the f-stone pile is repeatedly split
these 7 stones are in piles of 1 stone each. By the inductive hypothesis, the sum of the these nud
is (j). Similarly, as we repeatedly split the (k - )-stone pile into piles of 1 stone each, the sum cf
numbers written is (u;'). rn"r" numbe¡s may get written in any order on the blackboard (since
might choose to split the piles in any order), but the order that the numbers are written on the
does not alter the sum-

Therefore, the total of the numbers on the blackboard will be

We can simplify this expression:

2

k(k-1,) /k\= 't = l'>l'- \./
In particular, note that all of the f terms canceied, meaning that the sum doesn't depend on the
choice of a split into two piles.

Thus, by induction, if we start with fl stones, then we will end up with a sum of (i). In
when r = 25, the sum is (T) = SOO. ¡

The previous problem is an example of recursion, which we will see more of in Chapter 10.

As we mentioned, there is a very clever counting solution to the problem that does not requt"
induction. Again, suppose we start with a pile of n stones. We connect every pair of stones by a stri-re
Since there are (i) pairs of stones, we will need (!) strings.

Supposewedividetherstonesintoapileoffstonesandapileofn-fstones,forsomeinteger
0 < i . r. We then cut all of the strings between stones in different piles. Notice that l(n - / strings gÉ
cut, which is exactly the number that gets written on the blackboard.

We continue splitting piles and cutting strings between stones i¡r different piles. Again, note that d
each split, the number of strings being cut always equals the number written on the blackboa¡d.

At the end of the process, each stone is in its own pile, so all of the (i) strings have been cut. But
the total number of strings that have been cut equals the sum of the numbers on the blackboardl So tlp
sum of the numbers on the blackboard must be (!).

Problem 8.6: In a tatge iiáta, re people are starding so that for each person, the distances to all the
other people are different. At a given signal, each person fires a water pistoi and hits the person who
is closest to them. lÁ/hen n is odd, prove that there is at least one person who is left dry.

i(t<- i)+(l).(r;')

¡)(

jk

g

1)

itk - i\ +(j). (-r') =,,0- it + t!! +

2jk-2j2 + F - j+

k-j-1)
2

-k-lk+1"+l

roo
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CHAPTER 8. MATHEMATICAL INDUCTION

8.9 Prove that

for al1 positive integers r.

8.10 Prove that 7r - 1 is a multiple of 6 for all positive integers n'

8.11 Prove that
2! ' 4\ ' " ' (2n)t > ((n + 1)t)"

for all positive integers ,1.

8.l22npoints(where/4>lisapositiveinteger)aregiveninspace'suchthatno.3ofthemare':n
, ii"". Wi draw n2 + 1 line segmáts connecting pairs of these points. Prove that there must exist '
triangle whose vertices are 3 of the points and whose sides a¡e 3 of the drawn segments'

g.13 A plane is divided into regions by a finite number of lines. show that it is possible to coior tit
resuiting regions with two colorl, whitá and black, so that any two bordering regions are of opPos-r"

"o1o.r. 
]T*'o regions border if and only if their common boundary is a line segment; in particula:

regions that onl, meet at a single point do not border')

8.14 Prove the genelalized triangle inequali§: if x1,x2,' ",xn are real numbers' then

lxl+x2+ "+x,l 5 l¡rl + l¡zl +"'+l.rnl.

Hints: 40, 2

8.15 prove that 22r + 32'¡ + 52r is divisible by 19 for all positive integers n. Hints: 174

g.16 For any set T whose elements are positive integers, define /(T) to be the square of the product of

the elements of T. For example, if T = {t 3,6}, then f (T) = (L '3' o¡z - 182 = 324'

Foranypositiveintegern,considerallnonemp§subsetsSofll'2'"''nlthatdonotcontaint$'o
.or,""crtirr"'irrtegers. PrÑe that the sum of aII the /(S)'s of these subsets is (n + 1¡t - 1' Hints: 268

g.17* An international conference consists of ,1 rePfesentatives from each of n different countries'

pro,r" tf,ui tf," n2 people can be seated around a largá round table such that' tf A and B are two distinct

representatives f¡om-the same country, then the piople sitting to the immediate left of A and to the

immediate left of B are from different countries Hints: 335, 38

g.1g* suppose there are r identical cars at different Points on a circular track, and that each car needs

"*u"tty 
t g'uiton of gas to make it around the track. Initially, the total amount of gas,in all of the cars'

zuet tanf.Jis exact1y"1 gallon. Show that there is one car thát can make it counterclockwise around the

iackby collecting ull át th" gurotine from each car that it passes as it moves. Hi¡1s271,,41.
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CHAPTER 9, FIBONACCI NUMBERS

(c)

(d)
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o
CHAPTER \T,

Fibonacci Numbers

9|1. Introduction

L, L,2, 3,s, 8, 73,21,, 34, 55, 89, 744,233, 377, 610,987,. . .

\iVhat is special about the above sequence of numbers? This sequence is one of the most famo'::
sequences of positive integers in all of mathematics. If you've seen it before, you probably know hc'.
these numbers are generated, but if not, I don't want to spoil the surprise!

In this chapter, we'll explore some of the fascinating ProPerties of this sequence.

9.2 A Motivating Problem

Problem 9.1: Mike is climbing a flight of 10 stairs. With each step, he will climb either 1 or 2 stairs. In
how many different ways can he climb the flight of stairs?

(a) Try it for l,2,3,or4slaiuls. You results should appear in the list of numbers above.

(b) Solve the problem by casework, where the cases depend on the number of 2-stair steps that Mike
takes.

Let /(n) be the number of ways to clirnb n steps. How is /(n)
Solve the problem by writing an expression for /(r) in terms oi f (n - 1) and f(n - 2), and using

this expression, together with your values for /(1) and f (2) from part (a), to compute /(10)'

related to /(n * 1) and f (n - 2)?
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CHAPTER 9. FIBONACCI NUMBERS

Now we can count the number of ways to climb larger staircases:

f(3) = f(2)+/(1) = 2+1. = 3,

f(4) = f(:3) + f(2) = 3+2 = 5,

f(5) = f(4)+ f(3) = 5+3 = 8,

f(:o) -- f(s)+ f(4) = 8+s = 13,

f(7) = Í(6)+f(s) = 13+8 = 21.,

f(8) = f(7)+ f(6) = 21'+13 = 34,

f(e) = f(8)+ f(7) = 34+21 = 55,

f(10) = f(g)+f(s) = 55+34 = 8e.

Once again, we see that there are 89 ways to climb a 10-stair staircase. !
If we list /(1),/(2), f(3),..., then we (almost) get the sequence that opened this chapter:

1,2,3,5,8,13,21.,34,55,89, . . . .

Each number in the sequence (after the first two) is the sum of the two numbers imrnediately before =
2 = 1, + 1,, 3 = 2 + 1, 5 = 3 + 2, and so on.

The only thing that's different from the sequence on page l72is that the sequence on page 172 ha-.

an extra 1 at the start. We can add this 1 to our example, though, without any difficulty. If there are .

stairs, then there's only 1 way to climb this staircase: do nothing! So /(0) = 1 makes sense. Also note

thatf(2) =/(1)+/(0) = 1 + 1 = 2, so that our equation /(n) = f (n - t) + f (n - 2) holds for all positive
integers n - 2.

When we add this first 1 to our sequence, we get the sequence that we first saw at the start of the

chapter:
1,,1,2,3,5,8,13,21,,34,55,89, . . . .

These numbers are ca1led the Fibonacci numbers, in honor of the Italian mathematician Leonardo oi
Pisa, whose nickname was "Fibonacci," and who first published the sequence of numbers in his Llü¿¡

sbaci tt:. 1202.

We've seen that each Fibonacci number is the sum of the previous two Fibonacci numbers. We ca¡t

write this using a more formal definition.

We §pically denote sequences using a variabie with a subscript, such as

41,42,43,....

Thus, c1 is the first number in the sequence, a2 is the second number in the sequence, and so on.

Sometimes we'11 start our lists with a¡ instead of a1, so that our sequence would be

A0,41,42,....

The Fibonacci numbers are defined by Ft = 1, Fz = 1, and Fn = Fn-t + F,-z fot all positive integers
n > 2. So, for example,
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CHAPTER 9. FIBONACCI NUMBERS

Problem 9.4: In how many ways can we tile a 2 x n checkerboard with z tiles of size 1x 2, such
each tile covers exactly two

Problem 9.5: Prove that for any k > 1,

Fr+F:+Fs*"'*F2¡a1

Problem 9.6: Prove that for all positive integers n >- 1,

Fl+Fl+...+*,=F,F,*t.

As we will see in this section, the Fibonacci numbers pop up in a lot of different contexts in countjri
problems. We'1l start with a classic example.

Problem 9.2: An adult pair of rabbits is in an enclosed yard. Every month, every adult pair of rabbic
produces a pair of offspring, which grows to adulthood in 2 months and then begins itself to produce
offspring. How many pairs of rabbits will there be after a year? (Assume that rabbits never die.)

Solution for Problem 9.2: We can experiment and make a tab1e. We use the facts that every month:

Every adult pair has a pair of newborn offrpring;

Every pair of newborns from last month becomes a pair of child rabbits this month;

Every pair of child rabbits from last month becomes a pair of adult rabbits this month.

Using these facts, we can generate a tabie:

le with r¿ = 6 is shown below.

Exla!
n+rl+r+ '+

Leonardo of Pisa a.k.a. Fibonacci
It is not universally agreed upon how Leonardo of Pisa got the nickname "Fibonacci. " It
is generally thought to be a shorteniag of "filius Bonacci," which means "son of Bonacci, "
although it is unclear whether Bonacci was a farnily name or simply a nickname (meaning
perhaps "lucky" or "good natured"). The Fibonacci numbers were not named after
Fibonacci r:ntil long after his death, by the l9th-century French mathematicia¡ Edouard
Lucas (who also has a series of numbers named after him, as you will see in an Exercise
later in the chapter). See the book's links page on page vi for links to sources for the
above a¡d more complete biograph-ical i¡formation on Fibonacci.
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CHAPTER9. FIBONACCI NUMBERS

Sidenote:
Na

Problem 9.2 is exactly the problem that Fibonacci himself first studied in
his wotk Liber abaci in 1202. One translation of the original problem from
Liber abaci reads:

A certain man put a pair of rabbits in a place surrounded on all
sides by a wall. How many pairs of rabbits can be produced
f¡om that pair in a year if it is supposed that every month
each pair begets a new pair which from the second month on
becomes productive?

(Source: MacTutor History of Mathematics)

Problem 9.3: How many subsets of 1L,2,.. .,n) have no two consecutive integers as elements?

Solution for Problem 9.3: One idea might be to do a nasty PIE calculation to compute the number c
subsets that do have at least two consecutive elements. But try it for about 5 minutes and you'll see th.ai
it's pretty ugly.

Another idea to try some small values of n, and look for a pattern.

Concept:

\ir-
When trying to find or prove something for a1t

some small values of r, and look for a pattem.
positive integerc n, try

If n = 1, then there are 2 valid subsets: 0 and {1}. (Don't forget about 0!)

If n = 2, then there are 3 valid subsets: 0, {1}, and {2}.

If n = 3, then there are 5 valid subsets: 0, [1[, {2}, {3}, and {1,3}.

If n = 4, then there are 8 valid subsets: 0, {1}, l2l, {3\, {4]¡,11,,31, {1,,4]1, and {2,4]1.

So far, Íor n = 1,2,3,4, . . ., we have 2,3,5,8 . . .-those are Fibonacci numbers!

Let s, denote what we're hying to count: the number of subsets of {1,2,...,nlwithrto two consecu-
tive elements. It sure looks like the s, are the Fibonacci numbers, meaning that we want to try to shor§
that 

sn=sn r+sn-z

for all n > 2.

So let's think about it a little bit more carefully. Is there any way that we can build the valid subsets
of {1,2, . . . ,n1from the valid subsets of {1,2,. . . ,n - 1l and 11,2,... ,n - 2l?

Let's go back to our example and list the subsets for n = 2,3,4:

Valid subsets of 11,2, . . . ,nl
2
J

4

0,t1.t,{21
0, tlt,t2t, {3t,Í1,,31
0, l1l, lzt, {3t, t4\, {1, 3t, lt, 4t, t2, 4l
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CHAPTER 9. FIBONACCI NUMBERS

rhereare3waystorilea2x3b*,0, 
EEEI Et EtE|

There are 5 ways to tile a 2 x 4 board:

Hmmm. . . the first four values of z give us L,2,3,5 possible tilings. So the answer might be the
Fibonacci numbers. With this goal in mind, we try to think about how tilings of the 2 x ¿ board can be
built from tilings of the 2 x (n * 1) and2x (n - 2) boards.

Suppose n > 2, and think about how we mighi place the tile which covers the lower-Ieft square.
There are two cases.

Case 1: Place the tile aertically. Then we must tile the remaining 2 x (n - 1) board.

Case 1 Case 2

Case 2: Place the tile horizontally. Then we must also place a horizontal tile covering the upper-left square
(since that's the only way to cover that square). \ivhat's left is a 2 x (n - 2) board that we must ti1e.

So we see that

(# of ways to tile a 2 x nboard) = (# of ways to tile a2 x (n - 1) board)

+ (# of ways to tile a 2 x (r't - 2) board).

If we 1et f, denote the number of ways to tile a 2 x n board, then we see the familiar equation

t¡1 = t¡ 1I t¡-2.

Once again, Fibonacci numbers! But as usual, we need to check the initial conditions.

There's only one way to tile a2xLboard, so f1 = 1. There are two ways to tile a 2 x 2 board (either
place both tiles horizontally or both tiles vertically), so tz = 2.

Since 11 = F2, t2 = fr, and tn -- tn 1* tn 2, we see that in general, tn = Fn+-t, which is the (,1 + 1)"
Fibonacci number. ¡

The Fibonacci numbers satisfy lots and lots of identities. Here's a fairly simple one:

Problem 9.5: Prove that for any k > 1,

F1 + F3 + F5 t "' 'l F2¡a1 = l¡*2.
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CHAPTER 9. FIBONACCI NUMBERS

Problem 9.6: Prove that for all positive integers n 2 L,

rl + Fl + ...+ Ff, = p,p,*,.

Solution for Problem 9.6: There are two basic ways we can approach this: we can try to
algebraically with an induction proof, or we can try to look for iclever counting argument.
the induction proof here.

possible paths that the ray can take, if it reflects exactly 3 times:

Hon' many different paths can the ray take if it reflects exactly 9 times?

pra..i:
Lc:

Bsse case: If we letn = 1, we get F? =12 = 1= (1X1) = F1Fr, so the base case holds.

lnductiae step: Assume that the identity is true for some positive integer k. We will write the left si;:
the identity for k + 1:

rl+Fl+...+Ff,+Ff,*r.
All but the final term of this expression can be replaced by F¿F¡.¡1 using the inductive hypothesis, x- .t,have: 

El + . . + Fl + Ff,*, = F¡F¡*1 + Ff,*r.

The right side of the above can be facto¡ed as (F¡ + F¡*1)F¡*1. And what is that expression inside :r:
parentheses? It's F¡ + F¡*1, which by the definition of the Fibonacci numbers is eqrui to F¡*r. Therefr-:.,
the whole expression is simply F¡*2F¡11, and thus we have proved that

Fl+...+tl_,=F¡-f¡*2.

Hence, by induction, the result is proved.

Although the algebraic induction proof was relatively straightforward, it didn't rea11y provide a¡r
insight into zahy the identity is true. For a deeper understanding, we can try to find a .or.riirg u.gr-".r,
that proves the identity. We'll leave this for you as an Exercise. tr

You'll get a chance to see more Fibonacci identities in the Exercises and Challenge P¡oblems. We'll
also revisit identities in general in Chapter 12.

9.3-1 Norman wishes to buy a can of soda costing 75 cents from a vending machine. He has an
unlimited supply of identical nickels (worth 5 cents each) and dimes (worth i0 cents each). In holr-
many different orders can he insert coins into the machine to pay for his soda?

9.3.2 Three sheets of glass are arranged in parallei. A light ray passes through the top sheet, reflects
a number of times between the sheets, and exits the glass. For example, the diágram bó1ow shows the
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CHAPTER 9. FIBONACCI NUIVIBERS

for all n > 2, where Fr = 1 and Fz = 1. Although we can now go ahead and list arbitrarily
Fibonacci numbers using this recursion, it's a bit of a pain to calculate, say, the 100th Fibonacci nr
because we'd have to List out the first 99 Fibonacci numbers in order to find the 100ú. It,d be avr
nice if there were just a formula for F, that we could pfug n - 100 into and get the 100ü
number right away.

The good news is that there is such a formula! The bad news is that, on first glanc e, it's really
Let's work it out.

Solution for Problem 9.7: Let'slist the first twelve Fibonacci numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, rM, . . .

Whe¡e can we even begin our search for a generai formula?

We can start by drawing a graph of the Fibonacci num-
bers F, as a function of n; the graph is shown at the right.
Note that the y-axis is scaled differently than the x-axis,
since otherwise the graph wouldn't fit. We see that F,
grows fast. Really fast. And the fastest-growing ,,nice,,

functions that we know of are exponential functions (hence
the phrase "exponential growth"). So our strategy is to
suppose that the Fibonacci numbers satisfy an exponentiai
expression, and hope that we get lucky. Looking at the
ratio of successive Fibonacci numbers (rounded to three
decimal places), we suspect that we will get lucky:

F"lF"-t Decimal
2
J

4
5
6
7

8

9

10

11

12

1.000
2.000
1.500
1..667

1.600
1..625

1.615
1..619

1..61.8

1.618
1.618

We see that the ratio between consecutive terms of the Fibonacci sequence appears to converge to about
1.618. This means that the Fibonacci sequence appears to converge toward a geometric sequence with
ratio about 1.618. Let's see if we can make this statement more precise.

Problem 9,7: Find a formula forFn, thenú Fibonacci number, where F1 = Fz = 1andF, = Fn_.t+F.
fotalln>2.

1. /1.
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CHAPTER 9. FIBONACCI NUMBERS

Fortunately, we can use a little trick to make the system a lot simpler. Extend the sequence back
term to ,0 = 0. Then our system (using a6 = 0 and ¿r = 1) becomes:

0 = Atcl+ tzcl,
1,=),tct+lzcz.

This simplifies quite nicely:

0=h+tz,
2 = At\ + 16¡ +,ir1r - 16;.

Now solving is fairly simple (if a bit messy). The first equation gives us lz = -lt, and substituting thb
i¡to the second equation gives:

2 = At(-(l- 16¡ + 1t + 16¡.
This simplifies to

l,=3==L.2!s v5
Then plugging ,11 back into 0 = ,11 + ,12, we see that

,1-\6
Thus we conclude that

o" = ,=(, *,fi\'_ I 11- \6)"
\6\2)\6\2)'

We can make it a little bit nicer by factoring, and we leave it in the final (relatively) nice form:

(1 +16),-(1 -16),an=
2\E

tr

Important A closed forrnula for the nü Fibonacci number Fn is

(1 +{.r,-(1 -fO,it_
2,i5

This formula is known as Binet's formula for the Fibonacci numbers, as it was derived by the French
mathematician Jacques Binet in the mid-1800s (although it was certainly known earlier).

For example, Iet's compute Fa and verify that indeed we get F4 = 3. If nothing else, this is good
practice in using the Binomial Theorem.

E _ (1+ \6r -(1 - \6F _ (1 +4ú r30+2016+ 251 -(t -415+30-20\6+25) 43\6- ,\t - = 
1.V5=
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CHAPTER 9, FIBONACCI NUMBERS

Sidenote: .. . co,ntinued from preuious page

.N The golden ratio many nice properties. We have already seen that the
golden ratio is the value to which the ratio of successive Fibonacci numbers
converges, and also that the golden ratio is the positive root of ¡2 - r - 1 = 0.
The golden ratio can also be written as a continued square root as

q=
r----------

t+ {r+ Vr+....

The ratio is also considered an aesthetically-pleasing ratio of
side lengths of a rectangle. For example, the large rectangle
at right has the goiden ratio as the ratio of its side lengths.
Note how we can remove a square from the figure and get
a smaller rectangle with the same ratio of side lengths----can
you figure out why this is so?

Now at least we can use our calculator or computer to determine large Fibonacci numbers. But tle
real power of Binet's formula is in proving some nontrivial Fibonacci identities. Here's an example:

Problem 9.9: Prove that

w]r91e Fr. is the zth Fibonacci nulber.

Solution for Problem 9.9: In otder to simplify the algebra, let I = 1 + V5 and ¿, = 1 - €.

Concept: If the same "ugly" term pops up a lot in an algebraic computation, consider

O+E assigning it a variable name so that your algebra is easier to read and write.

Now we can calculate:

Fn-tF,+t - f?,= t-lY, 
l

F.,F,+, -'1 = (+#)(#) - (Hr
_ (vn-l - tn-1)pn+1 - pn+\-(vn - p11)2

22,(S)

(11211 - vn-lpn+1 -u"rrpn, * lrrn) - 1v2" - 2v" ¡tn + ¡tzn)
22,(S)

Y"-1 Lt"-1(-v2 - Uz + 2u r)
22"(5)

vn-l pt1_t (v _ p)z

I 

-

I I r------- ._

!t+ 1/t+ V1+ V1+...
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CHAPTER 9. FIBONACCI NUMBERS

Before tackling the general case of an identity or equation, it often helps to
play with a simple example or two, in order to get a feel for what's going

Concept If the same "uelv" term ooos uo a lot i¡ an aleebraic coConcept If the same "ugly" term pops up a lot in an algebraic computation, consider

: 
r;lllltll"¡.o_tfa]folat8eUra is easier to read and write.C=a assigningit

9.10 The parking lot outside our building has 12 parking spaces. Compact cars can easily fit within e
single space, but SUVs take up 2 spaces. In how many different ways can the lot be filled?

9.11 For any positive integer z, determine the number of ordered sums of positive integets greatú
than l summing to n. (For example,if n= 6, then the sums arc6,4+2,2+4,3+3,and2+2+2.)

9.t2

(a) Fourteen people sit in a row of 14 chairs, one person per chair. At the sound of a bell, they all are
allowed to change seats, but each person is permitted to move no farthe¡ than one seat from hs
original chair. Each person is noi required to move, and there must be one person per chair in the
rearrangement. The bell sounds; how many rearrangements can the people form?

(b) What is the answer if the 14 people are siiting in chairs around a round table?

9.13 On the planet Venus, female Venusians have a mothe¡ and a father, but male Venusians have onlv
a mother. For any positive integer n, how many ,x-generation ancestors does a male Venusian have?
(1-generation ancestors are parents, 2-generation ancestors are grandparents, 3-generation ancestors are
great grandparents, and so on.)

9.1.4 Prove that for any k > 1,

F1 + F2 + F3 + Fa + "' * F¡ = Fo*, - 1.

9.15 How many r-digit base-4 numbers are there that start with the digit 3 and in which each digit is
exactly one more or one less than the previous digit? (For example, 321010121 is such a 9-digit number. )

9.16 How many paths are there from hex A to hex B in the diagram below, if each step of a path must
be to a hex immediately adjacent on the right? (A sample such path is shown.)

Concept:

190



l.ressaaau sr lasqns aql uo ,,quar.üa1, ,or¡rrrraaro,
o-\q ou,, uoErpuoc aql fqaa aurunapp ol osp ptrn ,"r.r"proá."¡roc sn¡ Jo spepp Srnssrur aql Lq IIIJ o1 nof o1 1, ,.o"r1 a¡4 .r¡rqqn, 

¡o ,rrd p*Báo
at¡ o¡ spuodsa.uo, 0 lasqns aq1 ,re1nc4.red u1 1uq1 a¡á¡".1.rred ¡eur8i:o ar¡ 01) Z qluolu ul uJoq aJaaa. s¡ua.redpuer8 ¡uar€ slr prn .p .¡1ro... * *oq ara,n qua:udpue;8 s1¡,¿ qluour r.4 u¡oq a¡a..vr s+uared-s¡t,11 q1llour ur uroq
se,!r lasqns srql o1 Surpuodsa¡¡o¡ ¡rud ar{+ uaql ,ltt,¿,t;Zl sr }asqns aq}
pue ZI = u ¡ 'aldurexa JoC ,,.aa4 All:ie¡,, s,ned rrfrrrt.rnd n .1..r.ard", \f lu'' 'Z'II !,o +asqn! e 

lerll 
sI ra^rsue aql .6lI a8ed uo uralqo:d aq+ IIpraU ,"¡or)rp¡g

9e /tIZ :stulH ¡g¡¡¡¡y :attnos t allf _ z( pr4l .Gú) 
= (¡_z) +eqt qrns e > zü > Z

'-11*:]'i:,"lli::-1:'] '1"{l 
asoddn5 , o¡ inñb,,o,nqi """il,á'"i.,r rü,,ie !q¡ .,1o1,,p ¡,1 

" ' r- - t- = (r) ,q +Er{l ír ¡o ¡rud leuor¡r,{ ,q+ 
"tornp 

(r) }ai,x raqrünu lear azr4e8a*uou fue ;og

8gI :slurH fiotq¡apuep¡¡ ;allnq5¡

runs alnnJur aqt Jo anle^ aq+ purc (Et5

€Z :stulH eotq¡apuey4¡ :atmq

(?-?)tl
lrnpo.rd aq¡ srrdurls 6II

¿rlnsar srm a'ro,d pue azqe'rauaS no.,( ue3 'rJ raqunu rrrpuoqrc at¡ o¡ pnba osIE se^' .rr?tli]'p

.ut lZ 6 € ''.Í_-+...+-+-+- "IZII

* = (:). (,. (:). 0. (:). (f,)
se.ta. rualqord rrels-ol aql o+ raMsuE ar0 ]Eql ¡ro.,ra.aser Bursn 

^rps 
a^^,I.6 uralqor¿ uI gI.6

sleas Jo 
^^or 

aqr ue¡ sfe¡,r fuuru ¡.roq q .(foq u o¡ ¡xr, 
^- ,r]it;'Ji:irTii::JHi;??Jffifi:il s¡ue,* ¡rr' ou pue (1rr' e o¡ ¡xau,uor aql Jo pua aql ¡, ¡r" ,o; .¡r,á z r*_+"q r¡" ol .írn^ili o¡ ..rrn. ¡1

sEq ral,ar{l ár{t Jo 
^ooJ 

ruo4 aq¿ de¡d e aas o1 dr¡+ plarr e uo sao8 ssep 100qrs l*¡,rr-r1, -3rq y ¿1:i

snltSoud ScNlttvHc



CHAPTER 10. RECURSION

Tt¡ lntd,:rstLutLl rt'tursit¡tt, .t¡otL tnttst.fir'-;t uttLltrsiottLl rtrtLrsitt¡t. - Arlorlyrnous

CHAPTER 1 O
Recursion

10.1 Introduction

The Fibonacci numbers from the last chapter are an example of recursion. \Aihenever we have a sequen-
of numbers in which the next number in the sequence is derived from previous numbers, we have ¿

recursion. For example, with the Fibonacci numbers, we have the recur¡ence relation

Fn=Fn-t+Fn-2, Eo = 0, Fr = 1.

Each Fibonacci number (after the first two) depends on the two previous Fibonacci numbers.

In this chapter, we'11 look at several problems in which we can use ¡ecursion as a solution method
and discuss more generally the spes of problems for which recursion may be useful. In briel whenever
we have a problem in which we have to compute some quantity that can be expressed in terms of a

positive integer n, and we can replace that computation with a computation of the same quantity but
for smaller values (such as n - l, n - 2, etc.), we may be able to use tecutsion to solve the Problem.
This can be a little confusing as an abstract concept, but should become more clear as we work through
several examples.

Later in the chapter, we will explore a special sequence of numbers ca11ed the Catalan numbers.
As we wiII see, these numbers pop up in a surprising number of different counting situations. The

emirent combinatorist Richard Stanley, in his book Enumeratioe Combinatorics: Volume 2 and on its
accompanying website, lists (as of this writing) 149 different mathematical obiects that are counted bv
the Catalan numbers. The items on Stanley's list come from many different branches of mathematics,

and several of these items have deep mathematical significance.

We will examine several problems whose answers involve the Catalan numbers. We will use our
results from these problems to determine both the recursive definition of the Catalan numbers and also

a fairly simple closed-form formula for the numbers.
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CHAPTER 10. RECURSION

Concept: \iVhenever you can take a problem and express its
smaller versions of the same problem, that problem
for recursion.

solution in terms of
is a good candidate

(a) V[hat is the minimum number of moves necessary to win the game?

(b) Suppose there were n rings, where n is an arbitrary Positive integer. \Alhat is the minimum
number of moves necessary?

Solution for Problem 1.0.1:

(a) Since we don't rea11y know what the best strategy is, 1et's look at some smaller examples.

Experiment with smaller examples in order to get a feel for a hard problem.

If there's onJy I ring, then we only need I move: we just mot e it to the riSht Peg and we win:

If there are 2 rings, it's still pretty easy to win. We move the smaller ring to the middle peg, thr.
move the larger ring to the right peg, and finally move the smaller ring to the right peg. We need i
moves to win, and it's pretty clear that there's no way to win in fewer moves.

Experiment with 3 rings before reading further. How many moves are necessary?

It turns out that the best way to win is via the following sequence of moves:

. Start position

Concept:/'\-

.&.nn,
Move smallest ring to right peg. .&.[l-t,
Move middle ring to center peg.

JL..[.*,
Move smallest ring to center peg.

JLr&.fl,
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CHAPTER 10. RECURSION

We can now work our way up to h6 by starting at hr = 1 and using the above recurrence relaticr

hz=2h+t--2(1)+1,=3,
hz=2hz+1=2(3)+1=7,
hs=2hz+1=2(7)+1=15,
hs=2hE+ 1 = 2(15) +l=31.,
ho=2hs+1=2(31)+l=63,
hz = 2he + 1 = 2(63) + 1, -- 127,

ha =2b +1=2(127) + 1 = 255.

So we need 255 moves to win the game.

(b) Hopefully, the pattem of the above numbers is pretty c1ear. Each number is 1 less than a po*'er d
2, so it looks like hn = 2' - 1. Observing a pattern is not a proof, though. We need to prove t¡t
this works. We do so by induction, checking that it works for the initial condition z = 1 and that it
satisfies the recurrence relation.

First, we see that ft1 = 21 -l =2-1, = 1. Now we show that our formula for fu, satisfies th
recurrence relation, by induction. Assume that the formula works for h, t that is, assume tha
hn-r = 2" 1 - 1. Then by our recurrence relation:

h,=2hn 1+1=2(2n-1- 1) + 1= 2n -2+L=2" -')..

So, by induction, hn = 2n - 1 for all positive integers n.

tr

A little later, we'l1 see how you might have come up with the formula if you didn't see a pattem. [n
fact, we see a bit of this approach in the next problem.

Problem 10.2: I work for a valet parking company. Each of our customers drives either a Cadillac,
a Continental, or a Porsche. My boss told me I have to reserve spaces in our parking lot and mark
them as being for a Cadillac, a Continental, or a Porsche. Cadillacs and Continentals each take 2
spaces while Porsches orüy require 1.

(a) The 1ot has 12 spaces. ln how many ways can I allocate the spaces?

(b) What if the lot has 500 spaces?

Solution for Problem L0 .2: We see that this problem easily scales, meaning that there's nothing particularlv
special about the number "12" n thre problem: it would be essentially the same problem regardless
of the number. We also see that, after we allocate the first space(s) for the first car, we have the same
problem (with a smaller number of spots) as we sta¡ted with. This makes the problem a good candidate
for a recursive solution.

(a) Letp" denote the number of ways to allocate a parking lot with n spots. If we allocate the fust spot
to a Porsche, then we can allocate the remaining ,, - 1 spots in pn--r ways. If we allocate the first
two sPots to a Cadillac, then we can allocate the remaining n - 2 spots in pn-z ways. Similarly, if
we allocate the first two spots to a Continental, then we can allocate the remaining ,x - 2 spots in
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Adding them together gives 4 = 6zlr, so ,1,1 = ], which then gives us ,12 = ]. Therefore we har-e

)1
p,=;2, + q(_1r.

We can now quickly compute p, for any value of n; in particular

puoo = 
2;z'oo * 1; 

=.) .,

2s01 I 1

At this point, you may have a pretty good idea how to approach finding a closed-form formula
many recursions. We "guess" that the formula will somehow involve c', and then solve for c. l§et
come back to this idea in the next section.

Problem 10.3: Find the number of lO-digit temary sequences (that is, sequences with digits 0, 1, a
2) such that the sequence does not contain two consecutive zeros.

Solution for Prcblem 10.j: We can do casework based on the first digit of the sequence. If the first digit;;
a 0, then the next digit must be a 1 or a 2, and the remaining n * 2 digits must not have two consecutisÉ
zeros. If the first digit is a 1 or a 2, then the remaining ,7 - 1 digits must not have two consecutive zercÉ-

So if a, is the number of n-digit temary sequences with no two consecutive zeros, then a, satisfres
the recurrence relation

an=2a,-1+2a, 2.

This looks a 1ot like the Fibonacci sequence, except that each term ts double the sttm of the previous trso
terms.

Noting that a1 = 3 and az = 8 (any two-digit sequence except 00 is allowed), we can generate t}re
sequence:

3, 8, 22, 60,164, 448, 1224, 3344,91.36,24960,. ..

So the answer is 24960. D

Problem 10.4: 6 sprinters áiá in ttte iOO--"tur ¿á.t Ties are aliowed in the final standings, so that,
for example, one possible order of finish is:

Runner #6 wins; #2 and #5 tie for 2rLd; and #1,, #3 and #4 a1l tie for last.
How many different finishing orders are possible?

Solution for Problem 10.4: t/y'}:.at nakes this problem difficult is that any number of people could tie for
any position, including all 6 of them tying for first place. So trying to attack this problem using a direct
method like casework seems very difficult, as there are a large number of cases to consider: we could
have all 6 tied, or 5 could be tied with the other alone (ahead or behind), or it might go 4-1.-L (or 1.-L1
ot 7-1,-4), or 3-2-1, ot 4-2 or 3-3 or 3-1-1-1 or. . . . We could try to list all of the possible cases and count
the number of possibilities for each, but it would be long aná messy, and it'd be easy to overlook a case
and get the wrong answer.

So instead, let's try to look at some smaller version of the same problem to try to get a handle for
rvhat's going on. The easiest way to simplify the problem is to reduce the number of runners.
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The numbers that we found:
1,3,13,75,54r,4683, . . . ,

don't seem to fit any nice pattern, so there doesn't seem io be any obvious closed-form formula. _

10.2.1 I have a 1O-foot flagpole. I have 3 different types of 2-foot flags and 2 different types of i-i
flags. I have billions of each of the types of flags. Find the number of ways I can arrange fla=,
exactly fill the 10-foot flagpole (where the orders of the flags matter, and whiie flags of the same -
are indistinguishable, flags of different types are distinguishable).

10.2,2 Let a1, a2, . . .be a sequence with the following properties:
(i) ai = 1, ¿r.¿
(il) a2" = n(a,) for any positive integer fl.
I4¡hat is the value of a2,oo?

10.2.3 How many 6-digit base-4 numbers have the property that they contain at least one 1 and :
the first 1 is to the left of the first 0 (or there is no 0)?

10.2.4 Letq= p anda2 = q,wherep and q are positive integers, andletan =an ún zÍoralln23.
a formula for a, interms of n,p,and4. Hints:197

10.2.5 Call a set of integers spacy if it contains no more than one out of any three consecutive integes.
How many subsets of 11,2,3,.. .,121 are spacy? (Source; AMC) Hints:231

10.2.6* Find the number of 10-digit binary sequences that have exactly one pair of consecutive )i
Hints: 59

10.3 LinearRecurrences

Problem 10.5: We wish to find a closed-form formula for the recu¡rence where a1 = = 2, ail,
at = ar-t + 6nn-2 for all n > 2-

(a) Ignore the initial conditions for q and a2.

into the recurrence relation and solve for c.

Let a, = c' for some unknown constant c.

(b) You shouJd have found in pa rt (a) that üere is more than one value of c that works. How can rt'e
combine the different values of c into a common solution?

(c) In (a) and (b), you did not use the conditions at = I and az = 2. Use these conditions to finish the

Problem 10,6: Find a closed-form formula {or the recurence a, =
initial conditions a1 = 1 ¿nQ s2 = S.

- 4an-z for all n > 2, with
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We first look for solutions that are exponentials of the form c,, which we can plug into the
to get

¡n = pc"-l + qcn-2 .

We divide by c'-2 and move all terms to one side to get

é-Pc-q=9.

This is called the characteristic equation of the recurrence. We solve this to get roots c1 and c2. Thery ¡f
ci + c7' we have that 

an = Alci + A2c!

for some constants ,tl and zI2. This is called the general solution of the recurrence. Finally, we use tl:
initial conditions on al and a2 to solve for the ,1,'s.

The next problem explores what we do if the roots of the characteristic equation are equal; that is, if
ct = c2 in the above discussion.

Solution for Problem 10.6: It's a linear recurrence relatioo so we start by forming the characteristic
pollmomial:

c2-4c+4=0.
This factors as (c - 2)2 = 0, so we have a double root at c = 2. What do we do now?

But this doesn't work, since a2 = 3 * 2t .

Let's compute a few terms of the sequence, to see if there's an easily-observed pattem:

at=1'
az=3'
a3=4(3-1)=8,
a4=4(8-3)=20,
as=4(20-B)=48,
ae = 4(48 -20) = 112,

:

We suspect that 2" might somehow be involved, so let's divide each tetm by 2":

202

h _L az 3 a.¡ . a4 5 as 3 ao 7
,=r' 4=4' s='' 16=4'n=r' 64=4'
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ffi1 to 2048. I have to address every single one. _ori¡
they're stacked in order with #1 on top. To make § task a bit less mind-numb-ingl1,*di:::

;;;;#g;id", *r. \4r¡en I adiress a letter, I put it in my ou1box, Theones Iskip I stack

G *ln (so #2 Is on the bottom of the stack after nry-firsi pass)' After I.finish my^T"llT-t::l
102,4 letters which are not addressed; #2048 is on top, #2 is on the bottom. I then repeat my p

over and over until there's only one letter left. \ [hát number is that letter? (Source: A-&[E)

Intherealworld,we,renotusualiyjustgivenasimplerecurrencerelationandtoldtosoll¿¡-
Recursion is usually hidden within a problem, and the recursion may not be so easy to see or 1\::[:

down.Let,sdoanexampleofaprobleminwhicharecursionisclearlypresent,butpreciselydescri::§
that recursion is somewhat difficult.

problem 10.7: I have 2048 letters numbered 1 to 2048. I have to address every single one. _Originalh
ifr"y,." ,tr"t"a in order with #1 on top. To make the task a bit less mind-numbing, I address even-

othár one, starting with #1. When I address a lettet, I put it in my outbox. The,ones Iskip I stack a-< I

skip them (so #2 is on the bottom of the stack after my first pass). After I finish my first pass, I hare

102'4 letters which are not addressed; #2048 is on top, #2 is on the bottom. I then repeat my procedr'ue

CHAPTER IO, RECURSION

10.4 A Hard Recursion Problem

For a stack with 81etters, I had better start using a chart,

shown at right. In each stack, I cross off the letters that I sign,

and. then the next stack is the uncrossed letters, in reverse

order. We see from the chart at the right that letter #6 is the

l¿st letter remaining, so a7 = $.

over and over untii there,s orrly one lettef left. \,\trat number is that letter? (Soutce: AIME)

soltLtion for Problem 10.7: we could try to brute-force it, writin8 out the stack at each step' Hon'er =
that sounds like a very long proc"ss, ád the potential for error is huge. So instead, as we often do' i"¿

cun try to get a feel fo. the p"rób1em by playing with smaller cases. Since the number of letters get halve:

on eváry ñeration of the piocedu.", it *ui"ñ".tte to iust look at stacks with sizes that are powers oi I

If we start with 1 letter, then obviously #1 is the last letter remaining. Let',s denote by a, the numl'=

of the last letter remaining if we start with a stack of 2" letters numbered from #1 to #2',' so n'e r¿

established that ao = 1, and we're trying to find all'

If we start with 2 letters, then I address #1, and #2 is left over' So a1 = 2'

If we start with 4 letters, on the first pass I address #1 and #3 and am left with a stack with #4 on to:

and #2 on the bottom. On the second páss, I address #4, and #2 is the last letter remaining' So a2 = 2

#{

frñ
#4 #6 yl
t5 q4 ro
#6 #2

fl
#8
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a,: = 2(25 -a5+1) =2(32*22+7)=22
az = 2(26 - a6 + t) = 2(64 - 22 + 1) = 86

as = 2(27 - a7 + 1) = 2(128 -86 + 1) = 86

ag = 2(28 -as+1) = 2(256 - 86 + 1) = 342
an = 2(2e - ae + 1) = 2(512 - 342 + 1) = 342
at =2(210 - tlo + 1) = 2(1024 - 342 + 1) = 1366

Therefore, envelope #1366 will be the last one remaining. D

.i.lh .. .. -r..: -.. J rl

10.4.1* Sure1y you noticed the pattern that a¡ = a&+1 whenever k is odd.
explanation for that pattem? Hints: 57

10.4.2* Can you find a closed-form formula for an? lFrints:2SS,99

10.5 Problems Involving Catalan Numbers

Can you come up wiih

P¡oblem10.8:Inhowmanyway.scan10peoplesittir'garound,"i..,@
hands (so that there are 5 handshakes going on), 

"r"tithut 
,-ro two people cross arms? For example,

the handshake arra¡gement on the lefr side below is valid, but the arrangement on the right side L<invalid.

Compute by hand the number of handshake arrangements for 2, 4, or 6 peopre sitting around a
table.

It's a bithard to do it by hand for 8 people (you can try if you like), so we,l1 rook for a more crever
approach. Pick one person (out of the g); how many people can he shake hands with?
For each possible handshake fo¡ the first person in (b), in how many ways can the rest of the table
shake hands?

use your answers from @) and (c) to count the number of g-person handshake arrangements.

(a)

(b)

(d)

(e)
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Problem 10.8: In how many ways can 10 people sitting around a ci¡cular table simultaneously
hands (so that there are 5 handshakes going on), such that no two people cross arms? For ex¿
the handshake arrangement on the left side below is vaiid, but the arrangement on the ¡ight sid; i
invalid.

Solution for Problem 10.8: As we often do, we can expedment on smaller versions of the same probla.
in order to get some idea for what's going on in general.

If there are 2 people, then there is obviously only one way for them to shake hands.

If there are 3 people, then there's no way that they can all shake hands, because there will alwars-¡¡
an odd person left out. In general, we must always have an even number of people.

If there a¡e 4 people, then there are 3 ways for them to shake hands (pick one of the people, a:ri
choose one of the other 3 people to shake hands with him; the other two people are then forced io sh¿lc
with each other) But one of these ways is illegal: the pairs of people sitting across from each otlrs
cannot shake hands, since thei¡ arms would cross. So there are only 2 legal hándshake configuratiors
In the figure below, we see the two legal handshake configurations on the left, and the 3á (illega-
configuration on the right.

This

If there are 6 people, then things get a bit more complicated. The fi¡st
thing to note is that no one can shake hands with the person sitting l
positions away from them on the left or on the right, because if they did.
they'd "cut off" a person who would not be able to shake hands with
anyone/ as in the figure on the left.

This leaves us with two cases.

Case 1: Some pair of people who are directly across ftom each other shake hands.
There can only be one such pai¡, since two or more such pairs would
cross each other at the center of the table. There are 3 choices for a pair
of opposite people, and once we have chosen such a pair, the rest oithe

can't shake
with anybody
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otherwise, our initiai person has to shake with a person who is 3 positions to his left or right' on'.E

this is done, the two peopie who are "cut off" from the rest must shake with each other, and the other I
people form a 4-person mini-table that can shake in 2 ways:

This gives another 2(2) = 4 handshake arrangements' since there are 2 choices of the person that is 3

away"from the original person, and then 2 cho*ices to finish the handshaking at the 4-person mini-tab1a'

Therefore, there are 10 + 4 = 14 ways for 8 people to shake hands'

Fina1ly, we can use this same strategy for 10 people'- Choose an initial person'

This persán has 5 choices for whom to shake hands with, as shown in the picture

to thá right. If he shakes with one of his neighbors (2 choices)' then the remaining

8 peoplJform a mini-tab1e that can shake in 14 ways' If he shakes with a person

á iori iot t away (2 choices), then 2 people are cut off (and must shake)' and the

otirer 6 people íorm a minitable thai can shake in 5 ways lf he shakes with the

p"rro" átó'.,fy opposite (1 choice), then each side of the table has a group of 4

people, each of which can shake in 2 ways'

Therefore, the number of handshake arrangements for 10 people is

2(L4) + 2(s) + 1'(2)(2) = 28 + 10 + 4 = 42'

Before we go on, let's list the numbers that we found while working through the previous problem:

Number of PeoPle tt 2' 4 l6 ' 8 | l0

Keep these numbers in mind as we continue through this section'

problem 10.g: How mar1y way, u.J tlr"rá to á..ange 5 open parentheses "(" and 5 closed parentheses

;f; such that the pur"r,th"r", i,brlance," meaning that, as we read left-to-right, therc 
3i:,i:-Y::-i:_,*

)': ñ;i;? ;;";"*pi",i'" u..u"g"Áent ((00)ó) is valid, but the arrangement (00))(0 is invalid'

Solution for Problem 10.9: As we often do, let's experiment wiih small values'

If we have 1 set of parentheses, then we only have one possibility: 0'

If we have 2 sets of parentheses/ we can

the other as 00. So there are 2 possibilities'
either nest them as (0), or we can list both pairs one after
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<-)E( () ( ( ) ) ) ()
ABCDEFGHI]

This leads to a 1-1 correspondence

Jparenthesis arrangements ofl t handshake arrangements ofl
lr pairs of parentheses I ' ' l2n people around a table I

Thus the answet to our problem is the same as the number of handshake arrangements of 10
which is 42. ¡

That's two problems so far involving the sequence -L,2,5,14,42,.. 
. . You should therefo¡e not !¡.

surprised by what you will find in the next problem.

Solution for Problem 10.10: The first thing that we notice is that the grid shown is exactiy the part of t}r
fuli 5 x 5 grid that is below the main diagonal, as shown below:

(s, s)

Problem 10.10: How many 1O-step paths are there from (0, 0) to (5,5) on the grid below?

I
I

I
I
I

I
I

I
I
I
I
I
I
I
I
I
I

I
I
I-l-
I

_¡_
!
I
I{-
I
I

I
I
I

I
I
L
I
I
I
F
I
I
Ir
I
I
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,.,r,#,r,r,J
(3,3)

., . 
The1e. are tho¡e numbers again: r,2,s,._. .. so we'l1 once again look for a 1-1 correspondence behsthis problem and one of the previous problems. since each iath from (0,0) to 1n, rz¡ ciisists ot n mouP-.11d n 

.moves to the right, we think to tuy to find a correspo.,d".,"" t"tí""., ir,ár" puu.r, and Listsn "("s and, n ")"s.

Indeed, we can make a 1-1 correspondence

{balanced expressions with a pairs of parentheses} .. {paths on an n x n grid below the diagonatr}

(3,3)

by lett-ing each "(" represent arnove to the right and each ")" represent a move up. As long as there amore "("s than ")"s, there win be more righis than ups, and the path will never'cross aiove the ma¡diagonal of the n xn grid.

.. 
Therefore, 

-there 
are 42 paths on the 5 x 5 half-grid, si¡ce the¡e are 42 possible nested expressiarwith 5 pairs of parentheses. tr

You can probably guess ahead of time what the answe¡ to the next problem will be!

solution for Problem 10.11: As we often do, we can bu d up to a solution by looking at sma¡er caseThere's only 1 way to triangulate a triangle: do nothing, because it's al.eady t.iangjated! There a¡e lways to tdangulate a convex quadrilateral: draw in eitñer diagonal.

, Triangulating a PentaSon is the first tricky case. The easiest way to think about it is to pick anedge, and think about the possibilities for thai edge. For example, we rook at the bottom edge in theregular pentagon shown below, and we see that ii can be a part of one of three possible triangles insome triangulation:
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10.5.4* In how many ways can the shape at the far let :E
with 4 rectangular tiles, such that each tilá has integer side ,:
(where a side length of 1 corresponds to a side of o"ne oi ti.:
squares)? A sample such tiling is shown at left. Hints: zE-l :5

10.5.5* Determine the number of paths from (0,0) to (6,6) in the grid at
right, in which every step is either up or to the right, that pass througñ none
of the points (1,1), (3,3), or (5,5) (these points ai markeá with larg:e X,s in
the grid). Hints: 90, 55

10.6 Formulas for the Catalan Numbers

Problem 10.12: Can you write a recurrence ,ulatio., foithu Crtulu¡i.r-berJ

Problem 10.14: Find a 1-1 correspondence b"t*""*

{paüs from (O 0) to (n - l,n + 1)l .

As we've seen in the probrems in the previous section, the nrh Catalan number can be defined as;

o 
fhe lgmber of ways that 2n people sitting around a table can shake hands, so that no h{:
handshakes cross arms;

the number of ways to write Í (,s and n ),s such that the parentheses are balanced;

the.number of 2n-step paths on a rectangular grid from (0,0) to (n,n) that do not cross above th.:main diagonal;

o the number of ways to triangulate a convex (n + 2)_gon.

It would be nice if we could easily compute the Catalan numbers. For now, let,s focus on therecursive definition.

a

Probrem 10.13: Compare the nth Catalan number with the binomiar coefficient ('.:\ 
""you 

noÚr
rñr¡ h rr'^ñ ) \n I

Problem 10.15: Find a formula for the ¿ñ Catalan number.
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CHAPTER 10. RECURSION

We can once again verify this recursion for the numbers that we,ve already computed:
Co=1"

C1 =(¡f6=1,
Cz=CoCt+C1C¡ = l+1,=2,
Cz = CoCz+ C1C1 + C2Co = 2 ¡ I + 2 = 5,

C+ = CoCs +C7C2+C2C1+ C3C¡ = S +2+2+ b =14,
Cs = CoC¿ + CrC: + C2C2 + C3Ct+ C4C0 = j,4 + S + 4 + S + 14 = 42.

Let's continue and compute the next couple of Catalan numbers:

Co = CoCs +C1Ca + C2C3 + C3Cz+ CaCl + C5C6= 42+ 14+ 10+ 10+14+42=132,
Cz = CoCa + C1C5 + C2C4 + C3C3 + CaC2 + C5C1 + C6C6 = L32 + 42 + 2g + 25 + 2g + 42 + 132 = i(/9.

So now we have a recursive formula for the Catalannumbers. However, it is somewhat unsatistr
Not orLly it is recursive, but each Catalan number depends on all of the preceding catulan ntinl
not just the one or two immediately prior. It would be much nicer to have a closej-form formula ir5
which_we couid plug some varue of ¡¡ and have cn lust pop out. But where can we begin to find sudrr
formula?

252 924

,Problem 
10.10looks mostpromising, as it's most related to a problem that we feel like we unde¡staq¡

well and know how to find a formura for, namely paths on a grid from (0,0) to (n,n). we knou. thi.
without any reshictions, the¡e /1"\

a re ( ,? / 
such Paths. So that's a good place to start.

Compare the zth Catalan number with the binomiar coefficie* ('l) ". 
you notice

429
2n

n
It's not too clear how to find a pattern between these two rows of numbers, but the one column thatmight jump out at you is^ the n = 4 column with the numbers 14 and 70, since 70 = s(la). This might
cause you to notice that ('?1) always appears to be a multiple of C,. Let,s expand o* charí:

Problem 10.13:

any pattern?
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Paths from (0,0) to (2,2) that
go above the main diagonal

Paths from (0,0) to (1,3)

CHAPTER 10. RECURSION

We see that in each column, the path from (0, 0) to the circled point in both pictures ls the
However, what's more interesting is what happens after the circled point. Compare the paths after
circled point in both pictures of a column. They're mirror images of each other!

To be more precise, Iet's list the paths using "r" for a step to the right and "tt" for a step up. \\L
place in bold all of the steps after the circled point.

Note that the unbolded parts of the paths-the parts between (0, 0) and the circled point-a=
identical, and the bolded parts of the paths-the parts between the circled point and the end-¿=
exactly reversed.

This suggests a general strategy for finding a 1-1 correspondence. Given a path from (0, 0) to (r. z
that goes above the diagonal, circle thefrsf point at which the path crosses above the diagonal. Tha.
reverse all steps past the circled point: change ups to rights and rights to ups.

Here's an example where n = 5. The original path is shown as solid, and the new path (after i:t
transformation described above) is shown as dashed.

Note that the solid path, before the circled point, has one more up step than right step. After the
circled point, the solid path has one more right step than up step (since the circled point lies one "up'
step above the diagonal). After the reversal transformation, the dashed path has, after the circled point.
one more up step than right step. Hence, starting at (0,0), the combined new path has 2 more uP steF
than right steps. Since it still has 2n steps in total, it must have m + 1 up steps and n - 1 right steps, and
thus the path end s at (n - 1. , n + 1) .

Paths from (0, 0) to

Paths from (0,0) to (1,3)
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CHAPTER 10. RECURSION

10.6.3 Brazil defeats Germany in a wild World Cup final by the score of 8 to 6. Assuming the 14 goi.
were equally like1y to be scored in any order, find the probability that the score was never tied (excqa
at 0-0). Hints: 110

10.6.4 We form a rooted binary treeby as follows. Starting with a root node, we can draw 2 bra¡cls
(but not 1) from the ¡oot to new nodes. F¡om each of these new nodes we can draw 2 branches @ut n a
1) to new nodes, and so on. Each node either has exactly 2 branches (in which case we call it an interni
node) or 0 branches (in which case we call it a leaf). The possibilities with 3 internal nodes are sho¡'¡
below. Prove that the number of rooted binary trees with ¡¡ internal nodes is the nth Catalan numbc
Hints:211

v'?,{Vsx
10.6.5* Determine all values of n such that C, is odd. Hints: 343,124,329

10.7 Summary

Recursion is the name for the general concept ofconstructing later terms in a sequence from ea¡lier
terms.

In a way, recursion is the opposite of constructive counting. In constructive counting, we think
about how we would build the items that we're trying to count. In recursion, we think about horr
we would break up the items that we're trying to count into smaller pieces.

Some simple recurrences can be solved by hand, by determining the recursive formula and then
simply number-crunching to get the answer that you want.

Linear recursions are solved in three steps:

1. Assume that the solution is an exponential, to get the characteristic equation.

2. Find the roots of the cha¡acteristic equation, to get the general solution as a sum of exponential
terms with unknown constants.

3. Use the initial conditions to solve for the constants in the general solution.
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10,18 Find a closed-form formula fo¡ the recurrencl an = )sn-' + an-2 Íor all n > 2' with the inifi'J

conditions a¡ = 2 artd at = 3.

10.19 A solitaire game is played as fol1ows. Six distinct pairs of matched tiles are Placed in a ba8. Th
player randomly d-raws t es óne at a time from the bag and retains them, except that matching tiles ar
p,.íurid" 6 rool as they appear in the player's hand. The game ends if the player ever holds th¡ee tiles-

no two of which match; otherwise the drawing continues until the bag is empty. Find the probabilitr

that the player wins the game fty emptying the bag). (Source: AIME)

10.20 In how many ways can a 3 x 10 rectangle be tiled with tiles of size 1' x 2?

IO.2l Acollection of 8 cubes consists of one cube with edge-length k for each integer 1 < k < 8- -1

tower is to be buiit using all 8 cubes according to the following rules:

Any cube may be the bottom cube in the tower.

The cube immediately on top of a cube with edge-length k must have edge-length at most k + a

How many different towers can be constructedT (Soutce: AIME)

10.22 Define a half-rectangular array of positive integefs (shown below) by placing a 1 in the tcp

row, and then letting every iubsequent number be the sum of the number immediately above and tlt
number immediately to the left. (Ii a number is missing, treat it as 0.) If the top row is Row 0, then Ron'

n has n + L entries. Érove that the last entry in Row n is the n 
th Catalan number Cn, for all n 2 0.

1

11
72
13
14
15

2
55
9 1414
14 28 42 42

10.23 we form a word using only A',s, B',s and c's. suppose we can never have an A next to a C. Find

the number of SJetter words that can be formed. Hints: 81

]rO.Z4 A mail carrier delivers mail to the 19 houses on the east side of Elm Street. The carrier notics

that no two adjacent houses ever get mail on the same day, but that there are never more than tt^-o

houses in a ro; that get no mail on the same day. How many different subsets of houses thai get mail

on any particular day are possible? (Source: AIME) }{inlst 196

10.25 we have the coins Ct,Cz,...,Cn. For each k, Cr is biased so that, when tossed, ithas plobabilitr'

1,lek + \ of showing heads. If zt coins are tossed, what is the probabil§ that the number of heads is

odd? (Source: Putnam) Hints: 70



9¿¿

9r¿'8 '?úI:sluIH 'u rapro Jo s3uqsau pooS-alqnop Jo raqunu aql pqJ

((«))
((00
(0(0

:sr ¿ rap.n
Jo s8r.ntsau poo8-alqnop aqt Jo +srT alalduo) eq+ ,aldurexaJog .tqod +Eq+ o1 pa.readde a,req lpql s,,),, -¡§
raqumu aql saury Z uer{+ aJorrr ou sr ¡urod fue ¡e pa.readde a^Bq }Eq+ s,,(,, ¡o .raqurnu aq¡ ,¡q8r.r-o¡¡q
p?ai a,rl sp leql qJns s,,) ,, u p,Je s,,(,, u¿ ¡o luauraSuerre ue sr a ¡apJo Jo Stmsat pooS-a1qnop V +0glrl

(tINtrV:úm%t

e€€ 
/99¿ :stulH ., ua^e roJ !S

aruanbas aql ur srural ua^a Jo raqunu aql pup surra+ ppo Jo raqumu arp uaauvrlaq drqsuor+Elal e prnd tqi

ZLI ¡tol tslwl¡¡ ¿ SJo luaurala lsa8.rel aql $ +pr{tvl (pi

'uo os Prr!

f 'ú'e'9'z'9't'?'f = Ús

f 'e 'z'€'f = es

r'Z't = zS

:uaa.nlaq 1nd Suraq s,1r srural oml aql Jo runs aqr ol 1en¡E
a¡uanbas snor,rard aq1 ur urla¡ qc€a uaa^qaq ruJal .uau e 8ur;u1d fq a.ruanbas luanbasqns qrea luJoJ pr¡p

I'f = rS

qlr.4{ u¿ls :smo¡1oJ sE s-¡aqurnu Jo saf,uanbas ¡rn.4suoc a¡4 +57g¡

891 
/99I :slulH ¿lolol aures aql a:e sa¡3uer4 luare[pe o.n1 ou ¡eq1 qcns 8ur.ro1oo aqt urro¡,rad a.u ues

s.(e¡¡. .,{r¡eu ,uo¡J uo8e:ap aq} Jo sa¡rua^ truacefpe o1 6 8ur¡cauuoc dq paurro¡ sal8uer.r] ual aq+ Jo t{)Ea
'srolol t Jo auo qlrm tolor aM O ¡aluar q¡rzvr (uo8d¡od papIS-3I) uo8eaap re¡n8ar e raprsuo3 82.0f

0€t:slurH GIWVSn:arrnog) 
.0t¿ purg derru i; x ¿ aqi Jo suoqrauuor prlE^Jo raqrunu aql alouap t ]a.I

PIIEA

t_lr
PIIEA

:t_l
sa¡durexa autos arrlg aM 'azls luu ¡o sdool ou a.re araql puu ,sa8pa aql era apou raqlo fr"^, .] p:;rL:-:
sr apou qJEa l€qtr r{Jns 'sapou uaa1"l+aq saSpa ¡erq.ra.t pue pluozr.roq Suol-lrun-I Jo uoBrppe aq¡ sr .{erre
aq+ jo uoryJauuoJ puaa y la8alur aaqrsod e sr ¿, aJar{,rl ,sapou 

Jo Ael,re u x ¿ e uaar8 aJp aM ¿2.0f

,92 
lgtrZ tEvlH 'a.renbs pa¡.rad e sI'ú ro ,€,f ¡e a.re qr8rp asoq,r,r pue

u¿ are surns-1r€rp asoq.tr sragalur a,rqrsod ¡o Jaqunu aLI+ lEqt atotd'u ra8alur a,r4rsod fuP Joc 92.0r

palJauuoJ lou :prIE^uI

L_t
doo¡ :pr¡u,ru1

sh,t3l80ud ScNfttvHc



CHAPTER 10, RECURSION

10.31i Suppose that Germany and Brazil play a soccer rematch in which there are 2ri gr:.' -
ald that the final score is Brazi.l n + m, Germany n - m. How many possible sequences of goa . .:.
such that Germany is never more than 2rtl goals behind? Hints: 348, 128

10.32* Count the number of sequences of integers a1,a2,a3,aq,a5with 4, < l for a1l l such tha::-: r
sums (41, a1+a2tal 'la2*a3,a1 +a2+a3*a4,a1 la2+a3+a4 +as) are nonnegative. (Source --- -

Ilints:24L,72

Extra: General theory of linear recurrences
¡,+n¡i ¡¡an+ We ca¡r use methods similar to those of Section 10.3 to solve arbitrary iinear recurrer.-'t=

of the form
an = Pún-t'l pzan z+"'+pkan-kt

whercp:-pi.,...,pe are constants. We substitute 4,, = c' to 8et the characteristic equati.r-
of the form

é-pé-, -prrk 2- "-p¡--0.
Suppose that this characteristic equation has roots ry,r2, . . . ,ri with multiplicitiúi
mt,mL...,mj; in other words, the characteristic equation factors as

(c - tt)-, (c - r2)'n2... (c - r ¡)ni = 0.

Each root ri contributes a term to the general solution of the form

(lr+ l¡zn + Lpn2 *.-.+ AiÍ, n(n1t-l))(r )" ,

so that the general solution is of the form

'.=Elü^**')or
Note that there are k constants ,{;, in this expression, since the multiplicities of the roots
must sum to k. Given k initial values of an, we can always solve the resulting system

of linear equations for the,t;r's. This works regardless of whether the roots are real or
compiex.

Proving that this works for any linear recurrence requires advanced algebraic techniques
and some knowledge of Linear algebra.
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